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ABSTRACT

Recently, we proposed a novel progressive learning (PL) framework
for deep neural network (DNN) based speech enhancement to im-
prove the performance in low signal-to-noise ratio (SNR) environ-
ments. In this study, several new contributions are made to this
framework. First, the advanced long short-term memory (LSTM)
architecture is adopted to achieve better results, namely LSTM-PL,
where each LSTM layer is guided to explicitly learn an intermedi-
ate target with a specific SNR gain. However, we observe that the
performance of LSTM-PL architecture is easily degraded by increas-
ing the number of intermediate targets due to the possible informa-
tion loss when involving more target layers. Accordingly, we pro-
pose densely connected progressive learning in which the input and
the estimations of intermediate targets are spliced together to learn
the next target. This new structure can fully utilize the rich set of
information from the multiple learning targets and alleviate the in-
formation loss problem. Experimental results demonstrate that the
dense structure with deeper LSTM layers can yield significant gains
of speech intelligibility measure for all noise types and levels. More-
over, the post-processing with more targets tends to achieve better
performance.

Index Terms— Progressive learning, long short-term memory,
dense structure, post-processing, speech enhancement

1. INTRODUCTION

Speech enhancement is an important front-end of speech processing
systems aimed at improving speech quality and intelligibility in the
presence of an interfering noise signal. Background noise can af-
fect the performance of speech communication, hearing aids, speech
recognition and speaker recognition [1]. Numerous algorithms have
been proposed over the past several decades to solve this problem.
The conventional algorithms include spectral subtraction [2], Wiener
filtering [3], minimum mean squared error (MMSE) estimation [4]
and optimally-modified log-spectral amplitude (OM-LSA) speech
estimator [5]. Spectral subtraction is one of the first algorithms pro-
posed for noise reduction. However, the resulting enhanced speech
often suffers from an annoying artifact called musical noise. OM-
LSA utilizes a minima controlled recursive averaging (MCRA) noise
estimation [6] approach to avoid the musical noise. One limitation
of the conventional speech enhancement algorithms is that they can’t
improve speech intelligibility effectively [7]. In addition to focus on
amplitude, some phase-aware speech enhancement methods were in-
vestigated in [8, 9]. For learning based methods, nonnegative matrix
factorization (NMF) was investigated in the form of supervised and

unsupervised for speech enhancement [10, 11]. The basic idea is to
decompose the noisy speech data into bases and weights matrices for
the speech and noise, respectively.

Speech enhancement in recent years, with the introduction of
deep learning, has made great progress. The supervised deep learn-
ing approaches have been investigated from the aspects of learn-
ing target, neural network structure, input feature, etc. Xu et, al.
[12, 13] proposed a deep neural network (DNN) based regression
framework to predict the clean log-power spectra (LPS) features [14]
from noisy LPS features. In [15], masking techniques were used
to make classification on time-frequency (T-F) units for speech en-
hancement. In addition to the direct prediction of mask, Huang et, al.
[16] investigated joint optimization of masking functions and neural
networks with an extra masking layer. More complex neural net-
work structures, such as long short-term memory (LSTM) network
[17] and convolutional neural network (CNN) were investigated in
[18, 19, 20]. For the input of neural network, Fu et, al. [21] has
investigated the time domain waveform by using fully CNN.

However, the challenges of speech enhancement in low signal-
to-noise ratio (SNR) still remain. Focus on this challenge, a joint
framework combining speech enhancement with voice activity de-
tection (VAD) was proposed in [22] to increase the speech intelli-
gibility in low SNR environments. Meanwhile, multi-task learning
(MTL) has also been adopted in speech enhancement. In [23], a
multi-objective framework was proposed to improve the generaliza-
tion capability of regression DNN. Based on MTL method, Jiang
et, al. [24] adopted DNN-based speech denoising with ideal bi-
nary mask (IBM) as the targets at different time-frequency scales
simultaneously and collaboratively. Another notable machine learn-
ing strategy is the curriculum learning [25] originated from cognitive
science. Inspired by curriculum learning, we proposed a novel pro-
gressive learning (PL) framework [26] to improve the performance
of DNN-based speech enhancement in low SNR environments.

In this paper, we continue to study the progressive learning with
advanced LSTM network (LSTM-PL), which has been verified more
suitable for sequential speech processing tasks [27, 28, 18, 19]. Ac-
cording to the idea of progressive learning, each hidden layer of the
LSTM network is guided to learn an intermediate target with a spe-
cific SNR gain explicitly. The subproblem solving in each stage can
boost the subsequent learning of the next stage. However, we ob-
serve that the performance of LSTM-PL architecture is easily de-
graded by increasing the number of intermediate targets due to the
possible information loss when involving more target layers. In or-
der to alleviate this problem and make full use of the rich set of infor-
mation from the multiple learning targets, we propose densely con-
nected progressive learning in which the input and the estimations
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Fig. 1. Progressive learning for speech enhancement [26].

of intermediate target are spliced together to learn next target. Ex-
perimental results demonstrate that densely connected progressive
learning can make the whole network deeper and yield better speech
intelligibility. Moreover, when combined with the multi-target fu-
sion, the proposed approach can be further improved.

2. REVIEW OF DNN-BASED PROGRESSIVE LEARNING

Curriculum learning is related to MTL where the initial tasks are
boosted to guide the learner for the better achievement on the final
task. However the motivation of MTL is to improve the generaliza-
tion of the target task by leveraging on other tasks. Inspired by cur-
riculum learning, SNR-based progressive learning was proposed in
[26] for DNN-based speech enhancement, as shown in Fig. 1. The
basic idea is to start small, learn easier aspects of the task or eas-
ier sub-tasks, and then gradually increase the difficulty level. Spe-
cific to DNN-based speech enhancement, the direct mapping process
from noisy speech to clean speech in the conventional DNN training
is decomposed into multiple stages with an SNR gain achieved in
each stage. The SNR gains in each stage can boost the subsequent
learning of the next stage. For example, if the input SNR of noisy
speech is 0dB, the learning target of baseline system is clean speech.
And for progressive learning, two new intermediate learning targets
(10dB and 20dB speech) will be inserted into the neural network
training.

3. LSTM-BASED PROGRESSIVE LEARNING

3.1. LSTM Architecture

In the training of DNN, the important temporal information is only
considered via frame expansion. To model time sequences, recurrent
neural networks (RNN) seem to have a congenital advantage by us-
ing recursive structures between the previous frames and the current
frame to capture the long-term contextual information. However, the
conventional RNN can not hold information for a long period and the
optimization of RNN parameters via the back propagation through
time (BPTT) faces the problem of the vanishing and exploding gra-
dients [29]. The problems can be well alleviated by the invention
of LSTM [17] which introduces the concepts of memory cell and a
series of gates to dynamically control the information flow. Fig. 2
illustrates a single LSTM memory cell. The composite LSTM cell is
implemented as follows:

it = σ(Wxixt + Whiht−1 + bi) (1)

ft = σ(Wxfxt + Whfht−1 + bf ) (2)

ct = ft ⊗ ct−1 + it ⊗ tanh(Wxcxt + Whcht−1 + bc) (3)

it

ft

ot

cttanh tanh
xt

ht−1

xt ht−1

xt ht−1 xt ht−1

ht
ct−1

Fig. 2. An illustration of the LSTM cell.

ot = σ(Wxoxt + Whoht−1 + bo) (4)

ht = ot ⊗ tanh(ct) (5)

where t is the frame index, σ is the logistic sigmoid function, and
i, f , o and c are respectively the input gate, forget gate, output gate
and cell activation vectors, all of which are the same size as the hid-
den vector h. ⊗ denotes element-wise multiplication. W and b
represent the weight matrices and bias vectors from the cell to gate,
respectively.

3.2. Densely Connected Progressive Learning

In [26], progressive learning has been applied successfully to DNN
network. In this study, the LSTM-based densely connected progres-
sive learning is illustrated in Fig. 3 (3 learning targets are defined in
this figure). All the target layers are designed to learn intermediate
speech with higher SNRs or clean speech. For the input and multi-
ple targets, LSTM layers are used to link between each other. This
stacking style network can learn multiple targets progressively and
efficiently. In order to make full use of the rich set of information
from the multiple learning targets, we update the progressive learn-
ing in [26] to densely connected progressive learning in which the
input and the estimations of intermediate target are spliced together
to learn next target. Then, a weighted MMSE criterion in terms of
MTL is designed to optimize all network parameters randomly ini-
tialized with K target layers as follows:

E =

K∑
k=1

αkEk (6)

Ek =
1

N

N∑
n=1

‖Fk(x̂
0
n, x̂

1
n, ..., x̂

k−1
n ,Λk)− xk

n‖22 (7)

where x̂k
n and xk

n are the nth D-dimensional vectors of estimated
and reference target LPS feature vectors for kth target layer, respec-
tively (k > 0), with N representing the mini-batch size. x̂0

n de-
notes the nth D-dimensional vector of input noisy LPS features.
Fk(x̂

0
n, x̂

1
n, ..., x̂

k−1
n ,Λk) is the neural network function for kth tar-

get with the dense structure using the previously learned intermedi-
ate targets from x̂0

n to x̂k−1
n , and Λk represents the parameter set of

the weight matrices and bias vectors before kth target layer, which
are optimized in the manner of BPTT with gradient descent.
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Fig. 3. Densely connected progressive learning for LSTM-based
speech enhancement (using three targets as an example).

3.3. Post-processing

One advantage of progressive learning is that there are more than
one estimated target from the network. The estimated LPS features
of different targets can provide rich information for post-processing.
In the testing stage, the estimations of multiple targets are averaged
to further improve the overall performance as implemented in [26].

4. EXPERIMENTS AND RESULT ANALYSIS

115 noise types used in [26] are chosen as our noise database. Clean
speech is derived from the WSJ0 corpus [30]. 7138 utterances (about
12 hours of reading style speech) from 83 speakers, denoted as SI-
84 training set, are corrupted with the above mentioned 115 noise
types at three SNR levels (-5dB, 0dB and 5dB) to build a 36-hour
training set, consisting of pairs of clean and noisy utterances. The
330 utterances from 12 other speakers, namely the Nov92 WSJ eval-
uation set, are used to construct the test set for each combination
of noise types and SNR levels (-5dB, 0dB, 5dB, 10dB). Six unseen
noises from the NOISEX-92 corpus [31], namely babble, factory1,
factory2, destroyer engine, m109 and white are adopted for test-
ing. Short-time objective intelligibility (STOI) [32] and source-to-
distortion ratio (SDR) [33] are used to assess the intelligibility and
SNR of the enhanced speech.

As for the front-end, speech waveform is sampled at 16 kHz,
and the corresponding frame length is set to 512 samples (or 32
msec) with a frame shift of 256 samples. A short-time Fourier anal-
ysis is used to compute the DFT of each overlapping windowed
frame. Then the 257-dimensional LPS features normalized by global
mean and variance are used to train neural networks. 1024 cells are
used for each LSTM layer. The Microsoft Computational Network
Toolkit (CNTK) [34] is used for training. For progressive learning
systems, one LSTM layer is used to connect the input layer and tar-
get layers. According to different SNR gaps, the number of learning
targets in progressive learning can be set to 2, 3, 5 and 7. The de-
tailed target SNR gain configurations are shown in Table 1. The

Table 1. Target SNR gain configurations for the intermediate targets
in progressive learning systems.

System SNR Gains for the intermediate targets
2 Targets 10dB (Target 1)
3 Targets 10dB (Target 1-2)
5 Targets 5dB (Target 1-4)
7 Targets 2.5dB (Target 1-4), 5dB (Target 5-6)
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Fig. 4. The average STOI performances of LSTM-based progres-
sive learning systems along with different learning targets across six
unseen testing noises at -5dB.

parameter αk in Eq. 6 is set as follows: αK = 1.0;αk = 0.1, (k =
1, ...,K − 1).

The motivation of progressive learning is to improve the speech
intelligibility in low SNR environments. Fig. 4 shows the STOI
performances of LSTM-based progressive learning (PL), densely
connected progressive learning (PL+Dense) and post-processed
PL+Dense (PL+Dense+PP) along with different learning targets
across six unseen testing noises at -5dB. It should be noted that,
when the number of learning targets is 1, the result actually corre-
sponds to LSTM baseline system. In Fig. 4, several observations
could be made. First, we focus on the blue line, which represents the
STOI performance of PL along with the number of learning targets
increasing. We can observe that PL achieved a significant STOI
improvement from LSTM baseline system to PL system with two
learning targets. However, more learning targets could not yield per-
formance gains and instead lead to performance degradation. This
might be explained as the information loss in deeper target layer be-
cause the dimension of each target layer (257) is much smaller than
that of each LSTM layer (1024). In reaction to the phenomenon, we
modify conventional PL to densely connected PL. The red line in
Fig. 4 shows the results of PL+Dense. Densely connected PL can
make full use of the rich set of information from the multiple learn-
ing targets, yielding performance improvements in deeper network
with more learning targets. PL+Dense obtained the best result when
5 targets are learned. 7 learning targets caused a sharp STOI degra-
dation because there are too many layers (15 layers) in this case and
the dimension of the concatenated vector of multiple targets in the
dense structure is quite high (1799 dimension), which is with the risk
of overfitting. Finally, we focus on the green line which represents
PL+Dense+PP. More learning targets produced more information

5056

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on August 16,2021 at 13:39:56 UTC from IEEE Xplore.  Restrictions apply. 



Table 2. The average STOI and SDR comparison of different sys-
tems across six unseen noises at -5dB, 0dB, 5dB and 10dB. The
corresponding model size (NM in MB) and the number of hidden
layers (NH ) are also presented.

STOI (in percent)
System NH NM -5dB 0dB 5dB 10dB
Noisy - - 64.7 76.5 86.7 93.2

LSTM Baseline
2 53.0 66.8 80.2 88.4 92.9
3 85.0 67.3 81.1 89.0 93.1
4 117.0 67.8 81.1 88.9 93.0

PL 9 105.0 69.0 82.9 90.2 93.0
PL+Dense 9 145.0 72.3 84.5 91.5 95.1

PL+Dense+PP 9 145.0 73.9 85.1 91.9 95.7
SDR

System NH NM -5dB 0dB 5dB 10dB
Noisy - - -6.26 -1.32 3.66 8.65

LSTM Baseline
2 53.0 2.01 5.76 8.59 10.66
3 85.0 2.32 6.05 8.81 10.80
4 117.0 2.31 6.00 8.71 10.67

PL 9 105.0 2.69 6.56 9.24 10.64
PL+Dense 9 145.0 3.24 7.42 10.66 13.24

PL+Dense+PP 9 145.0 3.52 7.95 11.57 14.81

available for post-processing. When the number of learning targets
is larger than 2, PP can further improve the speech intelligibility.
In the following experiments, 5 learning targets will be applied for
progressive learning.

Table 2 lists the average STOI and SDR results of different sys-
tems across six unseen noise types at -5dB, 0dB, 5dB and 10dB. The
corresponding model size and the number of hidden layers are also
presented. We first focus on LSTM Baseline systems which have
been implemented with different hidden layers. With the increase
of the number of hidden layer, the performance of LSTM Baseline
was easily saturated for both STOI and SDR. When PL was imple-
mented, better results were obtained by a deeper network with 9 hid-
den layers, e.g., STOI from 67.8 to 69.0 and SDR from 2.31 to 2.69
at -5dB, compared with LSTM Baseline with 4 hidden layers (sim-
ilar model size to PL). With the dense structure, quite significant
gains could be achieved (PL vs. PL+Dense), especially for STOI
gain at low SNR (3.3 at -5dB input) and SDR gain at high SNR
(2.6dB at 10dB input). Furthermore, PL+Dense was still quite effec-
tive to generate 1.9 STOI gain over the unprocessed system (Noisy)
by considering that the other systems (LSTM Baseline and PL) failed
to improve STOI at 10dB case. Finally, the post-processing can gen-
erate additionally remarkable improvements for all SNR levels.

Fig. 5 shows spectrograms of an utterance corrupted by fac-
tory noise at -5dB SNR and enhanced by LSTM Baseline, PL and
PL+Dense. The LSTM Baseline can achieve a good noise reduction
but with severe speech distortion and speech loss. Meanwhile, PL
could generate the enhanced speech with less speech distortion, for
example, as shown in Fig. 5 (d), the yellow dotted box area. The
more severe speech loss problem has been alleviated by PL+Dense
compared with PL and LSTM Baseline, as shown in Fig. 5 (e), the
yellow dotted box area, demonstrating the effectiveness of dense
structure.

5. CONCLUSION

In this study, we explore densely connected progressive learning for
LSTM-based speech enhancement to improve the speech intelligibil-
ity. The direct mapping from noisy to clean speech is decomposed
into multiple stages with SNR increasing progressively by guiding

(a) Noisy

(b) Clean 

(c) Baseline with 4 LSTM layers 

(d) PL 

(e) PL+Dense

Fig. 5. Spectrograms of an utterance corrupted by factory noise at
-5dB SNR: (a) Noisy speech, (b) Clean speech, (c) LSTM Baseline
with 4 hidden layers, (d) PL, (e) PL+Dense.

hidden layers in the LSTM network to learn targets explicitly. In or-
der to make full use of the rich set of information from the multiple
learning targets, we propose densely connected progressive learn-
ing in which the input and the estimations of intermediate target are
spliced together to learn next target. Experimental results demon-
strate that densely connected progressive learning can learn more
targets and yield significantly better speech intelligibility for both
low and high SNRs. Moreover, the proposed enhancement approach
also demonstrate it effectiveness as a preprocessor in the speaker di-
arization task under adverse acoustic conditions [35]. In future, the
detailed analysis of the learning process in densely connected pro-
gressive learning and more testing of the generalization capability
will be explored.
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