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Abstract

This paper presents a new discriminative linear re-
gression approach to adaptation of a discriminatively
trained prototype-based classifier for Chinese OCR. A
so-called sample separation margin based minimum
classification error criterion is used in both classifier
training and adaptation, while an Rprop algorithm is
used for optimizing the objective function. Formula-
tions for both model-space and feature-space adapta-
tion are presented. The effectiveness of the proposed
approach is confirmed by experiments for adaptation of
font styles and low-quality text, respectively.

1. Introduction

With the fast development of mobile internet, OCR-
based applications are becoming increasingly more
popular (e.g., [2, 1, 3]). However, most off-the-shelf
OCR engines were trained on scanned documents, and
they may not work well for new application scenarios
where the properties of the captured character images
are significantly different from the ones in the training
data set. One of solutions to address this problem is to
adapt a pre-trained classifier to deal with the new sce-
nario by using the document to be recognized itself via
an unsupervised adaptation strategy (e.g., [9, 8]), or by
using a small amount of adaptation data collected in the
target scenario via a supervised adaptation strategy. The
latter is the topic of this study.

In this paper, we study the adaptation techniques for
Chinese OCR. One of the state-of-the-art techniques
to build a Chinese OCR engine is to use a discrimi-
natively trained prototype-based classifier as reported
in [5]. Recently, a so-called sample separation margin
(SSM) based MCE training approach was proposed in
[4] for training prototype-based classifiers, which per-
forms better than the MCE training approach in [5].
In this study, we have built our baseline classifier for
Chinese OCR by using the techniques described in

[5, 4, 10] with a small difference: we used an Rprop
algorithm (e.g., [6]) to optimize the SSM-MCE objec-
tive function because the setting of control parameters is
much easier than the Quickprop algorithm used in [10].
The main contribution of this paper is to propose a new
SSM-MCE linear regression (LR) approach to adapta-
tion of an SSM-MCE trained prototype-based classifier
for Chinese OCR. Formulations for both model-space
and feature-space adaptation are presented. Our work is
related to a recent work on writer adaptation for hand-
written Chinese character recognition reported in [11],
where a similar MCE training approach as in [5] is used
to train a prototype-based classifier, but a least regular-
ized weighted squared error approach is used to esti-
mate a global feature transform (a.k.a. style transfer
matrix (STM)) for writer adaptation. The adaptation ca-
pability of the STM approach is similar to our feature-
space adaptation approach, but is inferior to our model-
space adaptation approach because multiple transforms
can be used for model adaptation. Even for feature-
space approach, our experimental results show that our
approach performs significantly better than the original
STM approach in [11] for supervised adaptation of font
styles and low-quality text, respectively, which confirms
that SSM-MCE is a better objective function to learn the
feature transform.

The remainder of the paper is organized as fol-
lows. In Section 2, we describe briefly how to construct
a multi-prototype based classifier by using the SSM-
MCE training. In Section 3, we present formulations
of SSM-MCE LR for both model-space and feature-
space adaptation. Several important implementation is-
sues are discussed in Section 4. In Section 5, we re-
port experimental results for supervised adaptation of
font styles and low-quality text, respectively. Finally
we conclude the paper in Section 6.

2. SSM-MCE Training

Suppose our classifier can recognize 𝑀 character
classes denoted as {𝐶𝑖∣𝑖 = 1, ...,𝑀}. For a multi-
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prototype based classifier, each class 𝐶𝑖 is represented
by 𝐾𝑖 prototypes, 𝝀𝑖 = {𝒎𝑖𝑘 ∈ ℛ𝐷∣𝑘 = 1, ...,𝐾𝑖},
where 𝒎𝑖𝑘 is the 𝑘th prototype of the 𝑖th class. Let’s
use Λ = {𝝀𝑖} to denote the set of prototypes. In the
classification stage, a feature vector 𝒙 ∈ ℛ𝐷 is first ex-
tracted. Then 𝒙 is compared with each of the 𝑀 classes
by evaluating a Euclidean distance based discriminant
function for each class 𝐶𝑖 as follows

𝑔𝑖(𝒙;𝝀𝑖) = −min
𝑘

∥ 𝒙−𝒎𝑖𝑘 ∥2 . (1)

The class with the maximum discriminant function
score is chosen as the recognized class 𝑟(𝒙;Λ), i.e.,

𝑟(𝒙;Λ) = argmax
𝑖

𝑔𝑖(𝒙;𝝀𝑖) . (2)

In the training stage, given a set of training data 𝑿 =
{𝒙𝑟 ∈ ℛ𝐷∣𝑟 = 1, ..., 𝑅1}, first we initialize Λ by LBG
clustering. Then Λ can be re-estimated by minimizing
the following MCE objective function:

𝑙(𝑿;Λ) =
1

𝑅1

𝑅1∑
𝑟=1

1

1 + exp[−𝛼𝑑(𝒙𝑟;Λ) + 𝛽]
(3)

where 𝛼, 𝛽 are two control parameters, and 𝑑(𝒙𝑟;Λ) is
a misclassification measure defined by using a so-called
sample separation margin (SSM) as follows [4]:

𝑑(𝒙𝑟;Λ) =
−𝑔𝑝(𝒙𝑟;𝝀𝑝) + 𝑔𝑞(𝒙𝑟;𝝀𝑞)

2 ∥ 𝒎𝑝�̂� −𝒎𝑞𝑘 ∥ (4)

where

𝑘 = argmin
𝑘

∥ 𝒙𝑟 −𝒎𝑝𝑘 ∥2 (5)

𝑞 = arg max
𝑖∈ℳ𝑟

𝑔𝑖(𝒙𝑟;𝝀𝑖) (6)

𝑘 = argmin
𝑘

∥ 𝒙𝑟 −𝒎𝑞𝑘 ∥2 (7)

and ℳ𝑟 is the hypothesis space for the 𝑟th sample, ex-
cluding the true label 𝑝.

To optimize the objective function, in [10], a mod-
ified Quickprop procedure is used. In this work, an
Rprop algorithm described in [6] is adopted. Due to the
space limitation, we will report the detailed Rprop pro-
cedures (including those for the following feature-space
and model-space linear regression) elsewhere.

3. SSM-MCE Linear Regression

To adapt an OCR engine, we can adapt the classi-
fier to the new scenario (i.e., model-space method) or
adapt the observed features in the new scenario back to
original feature space (i.e., feature-space method).

3.1. Model-Space Method

Suppose we are given a set of labeled adaptation data
𝒀 = {𝒚𝑟 ∈ ℛ𝐷∣𝑟 = 1, ..., 𝑅2} collected in the tar-
get application scenario. For model-space method, we
transform the parameters of the original classifier as fol-
lows:

�̂�𝑖𝑘 = ℱ(𝒎𝑖𝑘;Θ) = 𝑨𝑒𝑖𝒎𝑖𝑘 + 𝒃𝑒𝑖 (8)

where 𝑖 and 𝑘 are indices of class and prototype, respec-
tively; and 𝑒𝑖 is the transform index for the 𝑖th class.
Let’s use Θ = {(𝑨𝑒, 𝒃𝑒)∣𝑒 = 1, ..., 𝐸} to denote the
set of transform parameters, where 𝑨𝑒 is a 𝐷×𝐷 non-
singular matrix and 𝒃𝑒 is a 𝐷-dimensional bias vector.
The SSM-MCE objective function is defined as follows:

𝑙(𝒀 ;Λ,Θ) =
1

𝑅2

𝑅2∑
𝑟=1

1

1 + exp[−𝛼𝑑(𝒚𝑟;Λ,Θ) + 𝛽]

(9)
where

𝑑(𝒚𝑟;Λ,Θ) =
−𝑔𝑝(𝒚𝑟; �̂�𝑝) + 𝑔𝑞(𝒚𝑟; �̂�𝑞)

2 ∥ �̂�𝑝�̂� − �̂�𝑞𝑘 ∥ . (10)

The multiple linear regression transforms are tied
across character classes, where each transform is asso-
ciated with a set of character classes. To design a fully
automatic adaptation procedure for any given amount of
labeled adaptation data, we use a regression class tree to
group the character classes, just like what has been done
in MLLR [7].

3.2. Feature-Space Method

For feature-space method, the following global fea-
ture transformation function is used:

𝒙𝑟 = ℱ(𝒚𝑟;Θ) = 𝑨𝒚𝑟 + 𝒃 (11)

where 𝑨 is a 𝐷 × 𝐷 nonsingular matrix, 𝒃 is a 𝐷-
dimensional bias vector, 𝒚𝑟 and 𝒙𝑟 are the 𝑟th 𝐷-
dimensional input and transformed feature vectors, re-
spectively. The SSM-MCE objective function is defined
as follows:

𝑙(𝒀 ;Λ,Θ) =
1

𝑅2

𝑅2∑
𝑟=1

1

1 + exp[−𝛼𝑑(𝒚𝑟;Λ,Θ) + 𝛽]

(12)
where

𝑑(𝒚𝑟;Λ,Θ) =
−𝑔𝑝(𝒙𝑟;𝝀𝑝) + 𝑔𝑞(𝒙𝑟;𝝀𝑞)

2 ∥ 𝒎𝑝�̂� −𝒎𝑞𝑘 ∥ . (13)

In recognition stage, the estimated transform {𝑨, 𝒃}
is used to transform the feature vector of each unknown
character first, which is then fed to baseline classifier
for recognition.
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4. Implementation Issues

For notational convenience, we refer to hereinafter
our SSM-MCE based feature-space and model-space
LR approaches as F-DLR (Feature-space Discrimina-
tive Linear Regression) and M-DLR (Model-space Dis-
criminative Linear Regression), respectively.

4.1. STM-based Initialization

In our F-DLR approach, we initialize the bias vec-
tor as 𝒃 = 0, and use the STM approach in [11] to
initialize the 𝑨 matrix. In our M-DLR approach, we
initialize the bias vector as 𝒃𝑒𝑖 = 0, and use a modi-
fied STM approach (just exchanging the role of source
points and target points in the original STM formula-
tion), to initialize the 𝑨𝑒𝑖 matrix separately for each
regression class 𝑒𝑖 by using the adaptation samples of
the corresponding regression class.

4.2. A Hybrid Adaptation Approach

To achieve the best possible adaptation effect for dif-
ferent amount of adaptation data, we propose to use the
following hybrid adaptation approach:

∙ If the amount of adaptation data is very small, i.e.,
𝑅2 ≤ 𝑁𝑇 , use STM approach in [11] with an
adaptive hyperparameter 𝛽new

1 = 𝛽1
𝑁𝑇

𝑅2
;

∙ If more adaptation data is available but not enough
to estimate multiple transforms in M-DLR, i.e.,
𝑁𝑇 < 𝑅2 ≤ 𝑁𝑀 , use single-transform based F-
DLR or M-DLR approach;

∙ If enough adaptation data is available, i.e. 𝑅2 >
𝑁𝑀 , use multi-transform based M-DLR approach.

Two control parameters 𝑁𝑇 and 𝑁𝑀 are set empirically
to 𝐷2

16 and 2𝐷2, respectively.
In the following experiments, we will show that the

adaptive STM can outperform significantly the original
STM for the case of very limited adaptation data be-
cause the control parameter 𝛽1 is adjusted dynamically
according to the amount of available adaptation data.

5. Experiments and Results

5.1. Experimental Setup

The experiments are conducted on a task of recog-
nizing isolated printed Chinese characters. The vocab-
ulary of our baseline classifier consists of 9,252 Chi-
nese characters. For SSM-MCE training of the baseline

classifier, we use about 150 image samples per char-
acter. These image samples are mostly from scanned
documents with several commonly used fonts. 512-
dimensional Gabor features with intensity normaliza-
tion plus an aspect ratio feature are extracted from each
gray-scale character image to form a raw feature vec-
tor, which is followed by LDA transformation to obtain
a 128-dimensional feature vector (i.e., 𝐷 = 128) [5].
As for the number of prototypes for each character, we
use 4 prototypes for 3,755 most frequently used Chi-
nese characters and 2 prototypes for the rest of character
classes. The control parameters of SSM-MCE objective
function are set as follows: 𝛼 = 7; 𝛽 = 0. The other
control parameters related to Rprop are set empirically
as suggested in [6] without tuning.

5.2. Adaptation to Font Style

The first set of experiments is designed to examine
the effectiveness of the proposed approach for super-
vised adaptation to font style. We use 25 sets of new
font library for experiments. For each font library, there
are 6,823 character classes and one sample per charac-
ter class. We divide 6,823 samples per font into two
equal subsets as adaptation set and testing set. In this
case, our hybrid adaptation approach in Section 4.2 has
used the DLR solution.

Fig. 1 summarizes a performance (character recogni-
tion error rate in %) comparison of the baseline classi-
fier and different approaches for supervised adaptation
to each font style on testing sets of 25 new font styles.
Several observations can be made. First, all methods
for supervised adaptation outperform the baseline clas-
sifier without adaptation, which demonstrates that a lin-
ear transformation is reasonable as a mapping function
for font adaptation. Second, both F-DLR and M-DLR
achieve consistently significant improvements in recog-
nition accuracy compared to STM, which indicates that
the SSM-MCE objective function of DLR is indeed bet-
ter than the least weighted squared error criterion used
in STM. Third, M-DLR performs much better than F-
DLR.

5.3. Adaptation to Low-Quality Text

The second set of experiments is designed to ex-
amine the effectiveness of the proposed approach for
supervised adaptation to low-quality text. We use a
database of low-quality character images captured by a
camera with a resolution of 640× 480 pixels. There are
7,915 character classes with dozens of samples per char-
acter class. First, 15 samples per character are randomly
selected from the database to form the testing set. The
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Figure 1. Performance (character recogni-
tion error rate in % on each testing set)
comparison of the baseline classifier and
different approaches for supervised adap-
tation to each of 25 new font styles.

remaining samples are used for adaptation with differ-
ent amount of data. The character recognition error rate
of the baseline classifier on testing set is 46.98%. Fig. 2
compares the performance of STM and hybrid adapta-
tion approach in Section 4.2 on testing set. If adapta-
tion data is very limited (𝑅2 < 256), the performance
of STM is even worse than that of the baseline classi-
fier. The performance improvement for STM saturates
beyond a certain point (𝑅2 > 1024). As expected, our
hybrid adaptation can reduce error rates consistently for
different amount of adaptation data, and outperforms
significantly the STM approach across the board, es-
pecially when more data are used for adaptation. It is
observed again that M-Hybrid approach performs bet-
ter than F-Hybrid approach.

6. Conclusion

In this paper, we have proposed a new SSM-MCE
linear regression approach to adaptation of an SSM-
MCE trained prototype-based classifier and demon-
strated its application for Chinese OCR. In real-world
application, the feature-space adaptation method can be
used for fast adaptation with a small amount of adap-
tation data, while the model-space adaptation method
can be used to upgrade the performance of the classifier
by using increasingly more adaptation data. The pro-
posed hybrid adaptation approach offers a good practi-
cal solution for cases with different amount of adapta-
tion data. In this study, we have confirmed the effective-
ness of the proposed approach for supervised adapta-
tion of font styles and low-quality text, respectively. As
future work, we will study more adaptation scenarios
with mismatched training and recognition conditions.

Figure 2. Performance (character recogni-
tion error rate in % on testing set) com-
parison of different approaches for su-
pervised adaptation with different num-
ber of adaptation samples of low-quality
text (Baseline recognition error rate is
46.98%).

We will also study the effectiveness of our approach for
unsupervised adaptation.
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