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ABSTRACT

Recently, we proposed an approach to irrelevant variability nor-
malization (IVN) based joint training of a reference Gaussian mix-
ture model (GMM) for feature compensation and hidden Markov
models (HMMs) for acoustic modeling by using a vector Taylor
series (VTS) based feature compensation technique, where single-
component densities are used to model additive noise and convo-
lutional distortion respectively. In this paper, mixtures of densities
are used to enhance the distortion model. New formulations for
maximum likelihood (ML) estimation of distortion model parame-
ters, and minimum mean squared error (MMSE) estimation of clean
speech are derived and presented. A comparative study is conducted
under three “training-testing” conditions on Aurora3 database. Ex-
perimental results confirm that the proposed mixture models of
distortion can achieve significant performance gain compared with
the traditional distortion modeling.

Index Terms— feature compensation, vector Taylor series, mix-
ture model of distortion, irrelevant variability normalization

1. INTRODUCTION

Most of current automatic speech recognition (ASR) systems use
MFCCs (Mel-Frequency Cepstral Coefficients) and their derivatives
as speech features, and a set of Gaussian mixture continuous den-
sity HMMs (CDHMMs) for modeling basic speech units. It is well
known that the performance of such an ASR system trained with
clean speech will degrade significantly when the testing speech is
corrupted by additive noises and convolutional distortions. One type
of approaches to dealing with the above problem is the so-called fea-
ture compensation approach using explicit model of environmental
distortions (e.g., [1]), which is also the topic of this paper.

For our approach, it is assumed that in time domain, “corrupted”
speech 𝑦[𝑡] is subject to the following explicit distortion model:

𝑦[𝑡] = 𝑥[𝑡]⊛ ℎ[𝑡] + 𝑛[𝑡] (1)

where independent signals 𝑥[𝑡], ℎ[𝑡] and 𝑛[𝑡] represent the 𝑡th sam-
ple of clean speech, the convolutional (e.g., transducer and trans-
mission channel) distortion and the additive noise, respectively. In
log-power-spectral domain, the distortion model can be expressed
approximately (e.g., [1]) as

exp(yl) = exp(xl + hl) + exp(nl) (2)

*This work was done when Jun Du worked at the Speech Group of Mi-
crosoft Research Asia, Beijing, China.

where yl, xl, hl and nl are log power-spectra of noisy speech, clean
speech, convolutional term and noise, respectively. In MFCC do-
main, the distortion model becomes

yc = C log[exp(C+(xc + hc)) + exp(C+nc)] (3)

where C is a 𝐷c × 𝐷l truncated discrete cosine transform (DCT)
matrix, C+ denotes the Moore-Penrose inverse of C (refer to [2] for
details), 𝐷c is the dimension of MFCC feature vector, and 𝐷l is the
number of channels of the Mel-frequency filterbank used in MFCC
feature extraction. In most of current ASR systems, 𝐷c < 𝐷l. The
log and exp functions in the above equations operate element-by-
element on the corresponding vectors. The nonlinear nature of the
above distortion model makes statistical modeling and inference of
the above variables difficult, therefore certain approximations have
to be made.

Understandably, a simple linear approximation, namely first-
order vector Taylor series (VTS) approximation, has been tried in
the past (e.g., [3, 4]). The related works to VTS-based feature com-
pensation can be divided into several categories. The first category
is on the more precise expression of distortion model in Eq. (2).
An example is given in [5], where the phase relationship between
clean speech and additive noise is incorporated into the distortion
model. The second category is on the more accurate approximation
of the nonlinear distortion model. In [6], a linear function is found
to approximate the high-order Taylor series expansion of the above
nonlinear distortion model by minimizing the mean-squared error.
In [7], the nonlinear distortion model is approximated by a second-
order VTS. More recently, we proposed a high-order VTS based for-
mulation for maximum likelihood (ML) estimation of both additive
noise and convolutional distortion, and minimum mean squared er-
ror (MMSE) estimation of clean speech in [8]. The third category
is on improving the recognition accuracy in non-stationary environ-
ments. In [5, 7], sequential noise estimation is performed to deal
with non-stationary noise. The last category is on the extension
from traditional VTS-based feature compensation under the clean-
training condition to real scenarios, where noisy speech can also be
included in the training data. In [9], noise adaptive training (NAT)
(e.g., [10]) was used to train a front-end GMM. Meanwhile, we pro-
posed to use irrelevant variability normalization (IVN) based joint
training of a reference Gaussian mixture model (GMM) for feature
compensation and HMMs for acoustic modeling in [11], which out-
performs the method using IVN-based training [2] (similar to NAT)
of the GMM.

The main contribution of this paper is to adopt a mixture model
for modeling both additive noise and convolutional distortion, which
is combined with our recently proposed IVN-based joint training of
GMM and HMMs using VTS-based feature compensation, to im-
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prove the recognition accuracy in non-stationary environments. The
corresponding formulations for ML estimation of distortion model
parameters, and MMSE estimation of clean speech are derived and
presented here. Our work is related to a recent work in [12], where
a similar idea of using noise mixture model is proposed. But the
method in [12] significantly differs from ours in this paper. First,
the operation domain of VTS is Log-Mel-Filter-Bank (LMFB) in
[12] while we operate on MFCCs which are the final output fea-
tures fed to the recognizer. Second, mixture model is only used for
additive noise and the estimation of noise mixture model and bias
vector (i.e., convolutional distortion in this paper) is in an alternate
manner of switching between different auxiliary functions by using
MMSE estimator of clean speech and noise in [12], while we use
mixture models for both additive noise and convolutional distortion
and closed-form formulations can be derived by jointly optimizing
all the parameters of the distortion model using a unique auxiliary
function for ML estimation. Furthermore, our formulations are gen-
eralized to VTS with any order. Third, for the noise suppression, a
Mel-scaled Wiener filter is exploited in [12] while we use MMSE
estimation of clean speech. Finally, the method is verified under
clean-training condition where VTS-based feature compensation is
only performed on the testing set with synthesized noisy speech in
[12], while we use IVN-based joint training to extend VTS-based
feature compensation to any “training-testing” condition and verify
our approach on noisy speech from real environments.

The rest of the paper is organized as follows. In Section 2, we
introduce VTS-based feature compensation using mixture models of
distortion. In Section 3, we review the procedure for IVN-based
joint training of GMM and HMMs using VTS-based feature com-
pensation. In Section 4, we report experimental results. Finally, we
conclude the paper in Section 5.

2. VTS-BASED FEATURE COMPENSATION USING
MIXTURE MODELS OF DISTORTION

In [8], the clean speech is modeled by a GMM as follows:

𝑝(x𝑐
𝑡) =

𝑀∑
𝑚=1

𝜔x,𝑚𝒩 (x𝑐
𝑡 ;𝝁

𝑐
x,𝑚,Σ𝑐

x,𝑚) .

For each utterance, we assume that the additive noise n𝑐 follows
a Gaussian PDF (probability density function) while the convolu-
tional distortion h𝑐 has a PDF of the Kronecker delta function. In
this work, to enhance the modeling power for distortions, mixture
models are employed to model both additive noise and convolutional
distortion as follows:

𝑝(n𝑐
𝑡) =

𝐿∑
𝑙=1

𝜔n,𝑙𝒩 (n𝑐
𝑡 ;𝝁

𝑐
n,𝑙,Σ

𝑐
n,𝑙) (4)

𝑝(h𝑐
𝑡) =

𝐾∑
𝑘=1

𝜔h,𝑘𝛿(h
𝑐
𝑡 − h𝑐

const,𝑘) (5)

where GMM and mixture of Kronecker delta functions are used for
modeling additive noise and convolutional distortion, respectively.
In our implementation, the mixture number of additive noise 𝐿 is
set equal to the mixture number of convolutional distortion 𝐾 as
we assume that each pair of mixture component can roughly model
a stationary segment of an utterance. Also we should define a new
random vector, z𝑐 = x𝑐+h𝑐, whose PDF can be derived as follows:

𝑝(z𝑐𝑡) =

𝑀∑
𝑚=1

𝐾∑
𝑘=1

𝜔x,𝑚𝜔h,𝑘𝒩 (z𝑐𝑡 ;𝝁
𝑐
x,𝑚 + h𝑐

const,𝑘,Σ
𝑐
x,𝑚) .

The above unknown distortion model parameters can be estimated
as follows:

Step 1: Initialization
For each utterance, first we determine the mixture number by
setting 𝐿 = 𝐾 =

⌈
𝑇

𝑇𝑆𝑒𝑔

⌉
, where 𝑇𝑆𝑒𝑔 and 𝑇 are the length

of a relatively stationary segment and the current utterance,
respectively. Then we use the procedure in [8] to estimate
a global set of distortion parameters to initialize each pair of
mixture components, followed by the parameter re-estimation
in [8] using frames of each segment corresponding to each
mixture component separately. All mixture weights are set to
equal.

Step 2: Computation of required statistics
First transform all parameters from cepstral domain to log-
power-spectral domain as follows:

𝝁l
z,𝑚𝑘 = C+(𝝁c

x,𝑚 + h𝑐
const,𝑘) (6)

Σl
z,𝑚 = C+Σc

x,𝑚(C+)⊤ (7)

𝝁l
n,𝑙 = C+𝝁c

n,𝑙 (8)

Σl
n,𝑙 = C+Σc

n,𝑙(C
+)⊤ (9)

where the superscripts ‘l’ and ‘c’ indicate the log-power-
spectral domain and cepstral domain, respectively. Then in
log-power-spectral domain, use high-order VTS approxima-
tion [8] to calculate the relevant statistics , 𝝁l

y,𝑚𝑘𝑙, Σ
l
y,𝑚𝑘𝑙,

Σl
zy,𝑚𝑘𝑙, Σ

l
ny,𝑚𝑘𝑙, which are required for re-estimation of

distortion model parameters and estimation of clean speech.
Finally, transform the statistics back to cepstral domain as
follows:

𝝁c
y,𝑚𝑘𝑙 = C𝝁l

y,𝑚𝑘𝑙 (10)

Σc
y,𝑚𝑘𝑙 = CΣl

y,𝑚𝑘𝑙(C)⊤ (11)

Σc
zy,𝑚𝑘𝑙 = CΣl

zy,𝑚𝑘𝑙(C)⊤ (12)

Σc
ny,𝑚𝑘𝑙 = CΣl

ny,𝑚𝑘𝑙(C)⊤ . (13)

Step 3: Joint re-estimation of distortion model parameters
Use Eq. (14) to Eq. (18) to re-estimate the distortion model
parameters. Note that the cepstral domain indicator “c” in rel-
evant variables has been dropped for notational convenience.
The detailed derivations for joint re-estimation will be re-
ported elsewhere, which can be extended from those in [13,
8]. Several items used in Eq. (14) to Eq. (18) are evaluated
in Eq. (19) to Eq. (22), where the statistics 𝝁y,𝑚𝑘𝑙, Σy,𝑚𝑘𝑙,
Σzy,𝑚𝑘𝑙, Σny,𝑚𝑘𝑙 are calculated in Step 2.

Step 4: Repeat Step 2 and Step 3 𝑁𝑉 𝑇𝑆 times

Given the noisy speech and the estimated distortion model pa-
rameters, the minimum mean-squared error (MMSE) estimation of
clean speech feature vector in cepstral domain can be calculated as

x̂𝑡 = 𝐸x [x𝑡∣y𝑡]

=
𝑀∑

𝑚=1

𝐾∑
𝑘=1

𝐿∑
𝑙=1

𝑃 (𝑚, 𝑘, 𝑙∣y𝑡)(𝐸z[z𝑡∣y𝑡,𝑚, 𝑘, 𝑙]− hconst,𝑘) .

(23)
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𝜔n,𝑙 =
1

𝑇

𝑇∑
𝑡=1

𝑀∑
𝑚=1

𝐾∑
𝑘=1

𝑃 (𝑚, 𝑘, 𝑙∣y𝑡) (14)

𝝁n,𝑙 =

∑𝑇
𝑡=1

∑𝑀
𝑚=1

∑𝐾
𝑘=1 𝑃 (𝑚, 𝑘, 𝑙∣y𝑡)𝐸n[n𝑡∣y𝑡,𝑚, 𝑘, 𝑙]∑𝑇

𝑡=1

∑𝑀
𝑚=1

∑𝐾
𝑘=1 𝑃 (𝑚, 𝑘, 𝑙∣y𝑡)

(15)

Σn,𝑙 =

∑𝑇
𝑡=1

∑𝑀
𝑚=1

∑𝐾
𝑘=1 𝑃 (𝑚, 𝑘, 𝑙∣y𝑡)𝐸n[n𝑡n

⊤
𝑡 ∣y𝑡,𝑚, 𝑘, 𝑙]∑𝑇

𝑡=1

∑𝑀
𝑚=1

∑𝐾
𝑘=1 𝑃 (𝑚, 𝑘, 𝑙∣y𝑡)

− 𝝁n,𝑙𝝁
⊤
n,𝑙 (16)

𝜔h,𝑘 =
1

𝑇

𝑇∑
𝑡=1

𝑀∑
𝑚=1

𝐿∑
𝑙=1

𝑃 (𝑚, 𝑘, 𝑙∣y𝑡) (17)

hconst,𝑘 =

[
𝑇∑

𝑡=1

𝑀∑
𝑚=1

𝐿∑
𝑙=1

𝑃 (𝑚, 𝑘, 𝑙∣y𝑡)Σ
−1
x,𝑚

]−1 [ 𝑇∑
𝑡=1

𝑀∑
𝑚=1

𝐿∑
𝑙=1

𝑃 (𝑚, 𝑘, 𝑙∣y𝑡)Σ
−1
x,𝑚(𝐸z[z𝑡∣y𝑡,𝑚, 𝑘, 𝑙]− 𝝁x,𝑚)

]
(18)

𝑃 (𝑚, 𝑘, 𝑙∣y𝑡) =
𝜔x,𝑚𝜔h,𝑘𝜔n,𝑙𝒩 (y𝑡;𝝁y,𝑚𝑘𝑙,Σy,𝑚𝑘𝑙)∑𝑀

𝑙=1

∑𝐾
𝑘=1

∑𝐿
𝑙=1 𝜔x,𝑚𝜔h,𝑘𝜔n,𝑙𝒩 (y𝑡;𝝁y,𝑚𝑘𝑙,Σy,𝑚𝑘𝑙)

(19)

𝐸n[n𝑡∣y𝑡,𝑚, 𝑘, 𝑙] = 𝝁n,𝑙 +Σny,𝑚𝑘𝑙Σ
−1
y,𝑚𝑘𝑙(y𝑡 − 𝝁y,𝑚𝑘𝑙) (20)

𝐸n[n𝑡n
⊤
𝑡 ∣y𝑡,𝑚, 𝑘, 𝑙] = 𝐸n[n𝑡∣y𝑡,𝑚, 𝑘, 𝑙]𝐸⊤

n [n𝑡∣y𝑡,𝑚, 𝑘, 𝑙] +Σn,𝑙 −Σny,𝑚𝑘𝑙Σ
−1
y,𝑚𝑘𝑙Σyn,𝑚𝑘𝑙 (21)

𝐸z[z𝑡∣y𝑡,𝑚, 𝑘, 𝑙] = (𝝁x,𝑚 + hconst,𝑘) +Σzy,𝑚𝑘𝑙Σ
−1
y,𝑚𝑘𝑙(y𝑡 − 𝝁y,𝑚𝑘𝑙) (22)

Fig. 1. Flowchart of IVN training using VTS-based feature compen-
sation.

3. IVN-BASED JOINT TRAINING OF GMM AND HMMS

In the traditional framework of VTS-based feature compensation,
both HMMs for recognition and reference GMM for feature com-
pensation are trained on clean speech data. In real scenarios, the
training data may include noisy speech data. In [11], we propose
a procedure to perform IVN-based joint training of GMM and
HMMs using VTS-based feature compensation, which is illustrated
in Fig. 1. In the training stage, the procedure is as follows:

Step 1: Initialization
First, the reference GMM for feature compensation and
HMMs for recognition are ML-trained from training data us-
ing MFCC features with cepstral mean normalization (CMN).

Step 2: VTS-based feature compensation
Given the GMM, VTS-based feature compensation is applied
to each training utterance.

Step 3: Joint training of GMM and HMMs
Based on the compensated features of training set, single pass
retraining (SPR) [14] is performed to generate the generic
GMM and HMMs by using the last updated GMM and
HMMs with the corresponding feature set. The SPR works
as follows: given one set of well-trained models, a new set
matching a different training data parameterization can be
generated in a single re-estimation pass, which is done by
computing the forward and backward probabilities using
the original models together with the original training data
and then switching to the new training data to compute the
parameter estimation for the new set of models.

Step 4: Repeat Step 2 and Step 3 𝑁𝐼𝑉 𝑁 times.

In the recognition stage, after feature extraction for an un-
known utterance, we perform VTS-based feature compensation
using generic GMM and then do recognition using generic HMMs.
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Table 1. Performance (word accuracy in %) comparison of the baseline system and several robust ASR systems using VTS-based feature
compensation under three “training-testing” conditions on Aurora3 database.

Methods German Danish Finnish Spanish
HM 83.77 54.78 77.07 80.99

Baseline MM 82.43 75.42 84.06 89.39
WM 92.49 90.84 93.09 93.57

VTS HM 91.77 77.39 90.46 87.46
HM 92.09 79.98 91.55 88.90

IVN-VTS MM 89.24 78.53 87.48 91.44
WM 94.93 92.91 95.64 95.57
HM 92.74 80.64 92.61 91.28

IVN-MMD-VTS MM 89.70 80.08 88.30 91.97
WM 95.13 93.05 96.23 95.78

In the above procedure, the IVN concept is implemented by SPR
using VTS-based feature compensation. Actually, there are other
two alternatives which can also achieve this goal. One method is
to use the compensated features to retrain GMM from scratch and
then use the new GMM to compensate features again in an iter-
ative way. Finally a generic GMM can be generated. The other
method is to use a similar procedure as in [2] to generate a generic
GMM. For those two methods, the generic HMMs can be trained
from scratch using compensated features based on generic GMM.
As a comparison, our SPR-based IVN training has two advantages:
1) GMM and HMMs are jointly trained in each iteration, 2) both
GMM and HMMs are progressively updated, which brings stable
improvements of recognition performance. Our experimental results
also confirm that SPR-based IVN training can achieve better recog-
nition performance, which is recommended as a practical solution.
In our previous work, the effectiveness of IVN-based joint training
is verified only under the well-matched “training-testing” condition.
In this work, we will give a comprehensive performance comparison
under different “training-testing” conditions, where some interesting
observations are made.

4. EXPERIMENTS AND RESULTS

4.1. Experimental Setup

In order to verify the effectiveness of the proposed approach on real-
world ASR, Aurora3 databases are used, which contain utterances of
digit strings recorded in real automobile environments for German,
Danish, Finnish and Spanish, respectively. A full description of the
above databases and the corresponding test frameworks are given in
[15, 16, 17, 18].

In our ASR systems, each feature vector consists of 13 MFCCs
(including 𝐶0) plus their first and second order derivatives. The
number of Mel-frequency filter banks is 23. MFCCs are computed
based on power spectrum. Each digit is modeled by a whole-word
left-to-right CDHMM, which consists of 16 emitting states, each
having 3 Gaussian mixture components. Three “training-testing”
conditions are designed for Aurora3. The first one is high-mismatch
(HM) condition, where training data includes utterances recorded by
close-talking (CT) microphone, which can be considered as “clean”,
while testing data is recorded by hands-free (HF) microphone. The
second one is well-matched (WM) condition, where both training
and testing data are recorded by CT and HF microphones. The last
one is mid-mismatch (MM) condition which can be considered as
the tradeoff between WM condition and HM condition. The relevant
control parameters are set as 𝑀 = 256, 𝑇𝑆𝑒𝑔 = 60, 𝑁𝑉 𝑇𝑆 = 4,

𝑁𝐼𝑉 𝑁 = 4. Other control parameters related to our previous work
on VTS-based feature compensation can be found in [8, 11]. Our
baseline system uses cepstral mean normalization (CMN) for fea-
ture compensation. In all the experiments, tools in HTK [14] are
used for training and testing.

4.2. Experimental Results

Table 1 summarizes a performance (word accuracy in %) compar-
ison of the baseline system and several robust ASR systems using
VTS-based feature compensation under three “training-testing” con-
ditions (HM, MM, WM) on Aurora3 database. VTS refers to the
practical solution of feature compensation recommended in [8] with
two additional improvements, i.e., applying higher order informa-
tion of VTS approximation only to the noisy speech mean parame-
ters and acoustic context expansion in [11] under the clean-training
condition. IVN-VTS represents the system where IVN training with
VTS-based feature compensation is used. IVN-MMD-VTS denotes
the system using mixture models of distortion for VTS-based fea-
ture compensation combined with IVN training. From those results,
several observations can be made as follows:

∙ All robust ASR systems using VTS-based feature compen-
sation outperform the baseline system under all “training-
testing” conditions for four languages;

∙ Under the HM condition, although we treat it as “clean-
training” condition where VTS-based feature compensation
can only be applied to the testing set, IVN-VTS system can
still achieve consistent improvement of recognition accuracy
over the VTS system;

∙ IVN-MMD-VTS system yields consistent and significant
gain of recognition accuracy compared with IVN-VTS sys-
tem for all the testing cases.

5. CONCLUSION

In this paper, we propose to use mixture models for modeling both
additive noise and convolutional distortion to improve the recogni-
tion accuracy in non-stationary environments. Combined with IVN-
based joint training of a reference GMM for feature compensation
and HMMs for acoustic modeling using VTS-based feature com-
pensation, significant performance gain can be achieved under all
the “training-testing” conditions on Aurora3 task.
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