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Abstract
Target-speaker voice activity detection (TS-VAD) has recently
shown promising results for speaker diarization on highly over-
lapped speech. However, the original model requires a fixed
(and known) number of speakers, which limits its application
to real conversations. In this paper, we extend TS-VAD to
speaker diarization with unknown numbers of speakers. This
is achieved by two steps: first, an initial diarization system is
applied for speaker number estimation, followed by TS-VAD
network output masking according to this estimate. We further
investigate different diarization methods, including clustering-
based and region proposal networks, for estimating the initial
i-vectors. Since these systems have complementary strengths,
we propose a fusion-based method to combine frame-level de-
cisions from the systems for an improved initialization. We
demonstrate through experiments on variants of the LibriCSS
meeting corpus that our proposed approach can improve the
DER by up to 50% relative across varying numbers of speak-
ers. This improvement also results in better downstream ASR
performance approaching that using oracle segments.

Index Terms: Speaker diarization, multi-speaker, TS-VAD,
overlap

1. Introduction
Speaker diarization refers to the task of segmenting a given
recording into homogeneous speaker-specific regions [1, 2].
The conventional approach for diarization [3, 4] involves apply-
ing speech activity detection (SAD) followed by clustering of
fixed-dimensional speaker embeddings – usually i-vectors [5] or
neural embeddings [6, 7] — extracted from small subsegments
of the speech regions. This may optionally be followed by a
resegmentation step [8, 9]. However, this framework inherently
makes a single speaker assumption, since every subsegment can
only be assigned a single label through hard clustering.

There have been efforts to solve the overlap problem in
speaker diarization, by leveraging a separate overlap detection
module that identifies segments containing overlapped speech.
This overlap detection may be done using hidden Markov mod-
els (HMMs) [10, 11] or using neural networks [12, 13]. Addi-
tional speaker labels may be assigned to the overlapping seg-
ments once detected [14]. An alternate framework that is pop-
ular in recent years applies end-to-end systems trained with su-
pervision (often using simulated mixtures). This includes mod-
els such as end to end neural diarization(EEND) [15] or region
proposal networks (RPN) [16], which can naturally handle over-
laps, and have shown promising results on challenging data sets.

The target-speaker voice activity detection (TS-VAD) sys-
tem was proposed recently [17], and demonstrated promising

results in the CHiME-6 challenge [18]. The model was inspired
from advances in target speech extraction methods (such as
SpeakerBeam [19], VoiceFilter [20], and Personal-VAD [21]),
which utilize the target speakers’ enrollment information to es-
timate time-frequency masks that indicate their voice activity
in the recording. Inspired from supervised diarization meth-
ods like EEND, the network generates multi-speaker outputs
containing frame-wise posteriors by leveraging the conditional
dependence of speakers in a recording. TS-VAD achieved the
best diarization performance on CHiME-6 (which contains 34%
overlap duration in the evaluation set), improving the baseline
agglomerative hierarchical clustering (AHC) system by over
30% absolute diarization error rate (DER).

Nevertheless, TS-VAD is limited in that the model assumes
a fixed number of speakers, which must be known a priori. This
is because the neural network is trained with a fixed number of
output nodes, and each of these nodes corresponds to a different
speaker’s activity during inference. This assumption hinders its
application on recordings with varying or unknown numbers of
speakers, which commonly happen in natural meetings. Fur-
thermore, the performance of TS-VAD largely depends on the
initial estimate of the speaker i-vectors — a poor initialization
may lead to substantially worse performance and more itera-
tions for convergence.

To address these limitations, in this work, we propose to
extend TS-VAD for processing long-form recordings with un-
known number of speakers. Our approach relies on using a sep-
arate diarization model (typically the same system used for the
initial i-vector estimates) to predict the number of speakers in
the recording, and consequently manipulates the fixed TS-VAD
network outputs to correspond to these speakers. We also inves-
tigate the effectiveness of different initialization diarization sys-
tems — such as clustering-based or RPNs — for obtaining the
initial estimate of speaker i-vectors. Since these systems usually
contain complementary strengths, we then propose a weighted
mean strategy to combine their frame-level decision to get an
optimal initialization for the TS-VAD model. Through experi-
ments conducted on LibriCSS dataset [22] and its complemen-
tary 2 speaker and 5 speaker sets, we show that our proposed
TS-VAD extension improves the DER by up to 50% relative,
compared with a strong clustering-based baseline system. This
improvement is consistent across recordings containing differ-
ent numbers of speakers, even when using the same model for
inference, which demonstrates the robustness of our approach.
Furthermore, our fusion-based initialization technique provides
3.9% relative improvement over the single best initialization.

We also report the effect of our TS-VAD when integrated
in a meeting transcription system [23], in terms of concatenated
minimum-permutation word error rate (cpWER) [18] on whole
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Figure 1: TS-VAD 2-stage decoding pipeline.

recordings. We find that using segments obtained from our best
TS-VAD output is comparable with using oracle segments for
ASR.

2. TS-VAD for unknown number of
speakers

As shown in Fig. 1, the general TS-VAD decoding pipeline con-
sists of initialization using an external diarization systems, fol-
lowed by several iterations of TS-VAD inference, and finally
post-processing to convert the network outputs to a sequence of
segments (often contained in NIST-style RTTM files). In this
paper, we conduct investigations pertaining to several aspects
of this decoding pipeline.

Our key contribution is enabling the TS-VAD model to han-
dle an unknown number of speakers during inference — in par-
ticular, we introduce an inference strategy to deal with a lower
number of speakers than was seen during training.

2.1. Dataset

The original TS-VAD model was developed for the CHiME-6
challenge, where each recording consisted of exactly 4 speak-
ers, and using this information was permissible for the par-
ticipants. Since real-life scenarios may not always adhere to
such restrictions, we used meeting-style recordings with vary-
ing numbers of speakers for our evaluation. Our evaluation data
comprises 3 variants of the LibriCSS dataset [22], consisting of
2, 5, and 8 speakers, respectively. The dataset contains multi-
channel audio recordings of “simulated conversations,” gener-
ated by mixing test utterances from Librispeech [24]. There
are 10 sessions, where each session is approximately one hour
long and made up of six 10-minute-long “mini sessions” that
have different overlap ratios (ranging from 0% to 40%). Here,
overlap ratio refers to the the fraction of speaking time that con-
tains overlapping speech. The audios were recorded in a regular
meeting room using a seven-channel circular microphone array.
We selected the first channel of the array for our experiments.

Since LibriCSS does not contain training data, we gener-
ated meeting-style audio simulations using training set utter-
ances from Librispeech for training the TS-VAD model. Noise
and reverberation were added artificially, and the mixture was
created with overlap ratio ranging from 0 to 40%, similar to the
LibriCSS evaluation data. The entire training set comprised ap-
proximately 5000 meetings, amounting to 1000 hours of train-
ing data.

2.2. The TS-VAD model

The TS-VAD model takes conventional speech features (e.g.
log Mel filter-banks) as input, along with i-vectors correspond-
ing to the speakers, and predicts per-frame speech activities for
all the speakers simultaneously. Formally, given a set of acous-
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iv iv···iv1 iv2 ··· iv iv···iv1 iv2 ···

Discarding Selecting speakers
from train sets 
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i-vectors in a session

i-vectors of TS-VAD input 

Figure 2: Strategy for handling unknown number of speak-
ers. If the estimated number of speakers N̂ exceeds the number
of training speakers N , we discard the least frequent N̂ − N
speakers (left branch). If it is less than N , we pad the input with
N − N̂ i-vectors from the training set (right branch).

tic observations x = (x1, . . . ,xT ), xt ∈ R
D , and speaker

i-vectors g = (g1, . . . , gN ), gn ∈ R
L, corresponding to N

speakers, the model predicts

ŷ = arg max
y∈[0,1]T×N

P (y|x,g; θ), (1)

where yn
t denotes the probability that speaker n is active

in frame t of the recording. The probability distribution
P (y|x,g; θ) is modeled using a neural network with parame-
ters θ, and θ is learned on a training set.

The network architecture consists of 4 convolutional lay-
ers which extract acoustic features from raw filter-banks, x. A
speaker detection (SD) component comprising 2-layer bidirec-
tional LSTM with projection (BLSTMP) splices these acous-
tic features along with the i-vectors g for all the N speakers,
and produces N spliced outputs. These are passed to a 1-
layer BLSTMP, which finally produces N 2-class outputs cor-
responding to the speech and silence probabilities for each of
the N speakers, namely y.

For training, the number of output nodes N is chosen as the
maximum number of speakers in any recording in the training
set, which is 8 for our case. The i-vector extractor was trained
on Librispeech data with augmented with 3-fold speed pertur-
bation. Since we used simulated training mixtures, we obtained
training targets corresponding to the current speaker directly
from the forced alignments of the underlying Librispeech ut-
terance.

2.3. Method for handling unknown number of speakers

With the training strategy described above, we obtain a TS-VAD
model with a fixed number of output nodes — which is 8, in our
case. At inference time, however, the recording may contain a
higher or lower number of speakers. This presents two chal-
lenges. First, we need to estimate the number of speakers, say

N̂ , present in the recording. Second, we need to devise a way
to use the N output nodes to estimate the frame-level activities

of N̂ speakers.
Our solution to the first problem is straightforward: we use

an existing diarization system to estimate the number of speak-
ers in the recording. Since TS-VAD already requires i-vector
estimates to be initialized from another diarization system, this
means that this solution does not incur any computational over-

head. If this estimate N̂ is equal to the number of output nodes
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N , then no further effort is required and the trained model can
be directly applied to the recording. Otherwise, there are two

possible cases, depending on whether N̂ is larger or smaller
than N . We describe our solutions to both cases below.

Case 1: If N̂ is larger than N , we select N out of the esti-
mated speakers who have the longest non-overlapping speaking
duration in the initial diarization output, and discard the other
speakers. This situation rarely occurs because we chose a larger
N for the hole datasets. Even if this happens, the performance
loss can be minimized by discarding the short speaker speech.

Case 2: If the estimated number of speakers N̂ is smaller than

the number of output nodes N , we assign N̂ of the N output

nodes to these “test” speakers, and assign the remaining N− N̂
nodes to dummy speakers selected from the training set ran-
domly. These dummy training speakers are abandoned at the
time of generating the final diarization output.

The entire procedure is shown in Fig. 2.

3. Improved I-Vectors Estimation
In [17], the authors found that the accuracy and iterations
required for convergence of the TS-VAD model depended
strongly on the diarization system used for initialization. For
our second contribution in this paper, we investigated differ-
ent strategies for initializing the i-vectors used during inference,
which we describe in this section.

3.1. Diarization models for initialization

We can categorize diarization methods based on whether or
not they can assign overlapping speaker segments. Clustering-
based diarization [3, 25, 26] is inherently single-speaker, while
models such as region proposal networks (RPN) [16] naturally
handle overlapping speech. To examine the effect of these dif-
ferent systems for i-vector initialization, we selected the follow-
ing models.

1. Spectral clustering (SC) [27]: This method consists of a
speech activity detection component (SAD) followed by clus-
tering of small subsegment embeddings. We used a similar
SAD as that described in [18], consisting of a TDNN-Stats
based classifier with Viterbi decoding for inference. The speech
segments were divided into subsegments with a window size
of 1.5s and a stride of 0.75s, and 128-dimensional embeddings
were extracted using an x-vector extractor [7] trained on Vox-
Celeb data [28]. The subsegment embeddings were scored pair-
wise using cosine scoring, and spectral clustering was used to
obtain speaker clusters. For estimating the number of speakers,
we used an auto-tuning criterion based on p-binarization and
normalized maximum eigengap [27].

2. VB-HMM based x-vector clustering (VBx) [26]: Simi-
lar to the SC model, we used a TDNN-based SAD followed
by subsegment-level embedding extraction using the same x-
vector extractor. For clustering, we used VBx, which consists
of a Bayesian HMM model. VB inference is used to iteratively
refine the soft probabilistic alignment of x-vectors to speakers
and re-estimate the speaker specific x-vector distributions. This
inference is able to determine the number of speakers in the
recording. The PLDA model used for VBx was trained on Lib-
rispeech utterances, and the speaker posterior matrix was initial-
ized from the output of an agglomerative hierarchical clustering
(AHC) system.

3. Region proposal networks (RPN) [16]: This method com-
bines segmentation and embedding extraction steps into a single
neural network, and jointly optimizes them using an objective
function that consists of boundary prediction and speaker classi-
fication components. The region embeddings are then clustered
(using K-means clustering) and a non-maximal suppression is
applied. We trained the RPN on simulated meeting-style record-
ings with partial overlaps generated using utterances from the
Librispeech [24] training set.

[29] gives more details about those diarization methods.

3.2. Fusion-based initialization strategy

The models mentioned in Section. 3 have different (and com-
plementary) strengths. Among clustering-based methods, SC
produces an accurate estimate of the number of speakers due
to the auto-tuning strategy, while VBx is effective at detecting
speaker change with fine granularity. RPN, on the other hand,
can detect overlapping speakers. To combine the advantages
from these different systems in order to compute more reliable
i-vectors, we propose a novel fusion method based on weighted
majority voting.

Since diarization outputs may not be in the same label
space, we first map them to a common space based on pair-
wise overlap duration between speakers, i.e., two speakers from
different diarization systems are grouped together if their over-
lap duration is longer than all other combinations 1. The same
metric can be also used for group speakers together from three
diarization systems.

W s(i) =

N∑

n=1

gn · VAD
s
n(i), s = 1, ..., S, (2)

where W s is the sth speaker’s final weights for i-vector es-
timation, N is the number of initial diarization systems, and S
is the number of speakers. gn is the weight factor of nth diariza-
tion system which satisfies

∑N
n=1 gn = 1. In our experiments,

we used uniform weights for all systems. VADn
s is an indicator

variable which denotes the existence of sth speaker at frame i
of the nth diarization system.

4. Experimental Results
4.1. Results for unknown number of speakers

Table 1 shows the diarization performance of our TS-VAD
model on recordings containing different number of speakers
(2, 5, and 8), in terms of diarization error rate (DER) and Jac-
card error rate (JER). We trained three different TS-VAD mod-
els with different number of output nodes (2, 5, 8) on simulated
mixtures containing the respective number of speakers (i.e., the
2spk TS-VAD model was trained on 2-speaker simulated mix-
tures). We observed a consistent improvement of up to 50% rel-
ative DER with 8spk TS-VAD on all conditions, compared with
the SC system that was used for initialization. Furthermore,
8spk TS-VAD achieves even better performance on LibriCSS-
2spk and LibriCSS-5spk compared with their custom models.
We also used 5spk TS-VAD model to decode LibriCSS-8spk
which means losing at least 3 speakers in the final results and
the diarization performance drops drastically.This indicates that
our heuristic approach for handling unknown number of speak-
ers during inference is effective if we can choose a suitable N
for a dataset.

1This is similar to the Hungarian method used to compute DER.
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Table 1: Diarization performance on variants of LibriCSS con-
taining 2, 5, and 8 speakers, in terms of DER and JER. TS-VAD
takes i-vectors estimated from the SC output.

Method LibriCSS-2spk LibriCSS-5spk LibriCSS-8spk

DER JER DER JER DER JER

SC 21.0 20.1 19.4 20.0 14.9 20.5
2spk TS-VAD 12.8 12.2 - - - -
5spk TS-VAD 12.7 12.1 11.9 12.5 42.8 45.6
8spk TS-VAD 12.4 11.9 11.3 12.1 7.6 11.4

Table 2: Diarization performance on 8-speaker LibriCSS eval-
uation set, in terms of % DER. 0S and 0L refer to 0% overlap
with short and long inter-utterance silences, respectively.

Method Init. Overlap ratio in % Avg.
0L 0S 10 20 30 40

VBx - 14.6 10.6 15.8 20.5 25.4 30.9 20.5
SC - 11.8 9.5 12.3 15.5 18.61 18.9 14.9
RPN - 4.5 9.1 8.3 6.7 11.6 14.2 9.5

TS-VAD oracle 2.9 4.0 5.7 5.7 8.8 7.9 6.1
TS-VAD VBx 10.3 6.8 9.3 9.0 12.6 11.6 10.0
TS-VAD SC 6.0 4.6 6.6 7.3 10.3 9.5 7.6
TS-VAD RPN 3.3 7.4 9.0 6.9 11.7 12.3 8.9

4.2. Results for different initializations

In this section, we present results for our investigation of dif-
ferent initialization strategies for TS-VAD. These experiments
were conducted using the 8-speaker LibriCSS dataset, and we
report the DERs with a break-down by overlap condition in Ta-
ble 2. Note that VBx and SC do not use any prior informa-
tion about the number of speakers, while RPN uses this ora-
cle information for K-means clustering. We extracted i-vector
with non-overlapping speech for overlapping aware initializa-
tions like RPN.

We found that TS-VAD improved over all the three initial
diarization systems, but this improvement was most prominent
for VBx and SC, which cannot handle overlapping segments.
The best DERs obtained using SC for initialization are very
close to those obtained with i-vectors estimated from oracle seg-
ments. Surprisingly, even though the RPN system performed
better than VBx and SC, the performance of the TS-VAD model
initialized from its output did not achieve the best DERs.

Next, we evaluated our fusion method described in Sec-
tion 3.2, and the corresponding results are shown in Table 3.
Since TS-VAD initialization with SC provided the best perfor-
mance for a single system, we retained this system in our fusion,
and combined it with the other two initializations, thus provid-
ing 3 different fusions. We found that there is small improve-
ment in DER of about 3.9% relative, compared with the single
best TS-VAD system. Besides, by DOVER-Lap [30] of above
3 systems, we got a slight improvement which was better than
simply DOVER-Lap [30] of the 3 individual TS-VAD systems
from Table 2.

4.3. Impact on ASR performance

We also evaluated the impact of the TS-VAD diarization sys-
tem on downstream ASR performance. For this, we built a hy-
brid HMM-DNN system following the Kaldi [31] Librispeech
recipe. In Table 4, we present the ASR performance in terms
of concatenated minimum-permutation word error rates (cpW-

Table 3: Diarization performance on LibriCSS evaluation set
with different fusion strategies.

Method Init. DER JER

TS-VAD SC 7.6 11.4

(1) TS-VAD SC + VBx 7.5 11.1
(2) TS-VAD SC + RPN 7.4 11.0
(3) TS-VAD SC + VBx + RPN 7.3 11.0

DOVER-Lap of TS-VAD Init. with (VBx, SC, RPN) - 7.3 11.2
DOVER-Lap of (1,2,3) - 7.1 10.8

Table 4: ASR performance on mixed LibriCSS evaluation set
with different diarization segments, in terms of % WER.

Segments LibriCSS-2spk LibriCSS-5spk LibriCSS-8spk

Oracle 26.3 25.7 23.1
SC 35.7 34.5 32.2

8spk TS-VAD 29.4 27.9 25.8

ERs) [18]. The cpWER is computed by concatenating all the
utterances of a speaker in the reference and hypothesis, scor-
ing all speaker pairs, and then finding the speaker permutation
that minimizes the total WER. We compared the cpWERs ob-
tained using 3 different segmentation methods: oracle, SC, and
8-spk TS-VAD, where the 8-spk TS-VAD model was initial-
ized using the SC output. We found that the going from SC
to TS-VAD resulted in a significant cpWER improvement from
32.2% to 25.8% for LibriCSS-8spk set. This was very close to
the cpWER obtained using oracle segments, which was 23.1%.
Similar improvements were observed using the 8spk TS-VAD
on both LibriCSS-2spk and LibriCSS-5spk compared with the
SC system. However, the cpWER on such conditions was still
high, indicating that better ASR models, or an external speech
separation module may be required to satisfactorily transcribe
such recordings.

5. Conclusion
We adapted TS-VAD to the diarization of multi-speaker conver-
sations, which provided state-of-the-art results in meeting sce-
narios where the number of speakers is unknown. Through ex-
periments on LibriCSS variants comprising 2, 5, and 8 speakers,
we showed the efficacy of our proposed solution. Notably, an
8-spk TS-VAD model outperformed customized models built
for smaller number of speakers. We also proposed a simple
strategy to estimate the input i-vectors for TS-VAD using multi-
initial diarization results, which gave us further improvements.
Our investigations on downstream ASR performance suggested
that while we can get close to oracle segmentation performance
using TS-VAD, a separation module may indeed be necessary,
since overlapping speech is a bottleneck for the ASR system.
In future work, we will investigate diarization based separation
methods for ASR to avoid this issue.
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