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Abstract—This paper presents a discriminative training ap-
proach to irrelevant variability normalization (IVN) based joint
training of feature transforms and prototype-based classifier for
recognition of online handwritten Chinese characters. A sample
separation margin based minimum classification error criterion is
adopted in IVN-based training, while an Rprop algorithm is used
for optimizing the objective function. The IVN-trained recognizer
can be made both compact and efficient by using a two-level
fast-match tree whose internal nodes coincide with the labels of
feature transforms. The effectiveness of the proposed approach
is confirmed on an online handwritten character recognition task
with a vocabulary of 9,306 characters.
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I. INTRODUCTION

Using online handwritten Chinese character recognition
as an input mode on a portable device has been becoming
increasingly popular. Good solutions have been developed to
build product engines for online handwritten Chinese character
recognition (e.g., [1], [2]). However, the problem of diversified
training data and/or possible mismatch between training and
testing conditions has not been addressed explicitly in the
above solutions. In this study, we adopt a so-called irrelevant
variability normalization (IVN) [3] based training strategy to
tackle the above problem.

In [4], a so-called speaker adaptive training (SAT) approach
was proposed to normalize speaker variability in training hid-
den Markov models (HMMs) for automatic speech recognition
(ASR). The concept of SAT training was generalized to deal
with any variabilities irrelevant to phonetic classification in [3],
therefore a term of IVN training was coined, where as an illus-
trative example, the IVN training was used to improve learning
HMM state tying from data based on phonetic decision-tree.
Since then, many variants of IVN training methods have been
tried in ASR area. For example, IVN-based training of feature
transforms and HMMs based on maximum likelihood [5] and
discriminative training [6] has been verified to be effective for
large vocabulary continuous speech recognition (LVCSR). A
region-dependent feature transform (RDT) approach proposed
in [7] is yet another example of IVN training in ASR area.
Only recently, the concept of IVN training was tried in the area
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of handwriting recognition. For example, in [8], writer adaptive
training (WAT) using constrained maximum likelihood linear
regression (CMLLR) [9] based feature transform was studied
for an HMM-based Arabic handwriting recognition task. RDT-
based approach in [7] was also applied to HMM-based off-line
handwriting recognition in [10]. More recently, a pattern field
classification approach with style normalized transformation
was proposed in [11] and demonstrated to be effective for
several pattern recognition applications, including handwritten
Chinese character recognition.

In this paper, we study the problem of IVN-based training
for online handwritten Chinese character recognition. One of
the state-of-the-art techniques to build a Chinese handwriting
recognizer is to use a so-called sample separation margin
(SSM) based minimum classification error (MCE) criterion
[12], [13] to train a prototype-based classifier as reported in
[1]. In spite of the large vocabulary of Chinese characters, such
a classifier can be made both compact (e.g., [14]) and efficient
(e.g., [15]) in the recognition stage. The main contribution
of this work is to propose an approach to IVN-based joint
training of feature transforms and prototype-based classifier
parameters by using the SSM-MCE criterion and demonstrate
its effectiveness for Chinese handwriting recognition as an
illustrative example. An Rprop algorithm ([16], [17]) is used to
optimize the objective function. Furthermore, the IVN-trained
recognizer can be made both compact and efficient by using a
two-level fast-match tree [15] whose internal nodes coincide
with the labels of feature transforms.

Fig. 1 illustrates an overall system development flow of our
work in this paper. In the first module, after feature extraction
of training samples, an LBG clustering algorithm [18] is
used to construct multiple prototypes for each character class.
Then a baseline classifier is constructed by using the SSM-
MCE training. In the second module, the clusters of feature
space associated with feature transforms are generated via the
baseline classifier, which are used for the IVN-based SSM-
MCE joint training of feature transforms and prototype-based
classifier parameters. Finally, with the IVN resources from the
second module, at recognition stage (i.e., in the third module),
the corresponding transform after cluster selection is used to
transform the feature vector of the unknown sample, which
is then fed to the IVN-based SSM-MCE trained classifier for
recognition.

The remainder of the paper is organized as follows. In Sec-
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Fig. 1. Overall flow of system development.

tion II, we describe briefly how to construct a multi-prototype
based classifier by using SSM-MCE training. In Section III, we
present the detailed procedure for IVN-based SSM-MCE joint
training of feature transforms and classifier parameters. The
fast-match technique is introduced in Section IV. In Section V,
we report experimental results. Finally we conclude the paper
in Section VI.

II. SSM-MCE TRAINED CLASSIFIER

Suppose our classifier can recognize 𝑀 character classes
denoted as {𝐶𝑖∣𝑖 = 1, ...,𝑀}. For a multi-prototype based
classifier, each class 𝐶𝑖 is represented by 𝐾𝑖 prototypes, 𝜆𝑖 =

{m𝑖𝑘 ∈ ℛ𝐷∣𝑘 = 1, ...,𝐾𝑖}, where m𝑖𝑘 is the 𝑘th prototype

of the 𝑖th class. Let’s use Λ = {𝜆𝑖} to denote the set of
prototypes. In the classification stage, a feature vector y ∈ ℛ𝐷

is first extracted. Then y is compared with each of the 𝑀
classes by evaluating a Euclidean distance based discriminant

function for each class 𝐶𝑖 as follows

𝑔𝑖(y;𝜆𝑖) = −min
𝑘
∥ y −m𝑖𝑘 ∥2 . (1)

The class with the maximum discriminant function score is
chosen as the recognized class 𝑟(y;Λ), i.e.,

𝑟(y;Λ) = argmax
𝑖

𝑔𝑖(y;𝜆𝑖) . (2)

In the training stage, given a set of training feature vectors
𝒴 = {y𝑟 ∈ ℛ𝐷∣𝑟 = 1, ..., 𝑅}, first we initialize Λ by LBG
clustering [18]. Then Λ can be re-estimated by minimizing the
following SSM-MCE objective function:

𝑙(𝒴;Λ) =
1

𝑅

𝑅∑

𝑟=1

1

1 + exp[−𝛼𝑑(y𝑟;Λ) + 𝛽]
(3)

where 𝛼, 𝛽 are two control parameters, and 𝑑(y𝑟;Λ) is a
misclassification measure defined by using a so-called sample
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separation margin (SSM) as follows [12]:

𝑑(y𝑟;Λ) =
−𝑔𝑝(y𝑟;𝜆𝑝) + 𝑔𝑞(y𝑟;𝜆𝑞)

2 ∥m𝑝𝑘̂ −m𝑞𝑘 ∥
(4)

where

𝑘 = argmin
𝑘
∥ y𝑟 −m𝑝𝑘 ∥2 (5)

𝑞 = arg max
𝑖∈ℳ𝑟

𝑔𝑖(y𝑟;𝜆𝑖) (6)

𝑘 = argmin
𝑘
∥ y𝑟 −m𝑞𝑘 ∥2 (7)

and ℳ𝑟 is the hypothesis space for the 𝑟th sample, excluding
the true label 𝑝.

To optimize the objective function in Eq. (3), the same
implementation of Rprop algorithm as described in [1] is
adopted here.

III. IVN-BASED SSM-MCE JOINT TRAINING

A. Feature Transformation

In this study of IVN-based training, the following feature
transformation is used:

x𝑟 = ℱ(y𝑟;Θ) = A𝑒𝑟y𝑟 + b𝑒𝑟 (8)

where y𝑟 and x𝑟 are the 𝑟th 𝐷-dimensional input and trans-
formed feature vectors, respectively; and 𝑒𝑟 is the transform la-

bel for the 𝑟th sample. Let’s use Θ = {(A𝑒,b𝑒)∣𝑒 = 1, ..., 𝐸}
to denote the set of transform parameters, where A𝑒 is a 𝐷×𝐷
nonsingular matrix and b𝑒 is a 𝐷-dimensional bias vector.

B. Cluster Construction and Selection

Suppose the feature space can be divided into 𝐸 clusters
and each cluster 𝑒 is associated with one linear transform
(A𝑒,b𝑒), which is assumed to normalize the irrelevant vari-
ability of the feature vector belonging to this cluster. In this
work, to construct the clusters, we divide all the prototypes
of all classes into 𝐸 groups by using k-means clustering
approach. The centroid of each cluster is calculated as the
sample mean of the prototypes belonging to the cluster. Then
in both IVN-based training and recognition stage, given the
clusters and for each feature vector, a transform label is
assigned to the feature vector as the label of the cluster having
the minimum Euclidean distance between the feature vector
and the cluster centroid.

C. Training Procedure

The IVN-based SSM-MCE objective function is defined as
follows:

𝑙(𝒴;Λ,Θ) =
1

𝑅

𝑅∑

𝑟=1

1

1 + exp[−𝛼𝑑(y𝑟;Λ,Θ) + 𝛽]
(9)

where

𝑑(y𝑟;Λ,Θ) =
−𝑔𝑝(x𝑟;𝜆𝑝) + 𝑔𝑞(x𝑟;𝜆𝑞)

2 ∥m𝑝𝑘̂ −m𝑞𝑘 ∥
. (10)

In the above equations, x𝑟 is defined in Eq. (8), where
the transform label 𝑒𝑟 can be determined as described in
Section III-B. The following method of alternating variables

can then be used to jointly estimate Θ and Λ by minimizing
the above objective function:

Step 1: Initialization
First, the classifier parameters Λ are initialized by
using SSM-MCE training described in Section II.
The transform parameters Θ are initialized as:
b𝑒 = 0 and A𝑒 = I.

Step 2: Estimating the feature transform parameters Θ by
fixing the classifier parameters Λ
Given the fixed classifier parameters Λ, the SSM-
MCE objective function 𝑙(𝒴;Λ,Θ) can be op-
timized by using an Rprop algorithm with 𝑁𝑇

iterations as described in [19], [20].
Step 3: Estimating the classifier parameters Λ by fixing

the feature transform parameters Θ
Given the updated transform parameters Θ ob-
tained in Step 2, we first transform each training
feature vector y𝑟 by using Eq. (8). Then an
Rprop algorithm with 𝑁𝐶 iterations is performed
as described in [1] to re-estimate classifier pa-
rameters Λ by minimizing the objective function
𝑙(𝒴;Λ,Θ).

Step 4: Repeat Step 2 and Step 3 𝑁𝐼𝑉 𝑁 times.

In the above training procedure, the control parameters 𝑁𝑇 ,
𝑁𝐶 , and 𝑁𝐼𝑉 𝑁 are set empirically.

IV. FAST MATCH TECHNIQUE

Our fast-match technique is based on a two-level tree
[15]. To construct the tree, 𝐺 clusters are first generated as
described in Section III-B. Each cluster has a bucket consisting
of character classes with their prototypes belonging to the
cluster. Each training feature vector will then be classified into
the cluster with the minimum Euclidean distance between the
feature vector and the cluster centroid. The character class of
the training sample will be added into the bucket if it is not in
the bucket yet. In this way, we obtain a two-level tree with 𝐺
buckets, each containing a number of character classes. In this
work, to make the recognizer both compact and efficient, we
share the clusters in IVN-based training and fast-match tree,
i.e., we set 𝐸 = 𝐺. In recognition stage, given the feature
vector extracted from an unknown sample, we can find “Top
𝑁” candidates efficiently by using the following fast-match
procedure:

∙ Compare the input feature vector with each cluster
centroid and sort the result in ascending order of the
Euclidean distances, which can be considered as the
first-level recognition;

∙ If IVN is performed, the feature transform associated
with the first cluster is applied to the input feature
vector; Otherwise, skip this step;

∙ Merge all character classes in the top 𝑁𝐵 buckets and
use them to perform the second-level recognition as
usual.

In the above procedure, a technique known as the partial
distance based elimination has been used to speed up the
process of identifying the “Top 𝑁” candidates.
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V. EXPERIMENTS AND RESULTS

A. Experimental Setup

The experiments are conducted on the task of recognizing
isolated online handwritten characters with a vocabulary of
9,306 character classes including 9,143 Chinese characters, 62
alphanumeric characters, 101 punctuation marks and symbols.
For training, we used about 1,000 samples per character class.
Three testing sets are used for evaluation: 1) Regular-1: 97,221
samples from 6,903 character classes which are written in
regular style; 2) Regular-2: 84,549 samples from 2,355 un-
common character classes in regular style; 3) Cursive: 383,064
samples from 3,755 frequently used character classes written
in cursive style. Because there are much more regular-style
training samples than cursive ones, the re-sampling of training
samples is performed as in [14]. For feature extraction, a 512-
dimensional raw feature vector is extracted as described in
[21], which is followed by LDA (linear discriminant analysis)
transformation to obtain a lower dimensional feature vector.
As for the number of prototypes for each character, we use 𝐴
prototypes for 3,755 most frequently used Chinese characters
and 𝐵 prototypes for the rest of character classes. For Rprop-
based SSM-MCE training and IVN-based SSM-MCE joint
training, the control parameters are set as described in [1]
and [19], [20]. Other control parameters are set as: 𝐷 = 80,
𝐸 = 𝐺 = 128, 𝑁𝑇 = 10, 𝑁𝐶 = 10, 𝑁𝐼𝑉 𝑁 = 5.

To handle large-scale training data, the tools for LBG
clustering, SSM-MCE training, and IVN-based SSM-MCE
joint training with the Rprop algorithm have been implemented
based upon MSR Asia’s MPI-based machine learning platform
[22]. This platform was developed on top of Microsoft Win-
dows HPC Server, and optimized for various machine learning
algorithms. With this high-performance parallel computing
platform, experiments can be run very efficiently for large-
scale tasks.

B. Experimental Results

Table I summarizes a performance (recognition accuracies
in %) comparison of baseline systems and IVN-trained systems
on three testing sets under different settings of the number of
prototypes and the number of buckets searched in fast-match
tree. The footprint (in MB) and runtime latency (normalized
by Baseline(2,1) without fast-match) of the corresponding
recognizers are also compared. “Baseline” refers to an SSM-
MCE trained system without IVN training while “IVN” refers
to a system using our proposed IVN-based joint training. The
second column of Table I indicates the top 𝑁𝐵 buckets selected
for second-level recognition in fast-match tree, where “N/A”
means no fast-match is used. Three prototype configurations,
namely (2,1), (4,2), and (8,4) are listed for comparison,
because over-training would be observed if the number of
prototypes was increased beyond (8,4) in current experiments.
The runtime latency in the last column only includes the
recognition time after feature extraction.

Based on those results, several observations can be made.
First, IVN systems can achieve consistently significant im-
provements in recognition accuracy compared with the cor-
responding Baseline systems on all testing sets. Second, under
the same prototype setting, the increased runtime latency from
Baseline to IVN systems can be almost ignored, especially

in cases with fast-match because the first-level recognition of
fast-match tree and the cluster selection for each testing feature
vector are shared completely. Third, IVN systems can still
outperform Baseline systems with smaller footprints and less
runtime latency, e.g., IVN(2,1) vs. Baseline(4,2) and IVN(4,2)
vs. Baseline(8,4). Finally, with fast-match technique, the run-
time latency of IVN systems can be reduced significantly while
the footprint is only increased slightly. The tradeoff between
recognition accuracy and efficiency can be made by setting
different 𝑁𝐵 . Compared with systems without using fast-
match technique, 𝑁𝐵 = 5 keeps the same recognition accuracy
with reduced runtime latency while 𝑁𝐵 = 3 degrades slightly
recognition accuracy with a much more significant reduction
of runtime latency.

Table II compares the “Top-N” recognition accuracies of
Baseline systems and IVN-trained systems on three testing sets
under different settings of the number of prototypes and a
single setting of 𝑁𝐵 = 5 for fast match. From the Top-5 and
Top-10 results, IVN systems can achieve very high recognition
accuracies already.

VI. CONCLUSION

In this paper, we have proposed an approach to IVN-
based SSM-MCE joint training of feature transforms and a
prototype-based classifier and demonstrated its effectiveness
for online handwritten Chinese character recognition as an
illustrative example. The IVN-trained recognizer can be made
both compact and efficient by using a two-level fast-match
tree whose internal nodes coincide with the labels of feature
transforms. Given the consistent improvement of recognition
accuracy compared with the corresponding SSM-MCE trained
systems without using IVN training, the proposed approach
in this study offers a good product solution to construct a
handwritten character recognizer to be deployed on mobile
devices with limited memory for East Asian languages such
as Chinese, Japanese, and Korean. As future work, we will
study the application of IVN training to other classifiers,
e.g., modified quadratic discriminant function (MQDF) based
classifiers [23], [24], [13], [2].
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