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ABSTRACT

Based on the recently proposed speech pre-processing front-
end with deep neural networks (DNNs), we first investigate d-
ifferent feature mapping directly from noisy speech via DNN
for robust speech recognition. Next, we propose to jointly
train a single DNN for both feature mapping and acoustic
modeling. In the end, we show that the word error rate (WER)
of the jointly trained system could be significantly reduced
by the fusion of multiple DNN pre-processing systems which
implies that features obtained from different domains of the
DNN-enhanced speech signals are strongly complementary.
Testing on the Aurora4 noisy speech recognition task our best
system with multi-condition training can achieves an average
WER of 10.3%, yielding a relative reduction of 16.3% over
our previous DNN pre-processing only system with a WER
of 12.3%. To the best of our knowledge, this represents the
best published result on the Aurora4 task without using any
adaptation techniques.

Index Terms— robust speech recognition, deep neural
network, feature mapping, joint training, system fusion

1. INTRODUCTION

With the fast development of mobile internet, the speech-
enabled applications using automatic speech recognition (AS-
R) are becoming increasingly popular. However, the noise
robustness is one of the critical issues to make ASR system
widely used in real world. Historically, most of ASR system-
s use Mel-frequency cepstral coefficients (MFCCs) and their
derivatives as speech features, and a set of Gaussian mixture
continuous density HMMs (CDHMMs) for modeling basic
speech units. Many techniques [1, 2, 3] have been proposed
to address this issues. One category of techniques is the so-
called data-driven approach based on stereo-data [4, 5], which
is also the topic of this study.

The recent breakthrough of deep learning [6, 7], espe-
cially the application of deep neural networks (DNNs) in the
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ASR area [8, 9, 10], marks a new milestone that DNN-HMM
for acoustic modeling becomes the state-of-the-art replac-
ing GMM-HMM. It is believed that the first several layers
of DNN play the role of extracting highly nonlinear and
discriminative features which are robust to irrelevant vari-
abilities. This makes DNN-HMM inherently noise robust to
some extent as verified on the Aurora4 task [11].

In [12, 13], several front-end techniques were shown to
yield further performance gains on top of the DNN-HMM
system for tasks with small vocabularies or constrained gram-
mars. However for large vocabulary tasks, the convention-
al enhancement approach as in [14], effective for the GMM-
HMM systems, might even lead to a system degradation for
DNN-HMM with log mel-filterbank (LMFB) features under
the well-matched training-testing conditions [11].

Meanwhile, the data-driven approaches using stereo da-
ta via recurrent neural network (RNN) and DNN proposed
in [15, 16] can improve the speech recognition accuracy on
small vocabulary tasks. More recently, masking techniques
[17, 18, 19] were successfully applied to noisy speech recog-
nition. In [19], the approach using time-frequency masking
combined with feature mapping via DNN claimed to achieve
the best results on the Aurora4 task. Unfortunately, for multi-
condition training using DNN-HMM with LMFB features,
this approach still resulted in a worse performance similar to
those concluded in [11]. In [20], we propose a pre-processing
approach via DNN as a regression model to enhance noisy
speech for robust speech recognition and was shown to out-
perform the masking approach [19].

In this study, we report our recent progress to further im-
prove the ASR performance of multi-condition training espe-
cially when both additive noise and convolutional distortion
are involved in the test data. First, instead of extracting a-
coustic features from the enhanced speech waveform, DNN is
adopted directly as a highly nonlinear mapping function to es-
timate the clean speech features from observed noisy speech.
Second, we employ a hybrid DNN architecture to joint train
DNNs for both feature mapping and acoustic modeling. The
proposed joint training allows error back-propagation to the
feature mapping layers and the input of the hybrid DNN is
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Fig. 1. Overall development flow and architecture.

the original noisy speech feature vectors. Third, an extensive
experimental study is conducted to compare different acous-
tic features, namely LMFB, MFCC, and log-power spectra
(LPS). Fusion of multiple DNN pre-processing systems with
different features can also be performed.

With the proposed three-step approach, we show that fea-
tures obtained from different domains of the DNN-enhanced
speech signals are strongly complementary. Testing on the
Aurora4 noisy speech recognition task our best system with
multi-condition training achieves an average WER of 10.3%,
yielding a relative WER reduction of 16.3% over our previous
DNN pre-processing only system with a WER of 12.3%. To
the best of our knowledge, this represents the best published
result on the Aurora4 task without using any adaptation tech-
niques. When compared with other enhancement approaches
[11, 19, 21], we believe this is the first time to observe signifi-
cant performance gains when both additive noises and convo-
lutional distortions are involved in the test data on the Aurora4
task, indicating that the proposed front-end DNN can further
improve the noise robustness on top of the DNN-HMM sys-
tems for large vocabulary tasks.

2. SYSTEM OVERVIEW

The overall flowchart of our proposed ASR system is illus-
trated in Fig. 1. In the training stage, training samples are
firstly processed to extract acoustic features, namely LMF-
B, MFCC or LPS (with the dynamic features) followed by
cepstral mean normalization (CMN). These features are fur-
ther processed by DNN based feature mapping. Then the en-
hanced features are adopted to train the generic HMMs. For
DNN-HMM system, we use the same procedure proposed in
[20] to train DNN acoustic model with enhanced features.
First, a reference DNN is trained using original features with
clean training labels as our baseline system. Then, on top of
this reference DNN as an initialization, the DNN model of
enhanced features is fine-tuned by only changing the input
of DNN from original noisy features to enhanced features.
Meanwhile, the model can be further optimized by integrat-
ing feature enhancement with acoustic modeling. This joint
training allows error back-propagation to the feature mapping
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Fig. 2. DNN for feature mapping.

layers. With this joint training procedure, the hybrid DNN
can generate better recognition performance. In the recogni-
tion stage, the normal recognition is conducted with the hy-
brid DNN-HMM. In the next section, the details of feature
mapping and joint training are elaborated.

3. FEATURE MAPPING AND JOINT TRAINING

3.1. Feature Mapping

In [22], DNN was adopted as a regression model to enhance
noisy speech and verified that this DNN-based pre-processing
was effective for robust speech recognition [20]. But for test
data with both additive noises and channel distortions (Set
D) under the multi-condition training using DNN-HMM and
LMFB acoustic features, this approach led to a performance
degradation. To address this issue, we propose to directly map
the input noisy features to the desired clean acoustic features
as shown in Fig. 2. The acoustic context information along
both time axis (with multiple neighboring frames) and fre-
quency axis (with full frequency bins) can be fully utilized
by DNN to improve the continuity of the estimated clean fea-
tures.

One main difference from the previously proposed pre-
processing only DNN is that the DNN output contains the
same number of frames as the input instead of just one cen-
tral frame [22]. Using multiple-frame output in feature map-
ping matches the input features with the back-end DNN for
joint training to be proposed in the next section. As train-
ing of this regression DNN requires a large amount of time-
synchronized stereo-data with clean and noisy speech pairs,
which are difficult and expensive to be collected from re-
al scenarios, the noisy speech utterances are synthesized by
corrupting the clean speech utterances with additive noises
of different types at various signal-to-noise-ratio (SNR) lev-
els or convolutional (channel) distortions. DNN training al-
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so consists of unsupervised pre-training and supervised fine-
tuning. The pre-training is the same as that in DNN for a-
coustic modeling. For supervised fine-tuning, we aim at min-
imizing mean squared error between the DNN output and the
reference clean features:

E =
1

N

N∑
n=1

∥x̂n+τ
n−τ (y

n+τ
n−τ ,W , b)− xn+τ

n−τ∥22 + κ∥W ∥22 (1)

where x̂n+τ
n−τ and xn+τ

n−τ are the nth D(2τ + 1)-dimensional
vectors of estimated and reference clean features, respective-
ly. yn+τ

n−τ is a D(2τ + 1)-dimensional vector of input noisy
features with neighbouring left and right τ frames as the a-
coustic context. W and b denote all the weight and bias
parameters. κ is the regularization weighting coefficient to
avoid over-fitting. The objective function is optimized using
back-propagation with a stochastic gradient descent method
in mini-batch mode of N sample frames.

3.2. Joint Training

After feature mapping, we used the enhanced features for a-
coustic modeling [20]. Furthermore, we employed a hybrid
DNN framework to perform joint training of DNNs for both
feature mapping and acoustic modeling as shown in Fig. 3.
In the proposed hybrid DNN, we directly stacked the acous-
tic modelling layers on top of the feature mapping layers.
The output layer of feature mapping became the input lay-
er for acoustic modeling, which was also a hidden layer of
the whole network. It is noted that this is a hidden layer
with a linear activation function while others are with sigmoid
activation functions. Using the same object function as the
back-end DNN, all weights were then re-trained. After joint
training, the hybrid DNN yielded a better recognition perfor-
mance which can be explained because the feature mapping

network was refined to enable a better phone classification
instead of optimizing the original MMSE criterion. In [21],
a joint training procedure was also proposed to combine the
masking DNN with the back-end DNN. However due to the
required middle-stage masking post-processing and dynamic
feature calculation operations, fixed layers were used to per-
form such matching approximations. Instead our proposed
joint training can seamlessly connect the front-end and back-
end DNNs as the output layer of feature mapping DNN is
exactly the input layer of the acoustic modeling DNN.

4. EXPERIMENTS

Aurora4 [23, 24] database was used to verify the effectiveness
of the proposed approach for the medium vocabulary contin-
uous speech recognition task. It contains clean speech data
from WSJ [25] database. Two training sets were designed
for this task. One is clean-condition training set consisting of
7138 utterances recorded by the primary Sennheiser micro-
phone. The other one is multi-condition training set which is
time-synchronized with the clean-condition training set. One
half of the utterances were recorded by the primary Sennheis-
er microphone while the other half were recorded using a
secondary microphone. Both halves include a combination
of clean speech from clean-condition training set and speech
corrupted by one of six different noises (street, train station,
car, babble, restaurant, airport) at 10-20 dB SNR.

The two training set pairs were also used for feature map-
ping DNN. For evaluation, the original two sets consisted of
330 utterances from 8 speakers, which was recorded by the
primary microphone and a secondary microphone, respective-
ly. Each set was then corrupted by the same six noises used
in the training set at 5-15 dB SNR, creating a total of 14 test
sets. These 14 test sets were grouped into 4 subsets: clean
(Set1), noisy (Set2 to Set7), clean with channel distortion
(Set8), noisy with channel distortion (Set9 to Set14), which
were denoted as A, B, C, and D, respectively.

As for the front-end, the frame length was set to 400
samples (or 25 msec) with a frame shift of 160 samples (or
10 msec) for the 16kHz speech waveforms. Three acous-
tic features were adopted, namely 24-dimensional log Mel-
filterbank features, 13-dimensional MFCC (including C0)
features, and 257-dimensional log-power spectra features.
These features plus their first and second order derivatives
were concatenated to form LMFB, MFCC and LPS features
and further processed by cepstral mean normalization. The
72-dimensional LMFB features were used to train DNN for
feature mapping with the architecture 792-2048-2048-2048-
792, which denoted that the size was 792 (72*11, τ=5) at
the input layer, 2048 for three hidden layers, and 792 for
the output layer. Other parameter settings can be referred
to [22, 26]. Similarly, the DNN architectures for MFCC and
LPS are 429(39*11)-2048-2048-2048-429, and 3855(771*5)-
2048-2048-2048-3855, respectively.
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Table 1. Performance (word error rate in %) comparison of
the feature mapping systems using LMFB features with dif-
ferent output frames on the testing sets of Aurora4 databases.

System A B C D Avg.
Noisy 4.6 8.4 7.8 18.6 12.5
FM 1 4.6 8.5 7.4 18.6 12.5
FM 2 4.6 7.8 7.2 17.5 11.7

Table 2. Performance (word error rate in %) comparison
of the feature mapping and joint training systems using dif-
ferent acoustic features (LMFB, MFCC, LPS) under multi-
condition training on the testing sets of Aurora4 databases.

System A B C D Avg.
LMFB

Noisy 4.6 8.4 7.8 18.6 12.5
Feature mapping 4.6 7.8 7.2 17.5 11.7

Joint training 4.3 7.8 6.8 17.0 11.4
MFCC

Noisy 5.4 9.7 9.5 20.6 14.1
Feature mapping 5.1 9.2 9.0 19.4 13.3

Joint training 5.1 9.0 8.5 19.2 13.1
LPS

Noisy 4.8 8.7 9.8 20.0 13.4
Feature mapping 4.6 7.9 8.6 19.3 12.6

Joint training 4.8 7.8 8.2 18.3 12.1

For acoustic modeling, each triphone was modeled by a
CDHMM with 3 emitting states. There were in total 3296
tied states. For the DNN-HMM system, the input layer was a
context window of 11 frames of LMFB features (or 11 frames
of MFCC features, 5 frames of LPS features). The DNN for
acoustic modeling had 7 hidden layers with 2048 hidden units
in each layer and the final soft-max output layer had 3296
units, corresponding to the tied states of HMMs. The other
parameters were set according to [11]. As for joint training,
the learning rate is set to 0.001 and 7 epochs were used.

Table 1 gives a performance comparison of the feature
mapping on the test sets of Aurora4 data using the LMFB fea-
tures with different output frame sizes under multi-condition
training. When using one-frame output (denoted as FM 1)
it did not bring improvements over the baseline system (de-
noted as Noisy). However, when using multiple-frame output
(denoted as FM 2), our approach could yield a remarkably
relative WER reduction of 6.4% in average over the baseline.
Comparing to the results in [11, 19, 21], a significant perfor-
mance gain was achieved by only front-end feature processing
under multi-condition training using DNN-HMM and LMFB
features when both additive noises and convolutional distor-
tions are involved in the test data (Set D).

Table 2 lists a performance comparison of the feature
mapping and joint training using different acoustic features

Table 3. Performance (word error rate in %) comparison of
the system combination with different features or DNN ap-
proaches on the testing sets of Aurora4 databases.

System A B C D Avg.
DNN-PP 4.5 7.5 7.4 19.3 12.3

Post Avg 1 4.4 7.5 6.6 16.1 10.9
Post Avg 2 4.4 6.8 6.4 15.4 10.3

[21] 4.5 7.4 8.1 16.5 11.1

(LMFB, MFCC, LPS) under multi-condition training. For
LMFB, joint training can yield a relative WER reduction of
2.6% in average over feature mapping and 8.8% over the
baseline. For MFCC and LPS, the relative WER reductions
over the baseline are 7.1% and 9.7%, respectively. More
interestingly, LMFB achieves the best performance while the
LPS features still outperforms the MFCC features. This ob-
servation is reasonable as LPS contains the most speech and
noise information, contrary to the MFCC case. And LMFB
achieves the best tradeoff among them.

Table 3 shows a performance comparison of system com-
bination with different features or DNN approaches on the
testing sets of the Aurora4 task under multi-condition train-
ing. Our proposed DNN pre-processing only approach in [20]
is denoted as DNN-PP. From Tables 2 and 3, the combined
feature mapping with joint training approach can achieve con-
sistent improvements over the pre-processing only approach,
especially for Set D. We then used the posterior averaging
method [27] to perform system combination. First, the com-
bination of the three joint training systems (namely LMFB,
MFCC, and LPS, denoted as Post Avg 1) yields a WER re-
duction from 11.4% (the best result in the bottom row of Ta-
ble 2) to 10.9% in average. Furthermore, the final system
(Post Avg 2) as a combination of Post Avg 1 and DNN-PP
attains the best reported WER (10.3%), which gives a relative
WER reduction of 7.2% over the recently reported WER in
[21]. These fusion results suggest that the enhanced features
from different domains are strongly complementary.

5. CONCLUSION

In this paper, we have presented a novel DNN-based feature
mapping approach with joint training for noise robust speech
recognition. Compared with our previous work on DNN-
based pre-processing, the feature mapping approach can sig-
nificantly reduce the recognition error in all test conditions,
especially when both additive noises and convolutional dis-
tortions are involved in the test data. Combined with joint
training procedure, additional performance gain could be ob-
tained. The final fusion system using different acoustic fea-
tures and DNN approaches achieves the best reported WER
on the Aurora4 task without any adaptation techniques.
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