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Abstract
Recent encoder-decoder approaches typically em-
ploy string decoders to convert images into se-
rialized strings for image-to-markup. However,
for tree-structured representational markup, string
representations can hardly cope with the struc-
tural complexity. In this work, we first show
via a set of toy problems that string decoders
struggle to decode tree structures, especially as
structural complexity increases, we then propose
a tree-structured decoder that specifically aims
at generating a tree-structured markup. Our de-
coders works sequentially, where at each step a
child node and its parent node are simultaneously
generated to form a sub-tree. This sub-tree is con-
sequently used to construct the final tree structure
in a recurrent manner. Key to the success of our
tree decoder is twofold, (i) it strictly respects the
parent-child relationship of trees, and (ii) it ex-
plicitly outputs trees as oppose to a linear string.
Evaluated on both math formula recognition and
chemical formula recognition, the proposed tree
decoder is shown to greatly outperform strong
string decoder baselines.

1. Introduction
Attention-based encoder-decoder models have been proven
to be effective in sequence-to-sequence learning tasks such
as speech recognition (Bahdanau et al., 2016), machine
translation (Bahdanau et al., 2015), and image-to-sequence
learning tasks like scene text recognition (Cheng et al.,
2017), image captioning (Xu et al., 2015). These encoder-
decoder models typically employ an RNN-based string de-
coder to generate the target sequence using features ex-
tracted by an upstream encoder. This choice is intuitive
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Figure 1. Full arrow indicates the decoding way of tree decoder
and dotted arrow indicates the decoding way of string decoder for
generating node “E”. Left tree has string markup as “A ( B ( C D )
E )” and sub-trees (child node - parent node) as “A-Root B-A C-B
D-B E-A”, right tree has string markup as “A ( B ( C D ( F G ) ) E
)” and sub-trees as “A-Root B-A C-B D-B F-D G-D E-A”.

since target sequences in these tasks exhibit no internal
structure – they are essentially one-dimensional linear text.

Nonetheless, many research problems naturally dictate the
generation of both the text itself and the inherent structural
relationships directly from images (Zanibbi et al., 2002;
Harada et al., 2011; Xu et al., 2017; Sharma et al., 2018).
These problems are typically referred to as image-to-markup
generation (Deng et al., 2017): given an image x, the task
is to generate a set of markupsM = {T ,S}, where T is
the text description and S is the associated structure. The
underlying structural complexity of image markups is appli-
cation dependent, yet trees have been commonly identified
as a flexible representation – trees with branching factor of
1 is sufficient to tackle one-dimensional text sequence learn-
ing (Shi et al., 2018), whereas trees with larger branching
factor and depth are typically required for problems such
as math formula and chemical formula recognition (Staker
et al., 2019; Wu et al., 2020).

Although string decoders can be used to tackle different
structures by generating serialized sequences of target trees,
by default they do not respect the structural integrity of trees.
This is because string decoders typically work by serializing
the structure by traversing in a depth-first order, yet with no
specific design considerations to ensure the inherent parent-
child relationships during traversal. This is best explained in
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Figure 1. Assuming the left tree is a training sample, and the
right being a testing sample. String decoders would learn to
place node “E” after “D”, despite “A” being its parent node.
It follows that when testing on a complex tree on the right,
string decoder will tend to generate node “E” right after it
generates node “D”, hence violating the structural integrity.

Furthermore, such a violation of structural integrity would
have a direct impact on the generalization ability of string
decoders, especially in terms of generalizing towards more
complex structures. This is intuitive since as structural com-
plexity arises, nodes that would otherwise follow a parent-
child relationship, would be set further apart by the string
encoder. This effect can also be observed in Figure 1, where
newly introduced nodes in the right tree (“F” and “G”) are
inserted in front of “E” for the string representation. In fact,
as we later discover via a set toy problems (Section 2), string
decoders would completely collapse when decoding struc-
tures whose complexity was unobserved during training.

In this paper, we propose a tree-structured decoder that
treats trees as trees: (i) it is specifically designed to respect
the parent-child relationship of trees during decoding, and
(ii) it explicitly produces a tree as final output. More specifi-
cally, in order to enable recurrent decoding, the target tree
is decomposed into a sequence of sub-trees, where each
sub-tree is composed of a parent node and a child node.
Our tree decoder generates sub-trees in a sequential man-
ner. At each time step, it first employs an attention model
to locate the parent node, then the child node is generated
based on the recognition result of its parent. Furthermore,
we show this tree decoder can be jointly optimized with
an encoder in an end-to-end fashion. Note that, the com-
monplace one-dimensional markup language can be seen as
a special case for tree decoder, since the current parent is
always a previous child of a super parent.

The contribution of this paper is threefold: (i) We propose
a novel tree-structured decoder that respects tree structures
and directly outputs trees, and can also be jointly optimized
within an attention based encoder-decoder framework. (ii)
We design a set of toy problems to spell out the reasons
behind the failure of string decoders especially in terms of its
generalization ability towards more complex structures, and
in turn demonstrate why respecting tree structures during
decoding can lead to superior generalization ability. (iii) We
demonstrate the effectiveness of the proposed tree decoder
on two practical problems of math formula recognition and
chemical formula recognition, where structural complexity
of markups is significant.

2. Motivation
In this section, we design a set of image-to-markup prob-
lems to spell out the differences between string and tree
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Figure 2. Illustration of math formulas with increased structural
complexity.
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Figure 3. Expression recognition rate (ExpRate in %) of string
decoders and tree decoders along test sets with different struc-
tural complexities (0, 1, 2, . . . , 5). “String-1” and “Tree-1” are
trained on complexity {0, 1}, “String-2” and “Tree-2” are trained
on complexity {0, 1, 2}.

decoders, especially in terms of their generalization ability.
This first resulted in a key yet somewhat surprising discov-
ery – string decoders would completely collapse when tested
on complex tree structures that were unseen during training.
This discovery largely motivated the introduction of our tree
decoder which generalizes significantly better as structural
complexity increases.

We define the structural complexity of a tree as the maxi-
mum number of non-terminal nodes containing more than
one child node among all searching paths of the tree. Ren-
dered math formulas are chosen to be the basis of our toy
problems, for (i) difficulty of recognition is mostly with
structural complexity other than symbol recognition, and
(ii) the flexibility in generating structures of arbitrary com-
plexities. How to parse a tree is problem dependent, and we
follow the convention in the literature. As for math formulas,
we use Label Graph (LG) (Zanibbi et al., 2013) to construct
a tree. Figure 2 illustrates input images and target math
trees of different structural complexities. For example, the
one-dimensional formula like “x+ 1 = y” has a branching
factor of 1, which means it has no structural complexity as
per our definition. Yet as more math structures like “super-
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script”, “fraction” and “sum” are included, their structural
complexity increases.

More specifically, we design six test sets at increasing struc-
tural complexity levels (0, 1, 2, . . . , 5). Each test set has
2,000 samples. We then introduce two train sets cover-
ing different range of complexities, where one train set
includes complexity {0, 1} (“String-1”, “Tree-1”), and an-
other train set includes complexity {0, 1, 2} (“String-2”,
“Tree-2”). This is so that we can observe performance
change on unseen complexities. Each train set contains
40, 000 samples per complexity level, so the training data
is sufficiently large. The state-of-the-art DenseWAP string
decoder model (Zhang et al., 2018) is used for comparison.

Results are shown in Figure 3. In general, we can conclude
that string decoder has no generalization ability on unseen
structural complexity, yet a situation tree decoder can handle
very well. For example, when the train set only includes
math formulas of complexity {0, 1}, string decoder drops
to 0% recognition rate on testing math formulas of com-
plexity 2 or larger. Tree decoder on the other hand shows
much better generalization ability on the math formulas of
these unseen structural complexity. The same trend can be
observed when the train set only includes math formulas
of complexity {0, 1, 2}, which further confirms our conclu-
sion.

3. Related Work
3.1. Neural networks that deal with trees

There are some studies in the line of using neural network
models to encode/decode a tree. Among them, research
on encoding a tree has been well studied (Tai et al., 2015;
Zhu et al., 2015; Socher et al., 2011; Eriguchi et al., 2016),
which usually employs the recursive neural network to be a
natural tree-structured encoder.

As for research on decoding a tree, some models (Rabi-
novich et al., 2017; Parisotto et al., 2017; Yin & Neubig,
2017) rely on specific grammar knowledge (e.g., grammar
of a specific language for code generation) to decode the
tree structure, which is hard to train and more importantly
non-trivial to be adapted to other tasks. Some studies (Dong
& Lapata, 2016; Vinyals et al., 2015; Aharoni & Goldberg,
2017) choose to employ string decoders to generate strings
with structure tokens to implement a general tree decoder,
but as introduced before, such string decoders are not natural
for dealing with trees. General tree decoders for decoding
tree structures has also been investigated in several studies
(Chen et al., 2018; Chakraborty et al., 2018; Harer et al.,
2019; Jaakkola, 2017; Dyer et al., 2016), these studies as
well as our work both utilize the structural knowledge (e.g.,
relation between parent and child node) to enhance RNN
based decoder. In summary, key differences between our
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Figure 4. A math formula example with its related tree structure
and serialized LaTeX string. A chemical formula example with its
related tree structure and serialized SMILES string.

work and those proposed general tree decoders: (i) We
do not need to pre-process the tree into a specific format
(e.g., convert it to binary tree). (ii) Our method can output
the parent node and child node of each sub-tree explicitly,
other than implicitly. (iii) Our method can deal with edge
attributes.

3.2. Image-to-Markup

Among image-to-markup problems, there commonly ex-
ists special markup languages which are naturally repre-
sented as tree structures other than flat strings, like math
formula (Zanibbi et al., 2002) and chemical formula (Staker
et al., 2019). To tackle these tree-structured languages,
prior research (Zhang et al., 2019; Deng et al., 2017) com-
monly adapted string decoders with the hope that serialized
strings can be used as an equivalent representation for tree-
structured markups (e.g., LaTeX (Lamport, 1994) markup
and SMILES (Weininger, 1988) markup in Figure 4). How-
ever, as already seen in the previous toy example (Section 2),
and later shown in experiments (Section 5.3), such a string
presentation can not cope well in the presence of complex
structures. A tree-specific decoder like the one proposed is
needed to fully capture the inherent structure properties.

4. Methodology
4.1. Tree-structured Image-to-Markup

Common approaches for tree-structured image-to-markup
employ a string decoder. As shown in Figure 1, the markup
(e.g., math formula) is serialized by traversing the tree fol-
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lowing a depth-first order, and the structural layout infor-
mation is reflected by the special tokens like “()”. The
target of string decoder consists of a sequence of tokens
y1, y2, . . . , yT ′ , each y is a token in the serialized string,
and T ′ is the length of the sequence.

The proposed tree decoder works in a different way. Its ob-
jective is to produce a sequence of sub-trees which directly
form the ground-truth tree structure. The target consists of
a sequence of sub-trees as (oc

1, o
p
1), (oc

2, o
p
2), . . . , (oc

T , o
p
T ),

each sub-tree includes a child node oc and a parent node op,
T is the length of sequence. We have T ≤ T ′ as there are
no special tokens such as “()”. The order of the sub-tree
sequence is also determined by traversing the tree following
a depth-first order. We can tell that the objective of string
decoder and tree decoder is equivalent:

max
y

∏
t′

p(yt′)⇐⇒ max
oc,op

∏
t

p(oc
t, o

p
t) (1)

At each step the tree decoder first outputs the parent node
then outputs its child node:∏

t

p(oc
t, o

p
t) =

∏
t

p(oc
t|o

p
t)p(o

p
t) (2)

For training, the ground-truth parent is fed for predicting its
child node (similar to teacher forcing in seq2seq models).
For testing, the tree decoder first generates N most likely
parent nodes, then the child nodes are predicted given these
nodes:∏

t

p(oc
t|o

p
t)p(o

p
t) ≈

∑
i∈TopN(p(op

t))

∏
t

p(oc
t|o

pi
t )p(o

pi
t ) (3)

4.2. CNN Encoder

The CNN encoder used in this work is configured as densely
connected layers (DenseNet) (Huang et al., 2017). We use
the output of the last convolution layer as the feature, rep-
resented by A. It can be seen as a grid, and each element
in the grid is a feature vector ai corresponding to a local
region of the image: A = {ai}.

4.3. Tree Decoder

The tree decoder is an RNN that produces a sequence of
sub-tree structures (oc

1, o
p
1), (oc

2, o
p
2), . . . , (oc

T , o
p
T ). Here we

choose Gated Recurrent Units (GRU) (Chung et al., 2014),
but other RNN alternatives should also work.

To guarantee that the predicted sub-tree sequence can re-
construct the full tree, we enforce two rules: (i) every child
node must have a parent node, therefore there would not be
any isolated nodes; (ii) the parent node must be one of the
existing nodes.
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Figure 5. Illustration of tree decoder, including parent decoder part,
child decoder part, memory attention part and an optional relation
prediction part. “Pred” is short for “prediction”.

4.3.1. PARENT DECODER

For the parent node decoding, we compute the prediction of
current parent hidden state s̃p

t from the previous child node
oc
t−1 and its hidden state sc

t−1:

s̃p
t = GRU(oc

t−1, s
c
t−1) (4)

Then we employ an attention mechanism with s̃p
t as the

query and encoder features A as both the key and the value:

αp
t = f p

att(A, s̃
p
t) (5)

cp
t =

∑
i
αp
tiai (6)

where αp
t is the parent attention probabilities, cp

t is the
parent context vector, ai is the i-th element of A. We design
f p

att function as follows:

Fp = Qp ∗
∑t−1

l=1
αp

l (7)

ep
ti = νT

p tanh(Wp
atts̃

p
t + Up

attai + Ûp
Ff

p
i ) (8)

αp
ti =

exp(ep
ti)∑

k exp(ep
tk)

(9)

where αp
ti denotes the parent attention probability of i-th

element at decoding step t, ∗ denotes a convolution layer,∑t−1
l=1 α

p
l denotes the sum of past parent attention probabili-

ties, ep
ti denotes the output energy, f p

i denotes the elements
of Fp, which is used to help append the history information
into standard attention mechanism.

With the parent context vector cp
t , we compute the parent

decoder state:
sp
t = GRU(cp

t , s̃
p
t) (10)

4.3.2. CHILD DECODER

Based on parent node op
t and its hidden state sp

t , we compute
the prediction of child node’s hidden state s̃p

t at the same
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step:
s̃c
t = GRU(op

t , s
p
t) (11)

Then we use the same attention mechanism to compute the
child attention probabilities αc

t and the child context vector
cc
t:

αc
t = f c

att(A, s̃
c
t) (12)

cc
t =

∑
i
αc
tiai (13)

f c
att has the same architecture of f p

att but with different pa-
rameters. The child node hidden state is then computed:

sc
t = GRU(cc

t, s̃
c
t) (14)

Finally, the probability of each predicted child node oc
t is

computed from the concatenation of parent node op
t , child

node hidden state sc
t and child context vector cc

t:

p(oc
t) = softmax

(
Wc

out(o
p
t , s

c
t, c

c
t)
)

(15)

The classification loss of child decoder part is:

Lc = −
∑

t
log p(wc

t) (16)

where wc
t represents the ground-truth child node at time step

t.

4.3.3. MEMORY BASED ATTENTION

In the sub-tree sequence, the child nodes always follow the
depth-first order, but there is no explicit order for parent
nodes, which causes some difficulties for recognizing them.
For example, a math formula “x+ x2” has the sub-tree se-
quence “(x, root), (+, x), (x,+), (2, x)”. In this sequence,
there are two child nodes denoting math symbol “x”. Be-
cause child nodes follow a certain order, two “x” can be
distinguished according to different decoding steps. For par-
ent nodes, this is no longer reliable. Multiple occurrences
of one math symbol in one math formula will bring ambigu-
ities, e.g., we can not determine whether the parent node “x”
of symbol “2” in the last sub-tree corresponds to the first “x”
or the second “x” of formula “x+ x2”.

To deal with this problem, we propose to use child nodes’
positions in the ordered sub-tree sequence as an intermediate
variable to denote the parent node. Hence, we get the inter-
mediate sub-tree sequence as “(x, 0), (+, 1), (x, 2), (2, 3)”,
then we know the parent node of math symbol “2” is the
child node of third sub-tree, which is the second “x” of math
formula “x+ x2”. In other words, we treat predicting the
parent node as finding which previous child node should be
the current parent node.

Here, we introduce a memory based attention module to help
generate the intermediate parent node sequence and compute
the objective function for training the parent decoder.

Following Section 4.3.1 and Section 4.3.2, we get the parent
decoder state sp

t , child decoder state sc
t and child node output

oc
t. During decoding, we append the child decoder state sc

t

into the key memory and append the child node output oc
t

into the value memory, respectively. Therefore, the sc
t in the

key memory and the oc
t in the value memory both follow the

order of child node sequence.

As we try to find which previous child node should be the
current parent node, we use current parent decoder state sp

t

as the query vector and employ child decoder states stored
in key memory smem

j as the key vectors to compute the
probabilities:

dmem
tj = tanh(Wmems

p
t + Umems

mem
j ) (17)

Gmem
tj = σ(νT

memd
mem
tj ) (18)

The training loss of parent decoder part is then defined as a
binary classification loss:

Lp =−
∑

t

∑
j
[Ḡmem

tj log(Gmem
tj )

+ (1− Ḡmem
tj ) log(1−Gmem

tj )] (19)

where Ḡmem
tj denotes the ground-truth of parent node. Ḡmem

tj

is 1 if j-th child node stored in memory is the parent node
of time step t, otherwise 0.

In testing stage, we choose oc
ĵ
, ĵ = argmax(Gmem

tj ) in the
value memory as parent node.

4.3.4. RELATION PREDICTION

For some tasks, e.g., math formula recognition, the
edge between parent and child has its own attribute,
denoted as relation. For example, to fully represent
math formula “x + x2”, the sub-tree structure should
be “(x, root, start), (+, x, right), (x,+, right), (2, x, sup)”,
where “sup” means “superscript” relationship. As the par-
ent context vector and child context vector both contain the
spatial information, as well as the content information of
parent node and child node, they are sufficient to generate
the relationship between parent and child node:

pre(ore
t ) = softmax

(
Wre

out(c
p
t , c

c
t)
)

(20)

The training loss of relation generation is computed as:

Lre = −
∑

t
log pre(vt) (21)

where vt represents the ground-truth relation at time step t.

4.4. Attention Self-Regularization

As the parent node at time step t must be the child node
at a previous time step, there is correlation between parent
attention probabilities and child attention probabilities. Take
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Time	Step	=	1 Time	Step	=	6

Figure 6. Illustration of what child attention and parent attention
focuses at time step 1 and at time step 6. Red box denotes the
region that child attention focuses on, green box denotes the region
that parent attention focuses on.

the math formula in Figure 6 as an example, at time step 1,
the child node is “

∑
”, the parent node is “root”, while at

time step 6, the child node is “fraction”, the parent node is
“
∑

”. We can see the parent node at time step 6 is the child
node at time step 1, therefore we can infer that the parent
attention probabilities at time step 6 should be similar to the
child attention probabilities at time step 1.

To implement this regularization between parent attention
and child attention, we first rearrange the order of child
attention probabilities such that they match the target of
parent attention probabilities (e.g., in Figure 6, the target
of parent attention α̂p

6 = αc
1). Then we can get a sequence

of target parent attention probabilities as α̂p
1, α̂

p
2, . . . , α̂

p
T .

The regularization function is the Kullback-Leibler (KL)
divergence between α̂p

t and αp
t :

Lreg = −
∑

t
α̂p

t log
α̂p

t

αp
t

(22)

5. Experiments
5.1. Implementation Details

5.1.1. TRAINING

The overall recognition model is trained end-to-end. The
training objective of our model is to minimize the child node
loss (Eq. (16)), parent node loss (Eq. (19)) and attention self-
regularization loss Eq. (22). For markup languages that need
to consider relation between child node and parent node,
our model also minimizes the relation loss (Eq. (21)). The
objective function for optimization is shown as follows:

O = λ1Lc + λ2Lp + λ3Lre + λ4Lreg (23)

In our experiments, we set λ1 = λ2 = 1 to reflect the fact
that the child node and parent node are equally important.
For math formula recognition, λ3 = 1, for chemical for-
mula recognition, λ3 = 0 as we do not need to specify
relationship. We set λ4 = 0.1 for regularization loss.

ghiZȯ ghiZö ghiZo⃛

gh
ṡt

gh
ȯt

Parent	Beam

Child	Beam
gh
ṡu

gh
ṡv

gh
ȯu gh

ȯv

Figure 7. Illustration of expanded beam search. As for the last 9
beams, only the 3 partial hypotheses with full yellow child node
are kept.

To ensure a fair comparison with state-of-the-art LaTeX
string decoder based methods, we use the same DenseNet
encoder employed in the DenseWAP model (Zhang et al.,
2018). We employ three dense blocks in the main branch.
We set the growth rate to k = 24, the depth (number of
convolution layers) of each block to D = 32. A Batch
Normalization (Ioffe & Szegedy, 2015) layer and a ReLU
activation (Nair & Hinton, 2010) layer are placed after each
convolution layer.

Both the child and parent decoders adopt 2 unidirectional
GRU layers, each layer has 256 forward GRU units. The
child attention dimension, parent attention dimension and
memory attention dimension are set to 512. The embedding
dimensions for both child node and parent node are set to
256.

We employ the ADADELTA algorithm (Zeiler, 2012) for op-
timization, with the following hyper parameters: ρ = 0.95,
and ε = 10−6. The whole framework was implemented
using PyTorch. Experiments were conducted on a single
Nvidia Tesla V100 with 16GB RAM.

5.1.2. TESTING

During testing, as we do not have ground-truth child and
parent node, we resort to a hierarchical version of the tra-
ditional beam search algorithm (Reddy et al., 1977). More
specifically, as illustrated in Figure 7, a beam size of 3 is
set for both parent and child beam in our experiments. In
the parent beam, 3 most likely previous child nodes {oc

t−1}
are kept to compute the current parent nodes {op

t}. Then
in the corresponding child beam, each partial hypothesis is
expanded with 3 most likely current parent nodes, which
are used to compute current child nodes {oc

t}. Therefore, at
each step, we have 3× 3 = 9 beams out in total. We then
choose 3 beams from these 9 hypotheses based on the com-
bined score of parent beam and child beam (i.e., combined
likelihood of {op

t} and {oc
t}) for next decoding step.
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Hard Massive

Easy Normal

Figure 8. Split the SMILES test set into four sub-sets (“Easy”,
“Normal”, “Hard”, “Massive”) based on the length of testing
SMILES strings.

5.2. Datasets

5.2.1. HANDWRITTEN MATH FORMULA

For math formula recognition, we evaluate our model on
CROHME benchmark (Mouchère et al., 2016b;a; Mahdavi
et al., 2019), which is currently the largest dataset for online
handwritten math formula recognition. We convert the on-
line handwritten math formula from trajectory sequence for-
mat into image format for implementing image-to-markup.

The CROHME training set contains 8,836 handwritten math
formulas. There are 6 math relations between parent node
and child node (“above”, “below”, “right”, “inside”, “su-
perscript”, “subscript”). We evaluate our model on three
CROHME test sets. CROHME 2014/2016/2019 contain
986/1,147/1,199 handwritten math formulas, respectively.

5.2.2. CHEMICAL FORMULA

We also evaluate our model on chemical formula recognition
as chemical formulas usually contain much more compli-
cated structures than math formulas. The chemical formula
recognition experiments are conducted based on SMILES
dataset. SMILES (Jin et al., 2018) dataset provides a large
mount of printed chemical formula images and correspond-
ing SMILES strings. As the input is printed images, the
effect of performance mostly depends on structure analysis.
Therefore, the performance on SMILES chemical formula
dataset can act as a good indicator towards the difference
of structure understanding between string decoder and tree
decoder.

We choose 100,000 chemical formulas from SMILES

dataset. We use 90,000 formulas as train set, 3,000 for-
mulas as validation set and the other 7,000 as test set. The
structures of formulas in test set have never be seen in train
set. We split the test test into four sub-sets based on the
length of testing SMILES strings, and as shown in Figure 8.
The length of SMILES strings can reflect the structural
complexity and the depth of tree structures. The four sub-
sets are named as “Easy”, “Normal”, “Hard”, “Massive”,
and their percentages in the whole test set are 20%, 40%,
25% and 15% respectively. “Easy” set consists of chemical
formulas with SMILES length in range of [1, 20], “Nor-
mal” consists of length [20, 40], “Hard” consists of length
[40, 80], “Massive” consists of length more than 80 and
usually approaching 200.

5.3. Experimental Analysis

5.3.1. RESULTS ON CROHME

Results on CROHME can be seen in Table 1. As baselines,
we first offer comparisons with several promising traditional
methods that use tree grammars for parsing math formula.
For fairness, we show the results of methods using only offi-
cial 8,836 training samples, without any other training data
or any additional language models. “UPV”, “UNATES” and
“TUAT” are the top 3 systems using only official training
samples in the CROHME 2014 competition, and “TOKYO”
is the best performing system using official training samples
in the CROHME 2016 competition. As for string decoders,
we offer comparative results with all five previous state-of-
the-art image-to-LaTeX markup methods: “WYGIWYS”,
“PAL”, “Transformer”, “WAP” and “DenseWAP”. The re-
sults of string decoder and tree decoder all comes from
single model. Since the reported results of “DenseWAP” is
of ensemble model, to be comparable with other results of
single model, we train a single “DenseWAP” model using
official published codes.

We can see from Table 1 that “DenseWAP” offers best result
as a string decoder based image-to-markup model. Hence
we implement our overall model (“DenseWAP-TD”) by
replacing the string decoder in “DenseWAP” with the pro-
posed tree decoder. That is the encoder used in “DenseWAP-
TD” has the same architecture as the encoder in “Dense-
WAP”. Also, the optimization algorithm and basic hyper pa-
rameters of “DenseWAP-TD” and “DenseWAP” are all the
same. By comparing the performance between “DenseWAP-
TD” and “DenseWAP”, it is clear to see that the proposed
tree decoder outperforms the top performing string decoder
by a significant margin for all test sets.

We can further analyze the difference on structure under-
standing between string decoder and tree decoder via atten-
tion visualization. In LaTeX strings, the token “{” and “}”
denote the start and the end of a structure respectively. As
shown in Figure 9, when string decoder meets the “subscript”
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Table 1. Evaluation of math formula recognition systems on CROHME 2014, CROHME 2016 and CROHME 2019 test sets (in %).
“ExpRate”, “≤ 1 s.error” and “≤ 1 s.error” means expression recognition rate when 0 to 2 symbol or structural level errors can be tolerated,
“StruRate” means structure recognition rate.

Dataset Model Decoder ExpRate ≤ 1 s.error ≤ 2 s.error StruRate

CROHME14

UPV tree grammar 37.2 44.2 47.3 -
UNATES tree grammar 26.1 33.9 38.5 -

TUAT tree grammar 25.7 33.2 35.9 -
WYGIWYS string decoder 36.4 - - -

PAL string decoder 39.7 - - -
WAP string decoder 40.4 56.1 59.9 -

DenseWAP string decoder 43.0±1.0 57.8±1.4 61.9±1.8 63.2±1.7
DenseWAP-TD tree decoder 49.1±0.9 64.2±0.9 67.8±1.0 68.6±1.6

CROHME16

TOKYO tree grammar 43.9 50.9 53.7 61.6
WAP string decoder 37.1 - - -

DenseWAP string decoder 40.1±0.8 54.3±1.0 57.8±0.9 59.2±0.8
DenseWAP-TD tree decoder 48.5±0.9 62.3±0.9 65.3±0.7 65.9±0.6

CROHME19
Transformer string decoder 41.5 54.1 58.9 60.0

DenseWAP string decoder 41.7±0.9 55.5±0.9 59.3±0.5 60.7±0.6
DenseWAP-TD tree decoder 51.4±1.3 66.1±1.4 69.1±1.2 69.8±1.1

Table 2. Ablation study on CROHME 2014, CROHME 2016 and
CROHME 2019 test sets (in %).

Dataset Att Self-Reg Ensemble ExpRate

CROHME14
% % 44.5±1.1
! % 49.1±0.9
! ! 54.0±0.4

CROHME16
% % 41.8±1.0
! % 48.5±0.9
! ! 52.1±0.3

CROHME19
% % 45.4±1.2
! % 51.4±1.3
! ! 54.6±0.4

structure and tries to generate the pair of “{” and “}”, the
attention probabilities can be unseasonable. Therefore, we
can infer that string decoder possibly relies on the implicit
language model to generate “{” and “}”, and it has no under-
standing of tree structures. This echoes well with our earlier
discovery (Section 2) that the string decoder struggles to
deal with unseen complicated tree structures. Conversely,
the tree decoder can find the true parent node of subscript
math symbol “i”, indicating a good understanding of tree
structure.

Ablation study on all three CROHME datasets can be found
in Table 2. We first evaluate the effectiveness of the pro-
posed attention self-regularization (Section 4.4). It can

\sum			Y			_			{			i }			end

(\sum,	root),	(Y,	\sum),	(i,	Y), (end,	i)

String
Decoder

Tree
Decoder

Figure 9. Comparison of attention visualization on analyzing “sub-
script” structure. For tree decoder, red color denotes the attention
probabilities of child node, green color denotes the attention prob-
abilities of parent node.

be observed that without it, only slight performance gains
over string decoder can be observed. Whereas with it in
play, recognition rate improved from 44.5% to 49.1% on
CROHME 2014, from 41.8% to 48.5% on CROHME 2016,
and from 45.4% to 51.4% on CROHME 2019. We then
report results on the use of ensemble methods, and show
that it can further improve the overall recognition perfor-
mance. Following (Dietterich, 2000; Zhang et al., 2019),
we implement the ensemble system by combing 5 models
at each decoding step.

5.3.2. RESULTS ON SMILES

As introduced in Section 5.2.2, we split the SMILES test
set into four sub-sets based on different range of SMILES
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Table 3. Recognition rate comparison (in %) between string de-
coder and tree decoder on SMILES dataset. “Easy”, “Normal”,
“Hard”, “Massive” denote the four sub-sets of test set with different
length of SMILES string, “All” means the overall recognition rate
on the whole test set (in %). “SD” and “TD” refer to string decoder
and tree decoder based approaches, respectively.

System Easy Normal Hard Massive All

SD 88.9 82.8 60.7 28.2 72.7
TD 89.5 85.8 65.6 34.4 76.9

length. We can see from Table 3, tree decoder significantly
outperforms string decoder. More specifically, in “Easy”
set, where chemical formula SMILES string has length less
than 20, the tree decoder offers relatively slight improve-
ments. However, results for “Normal”, “Hard” and “Mas-
sive”, show that as the length of SMILES string increases,
the performance gain of tree decoder over string decoder
becomes much more significant.

6. Conclusions
In this paper, we propose a tree-structured decoder for im-
proving the generalization ability of encoder-decoder mod-
els on markups with complicated structures. Our proposed
tree decoder shows significant improvement compared with
state-of-the-art string decoders on tree-structured image-to-
markup problems. Despite evaluated on math and chemi-
cal formula recognition only, our tree decoder can also be
used for common one-dimensional image-to-markup and
sequence-to-sequence problems without much tweaking.
Source code and the toy datasets will be publicly released
to facilitate future research.
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