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ABSTRACT

In this paper, we present a synthesized stereo-based stochastic
mapping approach for robust speech recognition. We extend the tra-
ditional stereo-based stochastic mapping (SSM) in two main aspects.
First, the constraint of stereo-data, which is not practical in real ap-
plications, is relaxed by using HMM-based speech synthesis. Then
we make feature mapping more focused on those incorrectly rec-
ognized samples via a data selection strategy. Experimental results
on Aurora3 databases show that our approach can achieve consis-
tently significant improvements of recognition performance in the
well-matched (WM) condition among four different European lan-
guages.

Index Terms: stereo-based stochastic mapping, HMM-based speech
synthesis, data selection.

1. INTRODUCTION

With the progress of automatic speech recognition (ASR), the noise
robustness of speech recognizers attracts more and more attentions
for practical recognition systems. Many techniques [11] have been
proposed to handle the difficult problem of mismatch between train-
ing and application conditions. One type of approaches to dealing
with the above problem is the so-called feature compensation ap-
proach by using stereo data to learn the mapping function between
clean speech and noisy speech. SPLICE [8], namely stereo-based
piecewise linear compensation for environments, is one successful
showcase which is an extension of techniques [1, 12] developed at
Carnegie Mellon University (CMU) in the past decades. Recently,
a stereo-based stochastic mapping (SSM) technique[2] is proposed,
which outperforms SPLICE. The basic idea is to build a GMM for
the joint distribution of the clean and noisy speech by using stereo
data. The simplicity to construct a joint GMM without environment
selection makes SSM easier to implement in recognition stage.

One main problem of these approaches is the constraint of stereo
data. Several works are presented to address this issue. In [15],
stochastic vector mapping (SVM), which represents the mapping
from the noisy speech to clean speech by a simple transformation,
is a generalized definition of SPLICE. And a joint training of the pa-
rameters of SVM function and HMMs is implemented by adopting
maximum likelihood (ML) or minimum classification error (MCE)
criteria. MMI-SPLICE [9] is much like SPLICE, but without the
need for target clean features. Instead of learning a speech en-
hancement function, it learns to increase recognition accuracy di-
rectly with a maximum mutual information (MMI) objective func-
tion. FMPE [13], a kind of discriminatively trained features, is re-
lated with SPLICE to a certain extent [7].

The motivation of our approach is to relax the constraint of
recorded stereo-data from a new viewpoint: synthesized pseudo-

clean features generated by exploiting HMM-based synthesis
method [14, 16] is used to replace the ideal clean features from
one of the stereo channels in those stereo-based approaches. In
[10], we demonstrate this approach can achieve even better per-
formance than SPLICE in the clean training condition of Aurora2
database. In this work, we apply the synthesized features to SSM ap-
proach, and verify its effectiveness over a high-performance baseline
of real-world ASR, namely the well-matched condition of Aurora3
databases. Actually, [2] has already shown that the performance gain
in the multi-training condition is not significant. In our experiment,
similar observations are made if the synthesis method in [10] is di-
rectly applied. To achieve better performance, a simple data selec-
tion strategy is designed to make the feature mapping more focused
on those incorrectly recognized samples by comparing two synthe-
sized feature sequences using correct labels and recognition results,
respectively. Then our synthesized stereo-based stochastic mapping
(SSSM) with data selection can achieve consistently significant im-
provements of recognition performance in the well-matched (WM)
condition among four languages on Aurora3 databases.

The remainder of the paper is organized as follows. First we give
a review of SSM in Section 2. In Section 3, we propose our synthe-
sized stereo-based stochastic mapping approach with data selection.
In Section 4, we report experimental results. Finally we conclude
the paper in Section 5.

2. REVIEW OF SSM

Assume we have a set of stereo data {(𝒙𝑖,𝒚𝑖)}, where 𝒙 is the clean
feature representation of speech, and 𝒚 is the corresponding noisy
feature representation. 𝐷 is the dimension of feature vectors. Define
𝒛 ≡ (𝒙,𝒚) as the concatenation of the two channels. In the most
general case, 𝒚 representing 𝐿𝑛 noisy speech vectors is used to pre-
dict 𝒙 representing 𝐿𝑐 clean speech vectors. To construct the map-
ping function between 𝒚 and 𝒙, the joint distribution 𝑝(𝒛) should be
trained. Here Gaussian mixture model (GMM) is used:

𝑝(𝒛𝑡) =
𝐾∑
𝑘=1

𝑐𝑘𝒩 (𝒛;𝝁𝑧,𝑘,Σ𝑧𝑧,𝑘) (1)

where𝐾 is the number of mixture components, 𝑐𝑘, 𝝁𝑧,𝑘, andΣ𝑧𝑧,𝑘,
are the mixture weights, means, and covariances of each compo-
nent, respectively. Then the mean vector 𝝁𝑧,𝑘 will be of dimen-
sion 𝐷(𝐿𝑐 + 𝐿𝑛) and the covariance matrix Σ𝑧𝑧,𝑘 will be of size
𝐷(𝐿𝑐 + 𝐿𝑛)×𝐷(𝐿𝑐 + 𝐿𝑛). Also the mean and covariance can be
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Fig. 1. Overall development flow and architecture.

partitioned as

𝝁𝑧,𝑘 =

(
𝝁𝑥,𝑘
𝝁𝑦,𝑘

)
(2)

Σ𝑧𝑧,𝑘 =

(
Σ𝑥𝑥,𝑘 Σ𝑥𝑦,𝑘

Σ𝑦𝑥,𝑘 Σ𝑦𝑦,𝑘

)
(3)

where subscripts 𝑥 and 𝑦 indicate the clean and noisy speech respec-
tively.

The above joint GMM distribution can be estimated in a classical
way using EM algorithm. In the feature compensation stage, two
estimation criteria, namely minimum mean-squared error (MMSE)
and maximum a posteriori (MAP), can be applied. In this work,
MMSE estimation is adopted:

�̂� = 𝐸𝑥 [𝒙∣𝒚] =
𝐾∑
𝑘=1

𝑃 (𝑘∣𝒚)𝐸𝑥 [𝒙∣𝒚, 𝑘] (4)

where 𝑃 (𝑘∣𝒚) is the posterior probability defined as

𝑃 (𝑘∣𝒚) =
𝑐𝑘𝒩 (𝒚;𝝁𝑦,𝑘,Σ𝑦𝑦,𝑘)∑𝐾
𝑘=1 𝑐𝑘𝒩 (𝒚;𝝁𝑦,𝑘,Σ𝑦𝑦,𝑘)

(5)

and the conditional expectation 𝐸𝑥 [𝒙∣𝒚, 𝑘] can be calculated as

𝐸𝑥 [𝒙∣𝒚, 𝑘] = 𝝁𝑥,𝑘 +Σ𝑥𝑦,𝑘Σ
−1
𝑦𝑦,𝑘(𝒚 − 𝝁𝑦,𝑘) (6)

3. OUR APPROACH

The overall flowchart of our SSSM approach is illustrated in Fig. 1.
In the training stage, first a baseline system can be trained using
MFCC features with cepstral mean normalization (CMN). Then the
stereo feature vectors are generated via the training features and

baseline HMMs, which are used to train the joint GMM. Followed
by feature compensation to training features using SSM, generic
HMMs are generated by using single pass retraining (SPR) [17].
In the recognition stage, after feature compensation to MFCC fea-
tures extracted from the unknown utterance, the normal recognition
is performed. In the following sections, we elaborate on modifica-
tions to original SSM formulation and the generation of synthesized
features.

3.1. SSM Modification

In SSM approach, an important step is to use Eq.(4) to estimate
clean speech under MMSE criterion. In [2], it is indicated that
the item Σ𝑥𝑦,𝑘Σ

−1
𝑦𝑦,𝑘 in Eq.(6) represents the linear transformation

to the noisy speech features. But according to the experiments of
our SSSM approach, we observe that this linear transformation can
even result in poor recognition performance. One possible explana-
tion is although the covariance parameters Σ𝑥𝑦,𝑘 and Σ𝑦𝑦,𝑘 trained
under the maximum likelihood criterion for feature compensation
in Eq.(4) can bring the minimum squared error between clean and
noisy speech features, it is not necessarily improve the discrimina-
tions among classes of the speech recognizer. So in our implemen-
tation of feature compensation, Eq.(6) is modified as

𝐸𝑥 [𝒙∣𝒚, 𝑘] = 𝝁𝑥,𝑘 + (𝒚 − 𝝁𝑦,𝑘) (7)

which means only using bias compensation to noisy speech features
is more stable than adding the linear transformation in this case. An-
other benefit from this modification is that we only need to train a
joint GMM with diagonal covariances, which can significantly re-
duce the number of model parameters.

Acoustic context expansion by using several noisy feature vec-
tors to predict the clean feature vector is another trick to improve
the recognition performance [2], which increases the size of joint
GMM. To achieve improvement of recognition performance but not
increasing the size of joint GMM, we apply the following smoothing
operation after feature compensation:

�̂�smooth
𝑡 =

∑Δ
𝜏=−Δ(Δ + 1 − ∣𝜏 ∣)�̂�𝑡+𝜏∑Δ

𝜏=−Δ(Δ + 1 − ∣𝜏 ∣) (8)

where �̂�𝑡 is the compensated feature vector of the 𝑡th frame, and Δ
is the size for context expansion. It is interesting that this simple
operation plays a similar role to the acoustic context expansion in
original SSM based on our experiments.

3.2. Generation of Synthesized Features

Suppose that we only have noisy speech as the training data in real
applications. Then HMMs trained using those noisy features are
noise-robust to some extent. To synthesize the features as the “clean”
channel of the stereo data, first state-level force-alignment of training
features with true labels is performed. With this state sequence and
corresponding HMMs, we can do the HMM-based speech synthesis
[14]. The details of formulation can refer to [10]. Obviously, to the
recognizer, those synthesized oracle feature sequences are perfectly
matching and robust to not only noises, but also other irrelevant fac-
tors. A clearer illustration is given in Table 1, where the oracle fea-
tures generated by HMM-based speech synthesis with true labels of
both training and testing set are tested in the well-matched (WM)
condition on Aurora3 databases. The word error rate in all cases
are very low (most are less than 1%). This indicates that if a well-
defined mapping function between the noisy feature and synthesized
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Fig. 2. Feature sequences of one training utterance from Aurora3
databases.

oracle feature can be given, the compensated system after feature
mapping should achieve much higher recognition performance. Ac-
tually, this idea is partially verified in [10], where significant recog-
nition performance gain is achieved in the clean-training condition.
But in real applications, training set may consist of noisy speech data
from multiple conditions, e.g., the well-matched (WM) condition of
Aurora3 databases where a relative high recognition performance is
already achieved for the testing set. Our preliminary experiments
show that synthesized stereo stochastic mapping using oracle fea-
tures can not yield consistently significant improvement of recogni-
tion performance among different languages. To get better insights,
𝐶0 sequences of input noisy feature, synthesized oracle feature, and
compensated feature generated from one representative training ut-
terance of Aurora3 databases are compared in Fig. 2. In general, the
envelope of compensated feature sequence is between the envelops
of noisy feature and oracle feature, which means the compensated
feature is truly approaching to oracle feature from noisy feature. If
the “approaching” can not result in better recognition performance,
one possible reason is that the uncertainty after compensation or
modeling error is too large.

Inspired by those observations, we aim at improving our syn-
thesized stereo-based stochastic mapping approach by data selec-
tion to make the feature mapping more focused on those incorrectly
recognized samples. The location of region for incorrectly recog-
nized samples can be illustrated in Fig 3, where synthesized oracle
feature and synthesized normal feature are generated using HMM-
based speech synthesis with true labels and recognition results, re-
spectively. For the region where the envelops of synthesized oracle
feature and synthesized normal feature are completely overlapped,
the recognition results are correct. So the feature mapping should fo-
cus on the region where synthesized oracle feature and synthesized
normal feature are different. The new synthesized feature 𝒙 used as
the “clean” channel of the stereo data can be generally formulated
as:

𝒙 = 𝐹 (𝒚,𝒙oracle,𝒙normal) (9)

where 𝒚, 𝒙oracle, and 𝒙normal denote the input noisy feature, synthe-
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Fig. 3. Feature sequences of one training utterance from Aurora3
databases.

sized oracle feature, and synthesized normal feature respectively. 𝐹
is a general function. In this work, a simple function is adopted:

𝒙 = 𝒚 + 𝒙oracle − 𝒙normal
(10)

which represents an extreme case that “clean” channel is exactly the
same as “noisy” channel for those correctly recognized regions while
“clean” channel is calculated by adding the difference of synthesized
oracle feature and synthesized normal feature to the “noisy” chan-
nel. For most ASR tasks with multiple condition training, the cor-
rectly recognized regions should be much more than the incorrectly
recognized regions. To achieve maximum performance gain, stereo
feature pairs for incorrectly recognized regions should be repeated
several times to make them finally comparable to the correctly rec-
ognized regions.

4. EXPERIMENTS AND RESULTS

4.1. Experimental Setup

In order to verify the effectiveness of the proposed approach on real-
world ASR, Aurora3 databases are used, which contain utterances of
digit strings recorded in real automobile environments for German,
Danish, Finnish and Spanish, respectively. A full description of the
above databases and the corresponding test frameworks are given in
[3, 4, 5, 6].

In our ASR systems, each feature vector consists of 13 MFCCs
(including 𝐶0) plus their first and second order derivatives. The
number of Mel-frequency filter banks is 23. MFCCs are computed
based on power spectrum. CMN is applied to MFCC feature vectors.
Each digit is modeled by a whole-word left-to-right CDHMM, which
consists of 16 emitting states, each having 3 Gaussian mixture com-
ponents. We focus on well-matched (WM) “training-testing” con-
dition for experiments of Aurora3, where both training and testing
data are recorded by close-talking (CT) and hands-free (HF) micro-
phones. For stereo-based stochastic mapping, 𝐾 = 4096, 𝐷 = 13,
𝐿𝑐 = 𝐿𝑛 = 1. For acoustic context expansion, Δ is set to 1. In all
the experiments, tools in HTK [17] are used for training and testing.
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Table 1. Performance (word error rate in %) of oracle features gen-
erated by HMM-based speech synthesis with true labels in the well-
matched (WM) condition on Aurora3 databases.

German Danish Finnish Spanish

Training Set 0.53 0.67 0.62 0.93

Testing Set 0.40 0.77 0.73 1.18

Table 2. Performance (word error rate in %) comparison of the
baseline system and two feature compensation systems in the well-
matched (WM) condition on Aurora3 databases.

German Danish Finnish Spanish

Training Set

Baseline 4.95 8.54 5.67 4.54

SSSM 4.46 8.45 5.24 4.43

SSSM-DS 2.76 6.65 3.01 3.14

Testing Set

Baseline 7.51 9.16 6.91 6.43

SSSM 6.81 8.53 6.65 6.70

SSSM-DS 6.59 8.00 5.44 5.87

4.2. Experimental Results

Table 2 summarizes a performance (word error rate in %) compari-
son of the baseline system and two feature compensation systems in
the well-matched (WM) condition on Aurora3 databases. SSSM de-
notes the system where synthesized stereo-based stochastic mapping
based on HMM-based speech synthesis in [10] is applied. SSSM-
DS is the system where our proposed data selection strategy is used
for SSSM. Several observations can be made. First, on the train-
ing set, our proposed SSSM-DS approach can achieve significant
improvements of recognition performance compared with the base-
line system, which is reasonable as the feature mapping focuses on
those incorrectly recognized samples. Meanwhile the word error rate
reduction for SSSM is marginal, which means that minimizing the
error between the noisy feature and the oracle feature on the whole
data set can not guarantee recognition performance boosting. Sec-
ond, on the testing set, SSSM-DS consistently outperforms SSSM
for all languages, especially Finnish and Spanish databases. Third,
significant performance gain (overall more than 10% relative word
error rate reduction) is achieved by SSSM-DS over the baseline sys-
tem for all languages on the testing set. By comparing the perfor-
mance gain of SSSM-DS on both training set and testing set, the
generalization capability of SSSM-DS can be observed, which sug-
gests that one possible future work should aim at further improving
the recognition performance on the training set.

5. CONCLUSION AND FUTURE WORK

In this paper, we investigate to make stereo-based stochastic map-
ping technique more practical for robust speech recognition. Syn-
thesized features are generated to form the stereo data in SSM us-
ing HMM-based speech synthesis. A simple data selection strat-
egy is adopted to make the feature mapping more focused on those
incorrectly recognized samples. The effectiveness of the proposed
approach has been confirmed in an experimental study on Aurora3
tasks. Ongoing and future works include 1) to study more theo-
retic formulation to the current intuitive data selection strategy, 2)
to explore more advanced tool to model the nonlinear relationship
between the stereo data, 3) to verify its effectiveness on large vocab-

ulary speech recognition tasks, 4) to combine with other noise robust
techniques.
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