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Abstract

This paper presents a novel irrelevant variability
normalization (IVN) approach via hierarchical deep
neural networks (HDNNs) and prototype-based classi-
fier for online handwritten Chinese character recogni-
tion. The recent insight of deep neural network (DNN)
is the deep architecture with large training data can
bring the best performance in many research areas. The
architecture design of our proposed hierarchical deep
neural networks focuses on both “depth” and “width”
of artificial neural network. Specifically for the mul-
tivariate regression, HDNN consists of multiple sub-
nets, which is empirically more powerful than DNN.
In this work, HDNN is adopted as a nonlinear feature
transform to normalize the feature vector of handwrit-
ten samples with irrelevant variabilities to a target pro-
totype. The effectiveness of proposed method is veri-
fied on a Chinese handwriting recognition task. Fur-
thermore, we have an very interesting observation that
DNN-based IVN can not even bring performance gain
over the prototype-based classifier while HDNN-based
IVN yields significant improvements of recognition ac-
curacy.

1. Introduction

In the mobile internet era, using online handwritten

Chinese character recognition as an input mode on a

portable device has been becoming increasingly pop-

ular. Several solutions have been developed to build

product engines for online handwritten Chinese char-

acter recognition (e.g., [18, 6, 21]). But in real ap-

plications, there are many irrelevant variabilities (e.g.,

writing styles) in training/testing samples, which may

lead to degradation of recognition performance. In this

study, we adopt the concept of irrelevant variability
normalization (IVN) [16] to tackle the above problem.

In [1], a so-called speaker adaptive training (SAT)

approach was proposed to normalize speaker variability

in training hidden Markov models (HMMs) for auto-

matic speech recognition (ASR). The concept of SAT

was generalized to deal with any variabilities irrele-

vant to phonetic classification in [16], therefore a term

of IVN training was coined. Since then, many vari-

ants of IVN training methods have been tried in ASR

area [26, 23]. Only recently, the concept of IVN was

tried in the area of handwriting recognition. For exam-

ple, in [4], writer adaptive training (WAT) using con-

strained maximum likelihood linear regression (CM-

LLR) [10] based feature transform was studied for

an HMM-based Arabic handwriting recognition task.

Region-dependent feature transform in [23] was also

applied to HMM-based off-line handwriting recogni-

tion in [3]. In [24] a pattern field classification approach

with style normalized transformation was proposed and

demonstrated to be effective for several pattern recogni-

tion applications, including handwritten Chinese char-

acter recognition. More recently, we presented an IVN

approach to jointly discriminative training of linear fea-

ture transforms and multi-prototype based classifier for

recognition of online handwritten Chinese characters

[8].

In this paper, we study a new IVN approach to nor-

malize the generally irrelevant variabilities via a highly

nonlinear feature transform, namely hierarchical deep

neural networks (HDNNs), rather than the widely used

linear transforms [25, 24, 5, 8, 7], for online handwrit-

ten Chinese character recognition. One of the state-of-

the-art techniques to build a Chinese handwriting rec-

ognizer is to use a so-called sample separation margin

based minimum classification error (SSM-MCE) cri-

terion [11] to train a prototype-based classifier as re-

ported in [20, 6]. In spite of the large vocabulary of

Chinese characters, such a classifier can be made both

compact [20] and efficient [9] in the recognition stage.

In this work, based on this classifier, we propose to

use HDNN for normalizing the irrelevant variabilities
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Figure 1. Overall development flow.

in handwritten samples. Recently, deep neural net-

works (DNNs) as classification or regression models

are widely used in many areas, especially speech area

[15, 14, 13, 22]. But our experiments show that DNN

as a regression model for IVN can even lead to degrada-

tion of recognition performance mainly because DNN

can not well learn the highly nonlinear regression func-

tion between high-dimensional feature vectors. Inspired

by this, HDNN, consisting of multiple subnets which is

empirically more powerful than DNN, is proposed and

verified to be effective for IVN in Chinese handwriting

recognition.

The remainder of the paper is organized as follows.

In Section 2, we present the detailed description of

prototype-based classifier. In Section 3, IVN via HDNN

as a feature transform is described. In Section 4, we re-

port experimental results. Finally we conclude the pa-

per in Section 5.

2. System Description

An overall system development flow and architecture

of IVN via HDNN is illustrated in Fig. 1. In the training

stage, first a raw feature vector is extracted from each

training sample [2], which is followed by LDA transfor-

mation to obtain a lower dimensional feature vector. Af-

ter that, the prototype-based classifier is constructed by

using LBG clustering algorithm [17], which can be re-

fined by SSM-MCE training. With prototypes for each

character class and feature vectors of training samples,

HDNN training is performed to learn the mapping func-

tion between the feature vector of each character sam-

ple and its corresponding prototype. Then new trans-

formed features are generated via HDNN, which are fed

to the prototype-based classifier training. At the recog-

nition stage, with the feature vector extracted from the

unknown sample, feature transform via HDNN is con-

ducted. Finally the transformed feature vector is fed to

recognizer. The details of classifier training are elabo-

rated in the following subsection while IVN via HDNN

is described in Section 3.

2.1. Prototype-based classifier

Suppose our classifier can recognize 𝑀 character

classes denoted as {𝐶𝑖∣𝑖 = 1, ...,𝑀}. For a multi-

prototype based classifier, each class 𝐶𝑖 is represented

by 𝐾𝑖 prototypes, 𝜆𝑖 = {m𝑖𝑘 ∈ ℛ𝐷∣𝑘 = 1, ...,𝐾𝑖},
where m𝑖𝑘 is the 𝑘th prototype of the 𝑖th class. Let’s

use Λ = {𝜆𝑖} to denote the set of prototypes. In the

classification stage, a feature vector x ∈ ℛ𝐷 is first ex-

tracted. Then x is compared with each of the 𝑀 classes

by evaluating a Euclidean distance based discriminant

function for each class 𝐶𝑖 as follows

𝑔𝑖(x;𝜆𝑖) = −min
𝑘
∥ x−m𝑖𝑘 ∥2 . (1)

The class with the maximum discriminant function

score is chosen as the recognized class 𝑟(x;Λ), i.e.,

𝑟(x;Λ) = argmax
𝑖

𝑔𝑖(x;𝜆𝑖) . (2)

In the training stage, given a set of training feature

vectors 𝒳 = {x𝑟 ∈ ℛ𝐷∣𝑟 = 1, ..., 𝑅}, first we ini-

tialize Λ by LBG clustering [17]. Then Λ can be re-

estimated by minimizing the following SSM-MCE ob-

jective function:

𝑙(𝒳 ;Λ) =
1

𝑅

𝑅∑

𝑟=1

1

1 + exp[−𝛼𝑑(x𝑟;Λ) + 𝛽]
(3)

where 𝛼, 𝛽 are two control parameters, and 𝑑(x𝑟;Λ) is

a misclassification measure defined by using a so-called

sample separation margin (SSM) as follows [11]:

𝑑(x𝑟;Λ) =
−𝑔𝑝(x𝑟;𝜆𝑝) + 𝑔𝑞(x𝑟;𝜆𝑞)

2 ∥m𝑝�̂� −m𝑞𝑘 ∥
(4)

where

𝑘 = argmin
𝑘
∥ x𝑟 −m𝑝𝑘 ∥2 (5)

𝑞 = arg max
𝑖∈ℳ𝑟

𝑔𝑖(x𝑟;𝜆𝑖) (6)

𝑘 = argmin
𝑘
∥ x𝑟 −m𝑞𝑘 ∥2 (7)
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Figure 2. DNN.

and ℳ𝑟 is the hypothesis space for the 𝑟th sample, ex-

cluding the true label 𝑝.

To optimize the objective function in Eq. (3), the

same implementation of Quickprop algorithm as de-

scribed in [20] is adopted here.

3. Irrelevant Variability Normalization via
Hierarchical Deep Neural Networks

In this study, the concept of IVN is implemented by

using feature transformation:

xivn
𝑟 = ℱ(x𝑟;Θ) (8)

where x𝑟 and xivn
𝑟 are the 𝑟th 𝐷-dimensional input and

transformed feature vectors, respectively. To learn the

mapping function ℱ with the set of parameters Θ, we

aim at minimizing mean squared error function defined

as:

𝐸 =
1

𝑅

𝑅∑

𝑟=1

∥xivn
𝑟 − xref

𝑟 ∥22 (9)

where xref
𝑟 is the reference feature vector, which is set

as the prototype with the smallest Euclidean distance

to xivn
𝑟 for the corresponding character class. Ideally if

the input feature vector can be transformed to the cor-

responding prototype in that class, then the recognition

results are always correct. In the following subsections,

two specific forms of ℱ , namely DNN and HDNN are

introduced. Also we will discuss the implementation

issues of HDNN.

3.1. Deep Neural Network

A deep neural network (DNN) is a feed-forward, ar-

tificial neural network that has more than one layer of

hidden units between its inputs and outputs [13]. In

this work, DNN is adopted as a multivariate regression

model to learn the mapping function between the fea-

ture vector and the corresponding prototype. The DNN

training is illustrated in Fig. 2, which consists of unsu-

pervised pre-training and supervised fine-tuning.

The pre-training procedure treats each consecutive

pair of layers as a restricted Boltzmann machine (RBM)

[14] whose joint probability is defined as:

𝑝(v,h) =
1

𝑍
exp{−𝐸(v,h)} (10)

where v and h denote the observable variables and

latent (hidden) variables, respectively. 𝐸 is an en-

ergy function and 𝑍 is the partition function to ensure

𝑝(v,h) is a valid probability distribution. If both v and

h are binary states, i.e., the Bernoulli-Bernoulli RBM,

the energy function is given by

𝐸(v,h) = −(b⊤
𝑣 v + b⊤

ℎ h+ v⊤W𝑣ℎh) (11)

where b𝑣 , bℎ are bias vectors of v and h respectively,

and W𝑣ℎ is the weight matrix between them. If v
is real-valued data and h is binary, i.e., the Gaussian-

Bernoulli RBM, the energy function is:

𝐸(v,h) =
1

2
(v − b𝑣)

⊤(v − b𝑣)− b⊤
ℎ h− v⊤W𝑣ℎh (12)

where we assume that the visible units follow the Gaus-

sian noise model with an identity covariance matrix if

the input data are pre-processed by mean and variance

normalization.

The RBM parameters can be efficiently trained in

an unsupervised fashion by maximizing the likelihood

over training samples of visible units with the approxi-

mate contrastive divergence algorithm [14]. As for our

DNN, a Gaussian-Bernoulli RBM is used for the first

layer while a pile of Bernoulli-Bernoulli RBMs can be

stacked behind the Gaussian-Bernoulli RBM. Then the

parameters of RBMs can be trained layer-by-layer. Hin-

ton et al. indicate that this greedy layer-wise unsuper-

vised learning procedure always helps over the tradi-

tional random initialization.

After pre-training for initializing the weights of the

first several layers, a supervised fine-tuning of the pa-

rameters in the whole neural network with the final out-

put layer is performed. Then Eq. (9) can be specified

as:

𝐸 =
1

𝑅

𝑅∑

𝑟=1

∥ℱ(x𝑟;W,b)− xref
𝑟 ∥22 (13)
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Figure 3. HDNN.

where W and b denote all the weight and bias param-

eters. The objective function is optimized using back-

propagation procedure with conjugate gradient method

in mini-batch mode.

3.2. Hierarchical Deep Neural Network

Although the powerful modeling capability of DNN

has been demonstrated in many areas, in this work

our experiments show that the use of DNN as a

highly nonlinear regression function between two high-

dimensional vectors on Chinese handwriting recogni-

tion task is not successful which still leads to the per-

formance degradation even using deep architectures.

So we propose a more powerful model called hierar-

chical deep neural network illustrated in Fig. 3, which

achieves both deep and wide architectures of neural net-

work. The main principle of HDNN is to divide the

vector of the output layer in Fig. 2 into 𝐾 sub-vectors,

each associated with a DNN using the same input layer

and hidden layers, which can make the learning of the

regression function ℱ easier. Then the formulation of

HDNN is extended from Eq. (9):

𝐸 =
1

𝑅

𝑅∑

𝑟=1

∥xivn
𝑟 − xref

𝑟 ∥22

=
1

𝑅

𝑅∑

𝑟=1

𝐾∑

𝑘=1

∥xivn
𝑟,𝑘 − xref

𝑟,𝑘∥22

=

𝐾∑

𝑘=1

𝐸𝑘 (14)

and

𝐸𝑘 =
1

𝑅

𝑅∑

𝑟=1

∥xivn
𝑟,𝑘 − xref

𝑟,𝑘∥22 (15)

where xivn
𝑟,𝑘 and xref

𝑟,𝑘 are the 𝑘th subvectors of xivn
𝑟

and xref
𝑟 , respectively. Obviously, the optimization of

Eq. (14) can be divided into 𝐾 subproblems as in

Eq. (15), each associated with a DNN in Fig. 3. The

initialization of the parameters in the first several hid-

den layers in each DNN can share the same pre-training

procedure described in Section 3.1.

3.3. Implementation Issues of HDNN

In this work, by considering the peculiarity of LDA

transformed feature vector, we design a specific imple-

mentation of HDNN. First, 𝐾 is set to 𝐷 which implies

that each dimension of output is associated with a DNN.

Then for the final transformed feature vector xivn
𝑟 , only

the first 𝐷sub (𝐷sub < 𝐷) outputs of HDNN is used and

the remaining 𝐷 −𝐷sub dimensions are set as the same

values of the input feature vector. In other words, we

only need to train 𝐷sub sub DNNs for HDNN. This is

inspired by the fact that the most useful information of

LDA transformed feature vector lies in the first several

dimensions while the remaining dimensions are noisy.

4. Experiments and Results

The experiments are conducted on the task of recog-

nizing isolated online handwritten Chinese characters

with a vocabulary of 3,926 character classes via a pub-

lic database released by the Institute of Automation of

Chinese Academy of Sciences (CASIA) [19]. There are
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Table 1. Performance (character error rate in %) comparison of different systems using
prototype-based classifiers with LBG clustering on the testing set.

Methods Baseline DNN-1L DNN-2L DNN-3L HDNN-1L HDNN-2L

CER(%) 16.13 29.26 23.30 25.63 13.44 12.37

939,561 samples in the training set and 234,798 sam-

ples in the testing set. For feature extraction, a 512-

dimensional raw feature vector is extracted as described

in [2], which is followed by LDA transformation to ob-

tain a 128-dimensional feature vector. For Quickprop-

based SSM-MCE training, the setting of the control

parameters can refer to [20]. The number of proto-

type for each character class of the classifier used for

DNN/HDNN training is set to 1. 𝐷sub is set as 48. The

tuning parameters of DNN are set according to [12].

The number of units in each hidden layer of DNN is

1024. To handle the large-scale training data, the com-

putations of LBG clustering, SSM-MCE training with

Quickprop algorithm are parallelized on the CPU clus-

ter while DNN/HDNN training is implemented and op-

timized on GPUs.

Table 1 shows a performance (character error rate in

%) comparison of different systems using prototype-

based classifiers with LBG clustering on the testing

set. “Baseline” denotes the system without using IVN.

“DNN-1L” to “DNN-3L” represent the systems using

DNN-based IVN with 1 hidden layer to 3 hidden layers,

respectively. “HDNN-1L” and “HDNN-2L” refer to the

systems using HDNN-based IVN with 1 hidden layer

and 2 hidden layers for each sub DNN, respectively.

Note that the prototype-based classifiers for both IVN

and classification in Fig. 1 are generated using LBG

clustering with 1 prototype. First, DNN-based IVN

systems yield much worse performance over the base-

line system, which indicates that DNN totally fails in

learning the mapping function between the LDA trans-

formed feature vector and the corresponding prototype

even using deep architectures. Second, HDNN-based

IVN systems achieve significant error reductions over

the baseline system. In terms of recognition error rate,

HDNN shows much more powerful learning capability

than DNN. Furthermore, HDNN-2L system gives the

best recognition performance with deeper architecture

than HDNN-1L system.

Table 2 gives a performance (character error rate

in %) comparison of systems using prototype-based

classifiers with different features and different train-

ing criteria on the testing set. “HDNN(LBG)” and

“HDNN(SSM-MCE)” denote HDNN-based IVN sys-

tems using two prototype-based classifiers with LBG

Table 2. Performance (character error
rate in %) comparison of systems using
prototype-based classifiers with different
features and different training criteria on
the testing set.

#prototype LBG SSM-MCE

Baseline 1 16.13 12.26

4 13.68 11.64

HDNN 1 12.37 11.64

(LBG) 4 11.84 11.32

HDNN 1 11.38 10.82

(SSM-MCE) 4 10.96 10.61

clustering and SSM-MCE training for HDNN training,

respectively. 2 hidden layers are used in each sub DNN

of HDNN. Several observations can be made. First, all

the HDNN-based IVN systems yield consistently sig-

nificant performance gain over baseline system in the

corresponding setting of different number of prototypes

and training criteria, especially for prototype-based

classifier trained using LBG clustering. Second, with-

out SSM-MCE based discriminative training, namely,

the system using prototype-based classifier trained by

LBG clustering in the case of “HDNN(LBG)” can still

generate comparable recognition accuracy with SSM-

MCE trained baseline system, which implies that the

feature space after transformation via HDNN-based

IVN brings more discriminative information. Third, the

HDNN-based IVN system using SSM-MCE generated

prototypes for HDNN training can always outperform

the system using LBG generated prototypes. Finally,

the best HDNN-based IVN system can achieve about

absolute 1% error reduction over the best baseline sys-

tem under the setting of 4 prototypes and SSM-MCE

training (from 11.64% to 10.61%).

5. Conclusion

In this work, we investigate to use a HDNN-based

IVN approach via prototype-based classifier for online

handwritten Chinese character recognition. It is veri-

fied that HDNN has a more powerful modeling capabil-

ity than DNN, which brings significant error reductions.
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As for future work, the discriminative training criterion

will be further explored on top of the HDNN training

using minimum mean squared error criterion.
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