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ABSTRACT

We present a study of designing compact multiple-prototype based
classifiers for rotation-free recognition of online handwritten Chi-
nese characters. Several versions of Rprop algorithms are adopted to
optimize a sample-separation-margin based minimum classification
error objective function. Split vector quantization technique is used
to compress classifier parameters and a fast-match tree is used for
efficient recognition. A new preprocessing technique is proposed to
achieve rotation-free recognition capability. Promising benchmark
results are reported on an online handwritten character recognition
task with a vocabulary of 27,720 characters.

Index Terms: handwritten Chinese character recognition, rotation-
free, Rprop, MCE

1. INTRODUCTION

With the fast development of mobile internet, online handwritten
Chinese character recognition on a Smartphone becomes increas-
ingly popular. To deliver a compelling user experience, a recog-
nizer has to be designed to have a small footprint, run efficiently on
a Smartphone, achieve high recognition accuracy, yet be robust to
different writing styles of millions of users. In [13], we have pre-
sented a solution to achieve most of the above goals except for ro-
bustness to certain types of distortions, e.g., rotation. However, a
new national standard in China [4] requires that a Chinese handwrit-
ing recognition software for text input is able to recognize a charac-
ter written with a rotational distortion of up to ±45◦. In literature,
many research work have been reported to improve the robustness
of a handwritten Chinese character recognizer to rotational distor-
tions. One type of methods is to add a preprocessing step to trans-
form distorted character(s) to a normal position in recognition stage
(e.g., [10, 11, 9, 6]). Reasonable improvement has been reported
on the recognition of lines of characters (e.g., [10, 11]) or Chinese
words (e.g., [9]), where informative clues for estimating the char-
acter orientations are available. For an isolated Chinese character, a
character-structure-guided approach to estimating the possible orien-
tations is proposed in [6]. Another type of methods is to perform ro-
tation normalization, i.e., transforming each character to a relatively
stable position in both training and recognition stages. In [7], an ef-
ficient normalization method, namely “hanging character” method,
is proposed and demonstrated to be more effective than most of ex-
isting methods. The main idea of the “hanging character” method is
to rotate each character sample in such a way to make the direction
from the starting point of a character to the centroid of the character
upright. By definition, this approach is not robust to writing orders
of the strokes.

Inspired by the work in [7], in this study, we propose a new pre-
processing technique to achieve rotation-free recognition capability

Fig. 1. Overall development flow and architecture.

which is more efficient yet insensitive to the stroke orders. As a
follow-up study of [13], several versions of Rprop algorithms [12, 8]
are adopted to optimize a sample-separation-margin (SSM) based
minimum classification error (MCE) objective function [5] because
the setting of control parameters for Rprop is much easier than the
Quickprop algorithm used in [13]. Benchmark results are reported
on an online handwritten character recognition task with a vocab-
ulary of 27,720 characters including 27,533 Chinese characters in
GB18030 standard [3], where a fast-match tree is used for efficient
recognition.

The remainder of the paper is organized as follows: In Section 2,
we present what’s new. In Section 3, we report experimental results.
Finally we conclude the paper in Section 4.

2. OUR APPROACH

An overall system development flow and architecture is illustrated in
Fig. 1. In training stage, each training sample is first transformed by
a preprocessing module to achieve the goal of rotation-free recog-
nition. Then a 512-dimensional raw feature vector is extracted [1],
which is followed by LDA transformation to obtain a lower dimen-
sional feature vector. After that, a multi-prototype based classifier
is constructed by using LBG clustering algorithm, which is then re-
fined by SSM-MCE training with an Rprop algorithm. As in [13],
split vector quantization (VQ) technique is used to compress the
classifier parameters. Finally, a two-level fast-match tree is con-
structed as described in [2], which is used at run-time to speed up
recognition. Modules in recognition stage are self-explained. In the
following subsections, we elaborate on the modules of preprocessing
and Rprop-based SSM-MCE training.
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2.1. Preprocessing for Rotation-Free Recognition

For an online handwritten character sample with L strokes,
let’s represent its kth stroke as a sequence of points Pk =
(P k

1 , P k
2 , ..., P k

n , ..., P k
Nk

), where P k
n = (xk

n, yk
n) is the coordi-

nates of the nth point for the kth stroke. Then, two key points can
be defined as S =

∑L
k=1 P k

1 and E =
∑L

k=1 P k
Nk

which can be
considered as the summation of starting points and ending points of
all strokes, respectively. Let’s use (xS , yS) and (xE , yE) to denote

the coordinates of S and E, respectively. Then our transformation is
to make the direction from S to E upright as follows:

(xk
n)new = xk

n sin θ − yk
n cos θ (1)

(yk
n)new = yk

n sin θ + xk
n cos θ (2)

where θ represents the direction from S to E, and satisfies the fol-
lowing equations:

cos θ =
xE − xS√

(xE − xS)2 + (yE − yS)2
(3)

sin θ =
yE − yS√

(xE − xS)2 + (yE − yS)2
. (4)

Obviously, the above transformation is rotation invariant, there-
fore a character classifier trained on normalized samples with the
above transformation can achieve rotation-free recognition if an un-
known character sample is also normalized in the same way. Our ex-
perimental results confirm that such a simple method can give very
promising results. Compared with the “hanging character” method
in [7], our method is by definition insensitive to stroke order, yet
computationally more efficient.

2.2. Rprop Optimization for SSM-MCE Training

Suppose our classifier can recognize M character classes denoted
as {Ci|i = 1, ..., M}. We are given a set of training feature vec-
tors X = {xr ∈ RD|r = 1, ..., R} together with their labels
L = {ir|r = 1, ...R}. For a multi-prototype based classifier, each
class Ci is represented by Ki prototypes, λi = {mik ∈ RD|k =
1, ..., Ki}, where mik is the kth prototype of the ith class. Let’s use
Λ = {λi} to denote the set of prototypes. In classification stage,
a feature vector x ∈ RD is first extracted. Then x is compared
with each of the M classes by evaluating a Euclidean distance based
discriminant function for each class Ci as follows

gi(x; λi) = −min
k

‖ x − mik ‖2 . (5)

The class with the maximum discriminant function score is chosen
as the recognized class r(x;Λ), i.e.,

r(x;Λ) = arg max
i

gi(x; λi) . (6)

In the training stage, Λ can be estimated by minimizing the fol-
lowing MCE objective function:

l(X ,L;Λ) =
1

R

R∑
r=1

1

1 + exp[−αd(xr, ir;Λ) + β]
(7)

where α, β are two control parameters, and d(xr, ir;Λ) is a mis-
classification measure defined by using a so-called sample separa-
tion margin (SSM) as follows [5]:

d(xr, ir;Λ) =
−gir (xr; λir ) + gq(xr; λq)

‖ mir k̂ − mqk ‖ (8)

where

k̂ = arg min
k

‖ xr − mirk ‖2
(9)

q = arg max
i∈Mr

gi(xr; λi) (10)

k̄ = arg min
k

‖ xr − mqk ‖2
(11)

and Mr is the hypothesis space for the rth sample, excluding the
true label ir .

In previous work [13], a modified Quickprop procedure is used
for SSM-MCE training. In this work, 4 improved versions of Rprop
algorithms described in [8] are adopted to optimize the objective
function in Eq. (7). Our Rprop based SSM-MCE training proce-
dure is as follows:

Step 1: Let t = 0. η+ and η− (0 < η− < 1 < η+) are the increase
factor and decrease factor, respectively. Δ0 is the initial step-
size. Δmax and Δmin are the upper limit and lower limit of
step-size, respectively. Calculate the derivative of l(X ,L;Λ)
w.r.t. each mikd and update the prototype parameters as fol-
lows:

m
(t+1)
ikd = m

(t)
ikd − sign

(
∂l(X ,L;Λ(t))

∂mikd

)
Δ

(t)
ikd(12)

Δm
(t)
ikd = −sign

(
∂l(X ,L;Λ(t))

∂mikd

)
Δ

(t)
ikd (13)

where mikd is the dth element of mik, m
(t)
ikd = mikd,

Δ
(t)
ikd = Δ0, and

∂l(X ,L;Λ(t))

∂mikd
� ∂l(X ,L;Λ)

∂mikd

∣∣∣∣
Λ=Λ(t)

. (14)

Step 2: Let t = t + 1. Define

S =
∂l(X ,L;Λ(t−1))

∂mikd
· ∂l(X ,L;Λ(t))

∂mikd
. (15)

According to [8], there are four modified versions of origi-
nal Rprop [12], namely Rprop-, Rprop+, iRprop-, iRprop+,
which can significantly improve the learning speed.

• Rprop-:

Δ
(t)
ikd =

⎧⎪⎪⎨
⎪⎪⎩

min
(
η+Δ

(t−1)
ikd , Δmax

)
if S > 0

max
(
η−Δ

(t−1)
ikd , Δmin

)
if S < 0

Δ
(t−1)
ikd else

(16)

m
(t+1)
ikd = m

(t)
ikd − sign

(
∂l(X ,L;Λ(t))

∂mikd

)
Δ

(t)
ikd (17)

• Rprop+:
If S > 0

Δ
(t)
ikd = min

(
η+Δ

(t−1)
ikd , Δmax

)
(18)

Δm
(t)
ikd = −sign

(
∂l(X ,L;Λ(t))

∂mikd

)
Δ

(t)
ikd(19)

m
(t+1)
ikd = m

(t)
ikd + Δm

(t)
ikd (20)
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if S < 0

Δ
(t)
ikd = max

(
η−Δ

(t−1)
ikd , Δmin

)
(21)

m
(t+1)
ikd = m

(t)
ikd − Δm

(t−1)
ikd (22)

∂l(X ,L;Λ(t))

∂mikd
= 0 (23)

else

Δ
(t)
ikd = Δ

(t−1)
ikd (24)

Δm
(t)
ikd = −sign

(
∂l(X ,L;Λ(t))

∂mikd

)
Δ

(t)
ikd(25)

m
(t+1)
ikd = m

(t)
ikd + Δm

(t)
ikd . (26)

• iRprop-: Almost the same as Rprop-, we only need to
add one statement between Eq. (16) and Eq. (17):

If S < 0,
∂l(X ,L;Λ(t))

∂mikd
= 0 . (27)

• iRprop+: Almost the same as Rprop+, we only need to
modify Eq. (22) as follows:

If l(X ,L;Λ(t)) > l(X ,L;Λ(t−1)),

m
(t+1)
ikd = m

(t)
ikd − Δm

(t−1)
ikd . (28)

Step 3: Repeat Step 2 (TR − 1) times.

In the above procedure, the derivative of objective function can be
calculated as follows:

∂lr
∂mir k̂

=

αlr(1−lr)

[
− xr − mir k̂

‖ mir k̂ − mqk ‖ − d(xr, ir;Λ)
mir k̂ − mqk

‖ mir k̂ − mqk ‖2

]

∂lr
∂mqk

=

αlr(1− lr)

[
xr − mqk

‖ mir k̂ − mqk ‖ − d(xr, ir;Λ)
mqk − mir k̂

‖ mqk − mir k̂ ‖2

]

where

lr =
1

1 + exp[−αd(xr, ir;Λ) + β]
. (29)

To handle large-scale training data, the tools for LBG clustering
and the SSM-based MCE training with both Quickprop and Rprop
algorithms have been implemented based upon MSR Asia’s MPI-
based machine learning platform [14]. This platform was developed
on top of Microsoft Windows HPC Server, and optimized for vari-
ous machine learning algorithms. With this high-performance paral-
lel computing platform, experiments can be run very efficiently for
large-scale tasks.

3. EXPERIMENTS AND RESULTS

3.1. Experimental Setup

The experiments are conducted on two tasks of recognizing isolated
online handwritten characters with the following two vocabularies:

• Task-1: 9,306 character classes including 9,143 Chinese
characters, 62 alphanumeric characters, 101 punctuation
marks and symbols;

• Task-2: 27,720 character classes including 27,533 Chinese
characters in GB18030 standard, 62 alphanumeric characters,
8 handwriting gestures, 117 punctuation marks and symbols.

For training we used about 1,000 samples per character in the first
vocabulary, and 60 samples per character for those rarely used char-
acters. Three testing sets are used for evaluation: 1) Regular-1:
97,221 samples from 6,903 character classes which are written in
regular style; 2) Regular-2: 84,549 samples from 2,355 uncommon
character classes in regular style; 3) Cursive: 51,248 samples from
3,324 character classes written in cursive style.

As for the number of prototypes for each character, we use A
prototypes for 3755 most frequently used Chinese characters and B
prototypes for the rest of character classes. For Rprop-based SSM-
MCE training, the control parameters are set as follows: α = 7;
β = 0; TR = 100; Δ0 = 0.05; Δmax = 50; Δmin = 0; η+ = 1.2;
η− = 0.5. It is noted that all the control parameters related to Rprop
are set empirically as suggested in [8] without tuning. For split VQ
compression, the sub-vector dimension is 1. For the fast-match tree,
the number of buckets is set to 256 and the top 5 buckets are selected
for evaluation.

3.2. Experimental Results

In the first set of experiments, we study the effectiveness of Rprop
optimization for SSM-MCE training. Table 1 summarizes a perfor-
mance (recognition accuracies in %) comparison of Quickprop and
four Rprop modifications on three test sets without preprocessing
modules on Task-1. The control parameters for Quickprop have to
be tuned carefully. Several observations can be made. First, all im-
proved Rprop versions outperform Quickprop. Second, among four
modifications of Rprop, iRprop- achieves consistently the best re-
sults on three test sets, therefore is adopted for the remaining exper-
iments. It is noted that the dimension of feature vector after LDA
transformation is 128 (i.e., D = 128) in this set of experiments, but
D = 80 for all the other experiments to construct more compact
classifiers.

In the second set of experiments, we study the effectiveness
of preprocessing for rotation-free recognition. Table 2 compares
the performance of baseline system without preprocessing and two
rotation-free systems using preprocessing for rotation normalization.
Although the baseline system achieves better performance, it is not
robust to character rotation. Both rotation-free systems achieve very
promising recognition accuracies. Compared with “hanging charac-
ter” method, our method yields significant improvement on test sets
of regular style and comparable results on the test set of cursive style.
When the number of prototypes is increased, recognition accuracies
are improved in most cases, especially for the rotation-free systems.
This is reasonable because the additional variabilities introduced by
rotation transformation can be handled by using more prototypes.

To verify how the proposed approach scales, a set of experiments
are conducted on Task-2. Table 3 summarizes “Top-N” recognition
accuracies and footprint comparison of baseline system without pre-
processing and two rotation-free systems on three test sets. Similar
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Table 1. Performance (recognition accuracies in %) comparison of
Quickprop [13] and four Rprop modifications on three test sets with-
out preprocessing for rotation-free recognition (A = 2, B = 1,
D = 128).

Regular-1 Regular-2 Cursive

Quickprop 97.01 96.08 88.98

Rprop- 97.30 96.22 89.73

Rprop+ 97.27 96.22 89.72

iRprop- 97.32 96.24 89.81

iRprop+ 97.26 96.20 89.64

Table 2. Performance (recognition accuracies in %) comparison of
baseline system without preprocessing and two rotation-free systems
using “hanging character” method [7] and our method on three test
sets on Task-1 (D = 80).

Regular-1 Regular-2 Cursive

A = 2, B = 1
Baseline 96.52 94.84 88.74

Hanging 93.07 89.31 83.15

Our Method 94.02 91.25 83.21

A = 4, B = 4
Baseline 97.16 94.75 89.49

Hanging 95.04 90.91 84.98

Our Method 95.63 92.39 85.32

observations can be made as in Table 2. For the baseline system, al-
though a larger vocabulary is used, the recognition accuracy is only
slightly decreased compared with those in Table 2. The baseline
system with A = 2 and B = 1 gives a good tradeoff between accu-
racy and footprint for recognizing samples without rotational distor-
tions. As for the rotation-free systems, our method consistently out-
performs “hanging character” method, especially on Regular-2 test
set. Our system with A = 4 and B = 4 is a pretty good rotation-free
recognizer. From the Top-5 and Top-10 results, the above systems
can deliver a quite compelling user experience already.

4. CONCLUSION

From the above experimental results, we conclude that the tech-
niques presented in this paper can be readily used to construct a large
vocabulary online handwritten Chinese character recognizer which
has a small footprint, runs efficiently on a Smartphone, achieves high
recognition accuracy, yet be robust to rotational distortions, there-
fore can be deployed in products. To the best of our knowledge, this
represents the first study reporting experimental results of a recog-
nizer which can recognize 27,533 Chinese characters in GB18030
standard.

5. REFERENCES

[1] Z.-L Bai and Q. Huo, “A study on the use of 8-directional
features for online handwritten Chinese character recognition,”
Proc. ICDAR-2005, pp.262-266.

[2] Z.-D. Feng and Q. Huo, “Confidence guided progressive
search and fast match techniques for high performance Chi-
nese/English OCR,” Proc. ICPR-2002, pp.III-89-92.

Table 3. Performance (“Top-N” recognition accuracies in %) and
footprint comparison of baseline system without preprocessing and
two rotation-free systems on three test sets on Task-2 (D = 80).

Regular-1 Regular-2 Cursive

A = 2, B = 1, Footprint: 3.34 MB

Top-1 96.36 94.38 88.16
Baseline Top-5 99.44 99.30 97.03

Top-10 99.64 99.65 98.18

A = 4, B = 4, Footprint: 8.80 MB

Top-1 96.92 94.71 89.21
Baseline Top-5 99.67 99.49 97.78

Top-10 99.84 99.75 98.75

Top-1 94.57 88.97 84.69
Hanging Top-5 98.91 97.43 95.31

Top-10 99.34 98.30 97.03

Top-1 95.35 92.23 84.86
Our Method Top-5 99.10 98.70 95.38

Top-10 99.51 99.30 97.22

[3] GB18030: The New Chinese Encoding Standard,
http://www.gb18030.com/

[4] GB/T18790-2010: Requirements and Test Procedure of On-
line Handwriting Chinese Character Recognition System.

[5] T. He and Q. Huo, “A study of a new misclassification measure
for minimum classification error training of prototype-based
pattern classifiers,” Proc. ICPR-2008.

[6] T. He and Q. Huo, “A character-structure-guided approach to
estimating possible orientations of a rotated isolated online
handwritten Chinese character,” Proc. ICDAR-2009, pp.536-
540.

[7] S. Huang, A Study On Recognition For Rotated Isolated On-
line Handwritten Chinese Character, Master Thesis (in Chi-
nese and supervised by Professor Lianwen Jin), South China
University of Technology, China, 2010.
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