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Abstract

This paper presents a novel approach to writer adap-
tation using bottleneck features and discriminative lin-
ear regression for the recognition of online handwritten
Chinese characters. First, bottleneck features extracted
from a bottleneck layer of a deep neural network repre-
senting a nonlinear and discriminative transformation
of the input features are verified to be much more ef-
fective in adaptation of writing styles than the conven-
tional features after linear discriminant analysis trans-
formation. Second, discriminative linear regression
via a so-called sample separation margin based mini-
mum classification error criterion is adopted for writer
adaptation. The experiments on an in-house developed
online Chinese handwriting corpus with a vocabulary
of 15,167 characters and testing data collected from
user inputs of Smartphones show that our proposed ap-
proach can achieve very significant improvements of
recognition accuracy compared with a state-of-the-art
adaptation approach for writer adaptation.

1. Introduction

In the mobile internet era, online handwritten Chi-

nese character recognition as an input mode on a mobile

device (e.g., Smartphone, Tablet) becomes increasingly

popular. Several solutions have been developed to build

product engines for online handwritten Chinese charac-

ter recognition (e.g., [15, 4, 21]). But due to the large

variability of writing styles by different writers, espe-

cially the cursive writing style, the user experience is

not always satisfactory. Writer adaptation is one of so-

lutions to address this problem, which aims to improve

the recognition performance and user experience of a

single writer by using the corresponding data samples

to be recognized itself via an unsupervised adaptation

strategy, or by using a small amount of adaptation data

samples with labels collected from the target writer via

a supervised adaptation strategy.

Many research efforts have been made in writer

adaptation for online handwriting recognition in the

past several decades. For example, in [16], a writer-

adaptable online character recognizer was designed via

a time delay neural network where the last layer is

served as a linear optimal hyperplane classifier which

can easily adapt to new writing styles. Platt et al.

[17] placed a so-called output adaptation module on

top of standard neural networks by using a radial ba-

sis function (RBF) network. In [2], a hidden Markov

model (HMM) based recognition system for cursive

German script could be adapted to the writing style of

a new writer using maximum likelihood linear regres-

sion (MLLR) or maximum a posteriori (MAP) criterion.

Vuori and Korkeakoulu [19] proposed several strategies

for adaptation of a prototype-based classifier, including

adding new prototypes, reshaping existing prototypes,

and inactivating poorly performing prototypes. In [13],

the use of biased regularization for support vector ma-

chine (SVM) based classifier is adopted for personaliza-

tion.

In this paper, we study the writer adaptation tech-

niques for online handwritten Chinese character recog-

nition. One of the state-of-the-art techniques to build

a Chinese handwriting recognizer is to use a so-called

sample separation margin based minimum classifica-

tion error (SSM-MCE) criterion [8] to train a prototype-

based classifier as reported in [4]. In spite of the large

vocabulary of Chinese characters, such a classifier can

be made both compact [20] and efficient [6] in the

recognition stage. In this work, based on this clas-

sifier, we propose to use bottleneck features (BNFs)

[7, 22, 18] and discriminative linear regression (DLR)

[3, 5] for writer adaptation. As a highly nonlinear

and discriminative transformation of the input features,

BNF is extracted from a bottleneck layer of a deep neu-
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Figure 1. Overall development flow and ar-
chitecture of two classifiers.

ral network (DNN) [10], which is widely used in speech

recognition area. For writer adaptation in handwriting

recognition, BNF also demonstrates the superiority to

the conventional features after linear discriminant anal-

ysis (LDA) transformation. As for the objective func-

tion for writer adaptation, DLR via SSM-MCE criterion

is adopted. Our work is relevant to the style transfer

mapping (STM) [23, 24] work, where a least regular-

ized weighted squared error approach is used to esti-

mate a global feature transform for writer adaptation.

The experiments show that our approach using BNF

and DLR can achieve very significant improvements of

recognition accuracy over STM approach in [23].

The remainder of the paper is organized as follows.

In Section 2, we present the detailed description of

prototype-based and BNF-based classifiers. In Sec-

tion 3, two adaptation criteria, namely STM and DLR,

are described. In Section 4, we report experimental re-

sults. Finally we conclude the paper in Section 5.

2. Classifiers Description

An overall system development flow and architec-

ture is illustrated in Fig. 1. Two classifiers, namely

prototype-based classifier and BNF-based classifier, are

designed and compared. In the training stage, first a

raw feature vector is extracted from each training sam-

ple [1], which is followed by LDA transformation to

obtain a lower dimensional feature vector. After that,

the prototype-based classifier is constructed by using

LBG clustering algorithm [14], which is then refined by

SSM-MCE training with an Rprop algorithm [12]. As

for the BNF-based classifier, a DNN with a bottleneck

layer (BNF-DNN) is trained first. Then new bottleneck

features are generated via BNF-DNN, which are fed to

the prototype-based classifier training. At the recogni-

tion stage, with the feature vector extracted from the

unknown sample, the normal recognition is performed

based on prototype-based classifier while an additional

bottleneck feature generation step is needed for BNF-

based classifier. More details can refer to the following

subsections.

2.1. Prototype-based classifier

Suppose our classifier can recognize 𝑀 character

classes denoted as {𝐶𝑖∣𝑖 = 1, ...,𝑀}. For a multi-

prototype based classifier, each class 𝐶𝑖 is represented

by 𝐾𝑖 prototypes, 𝜆𝑖 = {m𝑖𝑘 ∈ ℛ𝐷∣𝑘 = 1, ...,𝐾𝑖},

where m𝑖𝑘 is the 𝑘th prototype of the 𝑖th class. Let’s

use Λ = {𝜆𝑖} to denote the set of prototypes. In the

classification stage, a feature vector x ∈ ℛ𝐷 is first ex-

tracted. Then x is compared with each of the 𝑀 classes

by evaluating a Euclidean distance based discriminant

function for each class 𝐶𝑖 as follows

𝑔𝑖(x;𝜆𝑖) = −min
𝑘

∥ x−m𝑖𝑘 ∥2 . (1)

The class with the maximum discriminant function

score is chosen as the recognized class 𝑟(x;Λ), i.e.,

𝑟(x;Λ) = argmax
𝑖

𝑔𝑖(x;𝜆𝑖) . (2)

In the training stage, given a set of training feature

vectors 𝒳 = {x𝑟 ∈ ℛ𝐷∣𝑟 = 1, ..., 𝑅}, first we ini-

tialize Λ by LBG clustering [14]. Then Λ can be re-

estimated by minimizing the following SSM-MCE ob-

jective function:

𝑙(𝒳 ;Λ) =
1

𝑅

𝑅∑
𝑟=1

1

1 + exp[−𝛼𝑑(x𝑟;Λ) + 𝛽]
(3)

where 𝛼, 𝛽 are two control parameters, and 𝑑(x𝑟;Λ) is

a misclassification measure defined by using a so-called

sample separation margin (SSM) as follows [8]:

𝑑(x𝑟;Λ) =
−𝑔𝑝(x𝑟;𝜆𝑝) + 𝑔𝑞(x𝑟;𝜆𝑞)

2 ∥ m𝑝�̂� −m𝑞𝑘 ∥ (4)

where

𝑘 = argmin
𝑘

∥ x𝑟 −m𝑝𝑘 ∥2 (5)

𝑞 = arg max
𝑖∈ℳ𝑟

𝑔𝑖(x𝑟;𝜆𝑖) (6)

𝑘 = argmin
𝑘

∥ x𝑟 −m𝑞𝑘 ∥2 (7)
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Figure 2. DNN for bottleneck features.

and ℳ𝑟 is the hypothesis space for the 𝑟th sample, ex-

cluding the true label 𝑝.

To optimize the objective function in Eq. (3), the

same implementation of Rprop algorithm as described

in [4] is adopted here.

2.2. Bottleneck-feature based classifier

As shown in Fig. 2, bottleneck features [7, 22, 18]

can be generated from a DNN where one of the internal

layers (bottleneck layer) has a small number of hidden

units, relative to the size of the other layers. The bot-

tleneck layer creates a constriction in the network that

forces the information pertinent to classification into a

low dimensional representation. In this work, bottle-

neck features are created from a deep neural network

trained to predict character classes. The inputs to the

hidden units of the bottleneck layer are used as features

for prototype-based classifier. These bottleneck features

represent a nonlinear and discriminative transformation

of the input features. The training procedure of DNN

for bottleneck feature consists of generative pre-training

and supervised fine-tuning.

The pre-training procedure treats each consecutive

pair of layers as a restricted Boltzmann machine (RBM)

[11] whose joint probability is defined as:

𝑝(v,h) =
1

𝑍
exp{−𝐸(v,h)} (8)

where v and h denote the observable variables and

latent (hidden) variables, respectively. 𝐸 is an en-

ergy function and 𝑍 is the partition function to ensure

𝑝(v,h) is a valid probability distribution. If both v and

h are binary states, i.e., the Bernoulli-Bernoulli RBM,

the energy function is given by

𝐸(v,h) = −(b⊤
𝑣 v + b⊤

ℎ h+ v⊤W𝑣ℎh) (9)

where b𝑣 , bℎ are bias vectors of v and h respectively,

and W𝑣ℎ is the weight matrix between them. If v
is real-valued data and h is binary, i.e., the Gaussian-

Bernoulli RBM, the energy function is:

𝐸(v,h) =
1

2
(v − b𝑣)

⊤(v − b𝑣)− b⊤
ℎ h− v⊤W𝑣ℎh (10)

where we assume that the visible units follow the Gaus-

sian noise model with an identity covariance matrix if

the input data are pre-processed by mean and variance

normalization.

The RBM parameters can be efficiently trained in

an unsupervised fashion by maximizing the likelihood

over training samples of visible units with the approxi-

mate contrastive divergence algorithm [11]. As for our

DNN, a Gaussian-Bernoulli RBM is used for the first

layer while a pile of Bernoulli-Bernoulli RBMs can be

stacked behind the Gaussian-Bernoulli RBM. Then the

parameters of RBMs can be trained layer-by-layer. Hin-

ton et al. indicate that this greedy layer-wise unsuper-

vised learning procedure always helps over the tradi-

tional random initialization.

After pre-training for initializing the weights of the

first several layers, a supervised fine-tuning of the pa-

rameters in the whole neural network with the final out-

put layer is performed. For multiclass classification,

output unit 𝑗 converts its total input 𝑥𝑗 into a class prob-

ability 𝑝𝑗 by using the “softmax” non-linearity:

𝑝𝑗 =
exp(𝑥𝑗)∑
𝑘 exp(𝑥𝑘)

(11)

where 𝑘 is an index over all classes. Then the objective

function is the cross-entropy between the target prob

abilities 𝑝 and the outputs of the softmax 𝑝:

𝐶 = −
∑
𝑗

𝑝𝑗 log 𝑝𝑗 (12)

where the target probabilities, taking values of one or

zero, are the supervised information provided to train

the DNN classifier. As our task involves large training

samples, the objective function is optimized using back-

propagation procedure with stochastic gradient descent

in mini-batch mode.

3. Writer Adaptation via Linear Regression

In this work, we only focus on the supervised adap-

tation. Suppose we are given a set of labeled adaptation
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data 𝒴 = {y𝑟 ∈ ℛ𝐷∣𝑟 = 1, ..., 𝑅′} collected from

a single writer. Then a linear feature transformation is

adopted for writer adaptation:

x𝑟 = ℱ(y𝑟;Θ) = Ay𝑟 + b (13)

where Θ = {A,b} denotes the set of transform pa-

rameters. A is a 𝐷 × 𝐷 nonsingular matrix and b is

a 𝐷-dimensional bias vector. y𝑟 and x𝑟 are the 𝑟th

𝐷-dimensional input and transformed feature vectors,

respectively. In the recognition stage, the estimated pa-

rameters {A,b} are used to transform the feature vector

of each unknown sample first, which is then fed to the

classifier for recognition. In the following subsections,

two approaches are elaborated to learn the parameters

of the linear transformation.

3.1. Style transfer mapping

One approach is the style transfer mapping proposed

in [23, 24]. In STM, first define the source point set

as the set of feature vectors of adaptation samples (i.e.,

𝒴), and the target point set as the set of the correspond-

ing prototypes with the smallest Euclidean distances to

those features vectors. Then find a style transfer matrix

A to solve the following optimization problem:

min
A

𝑅′∑
𝑟=1

𝑓𝑟∥As𝑟 − t𝑟∥22 + 𝛽1∥A− I∥22 (14)

where the 𝑟th source point s𝑟 is transformed to the target

point t𝑟 with the confidence 𝑓𝑟, which is set as 1 for

supervised adaptation. The hyperparameter 𝛽1 is set as

𝛽1 =
𝛽1

2𝐷
tr

(∑
𝑟

𝑓𝑟(s𝑟 + t𝑟)s
⊤
𝑟

)
(15)

where tr(⋅) is the trace of a matrix, and 𝛽1 takes a value

between 0 and 3. The closed-form solution of the above

problem is as follows:

A =

[∑
𝑟

𝑓𝑟t𝑟s
⊤
𝑟 + 𝛽1I

][∑
𝑟

𝑓𝑟s𝑟s
⊤
𝑟 + 𝛽1I

]−1

. (16)

3.2. Discriminative linear regression

Another approach is the discriminative linear regres-

sion, which is first proposed in [5] for Chinese OCR

adaptation. To learn the transformation, the SSM-MCE

objective function is defined as follows:

𝑙(𝒴;Λ,Θ) =
1

𝑅′

𝑅′∑
𝑟=1

1

1 + exp[−𝛼𝑑(y𝑟;Λ,Θ) + 𝛽]
(17)

where

𝑑(y𝑟;Λ,Θ) =
−𝑔𝑝(x𝑟;𝜆𝑝) + 𝑔𝑞(x𝑟;𝜆𝑞)

2 ∥ m𝑝�̂� −m𝑞𝑘 ∥ . (18)

The notations in Eq. (18) are defined in Eq. (5), Eq. (6),

Eq. (7), and Eq. (13). The optimization procedure for Θ
is the same as in [5]. From the viewpoint of classifica-

tion measure, SSM-MCE seems a more reasonable ob-

jective function to learn the feature transform compared

with STM, which is also confirmed by our experiments.

4. Experiments and Results

The experiments are conducted on the task of rec-

ognizing isolated online handwritten characters with

a vocabulary of 15,167 character classes including 62

alphanumeric characters, 101 punctuation marks and

15,004 frequently used Chinese characters. For train-

ing, we totally use 14,846,606 character samples, about

1,000 samples per character class. As for writer adap-

tation, the handwriting data of input method on mobile

devices from 105 real users collected in several months

are used for our experiments. The number of character

samples for each user is in a range from 5000 to 30000.

For each writer, one half of samples are randomly se-

lected as adaptation data to learn the feature transfor-

mation while the other half is used as testing data. For

feature extraction, a 392-dimensional raw feature vec-

tor is extracted as described in [1], which is followed

by LDA transformation to obtain a 96-dimensional fea-

ture vector. For Rprop-based SSM-MCE training, the

setting of the control parameters can refer to [4]. The

tuning parameters of DNN are set according to [9]. To

handle the large-scale training data, the computations

of LBG clustering, SSM-MCE training with Rprop al-

gorithm are parallelized on the CPU cluster while DNN

training is implemented and optimized on GPUs.

Table 1 shows a performance comparison of systems

using prototype-based classifiers with different features

and different training criteria on the testing set of all 105

writers. “LBG” denotes a system trained using LBG

clustering while “SSM-MCE” refers to a system trained

by the SSM-MCE criterion. “LDA” and “BNF” repre-

sent the two types of features. The DNN architecture

for bottleneck feature is 96-1024-1024-1024-96-15167,

which denotes that the sizes are 96 for input layer,

1024 for three hidden layers, 96 for bottleneck layer

(the same dimension as that of original feature vector),

and 15167 for output layer. Several observations can

be made. First, the BNF systems can achieve signifi-

cant error reductions over the LDA systems for all test-

ing cases, especially under a small number of prototype

setting. Second, the performance gain between BNF
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Table 1. Performance (character error
rate in %) comparison of systems using
prototype-based classifiers with different
features and different training criteria on
the testing set of all 105 writers.

#prototype LBG SSM-MCE

1 33.97 22.16

LDA 2 30.63 20.20

4 27.08 19.14

1 26.06 19.66

BNF 2 23.56 19.12

4 22.01 18.79

Table 2. Performance (character error rate
in %) comparison of systems using differ-
ent adaptation strategies averaged across
each testing set of all 105 writers.

LDA BNF

STM DLR STM DLR

Baseline 19.14 18.79

WA(1000) 13.49 11.96 9.79 9.42

WA(3000) 13.29 10.51 9.31 8.53

WA(5000) 13.24 10.11 9.24 8.14

system and LDA system using LBG clustering is more

significant than that using SSM-MCE based discrimi-

native training. This is reasonable because as a highly

nonlinear and discriminative transformation, BNF car-

ries more discriminative information than LDA feature,

which is more powerful for LBG clustering (like a gen-

erative model) and less powerful for SSM-MCE train-

ing (like a discriminative model). Finally, the increased

footprint (the size of the recognition engine) and run-

time latency from LDA system to BNF system is per-

fectly acceptable under the same prototype setting (e.g.,

increased by 40% in footprint and 50% in latency for the

best performance setting, namely SSM-MCE classifier

with 4 prototypes).

Fig. 3 gives a performance comparison of different

adaptation strategies for each testing set of 25 selected

writers, among which there are more than 5000 adapta-

tion data samples for each writer. “LDA” and “BNF” are

two feature types. “Baseline” refers to the best system

in Table 1 (i.e., SSM-MCE training with 4 prototypes)

without writer adaptation. “STM” and “DLR” repre-

sent two criteria for learning the transform parameters.

First, for baseline system, the results of LDA feature

and BNF are mixed for different writers but BNF can

Figure 3. Performance (character error
rate in %) comparison of different adap-
tation strategies for each testing set of 25
selected writers.

achieve an overall better performance like in Table 1.

Second, for STM-based adaptation, BNF systems con-

sistently and significantly outperform LDA systems on

all testing sets. This is also applicable to DLR-based

adaptation where the performance gain between BNF

system and LDA system is still remarkable although not

that significant compared with STM-based adaptation.

Third, for the same feature type, namely LDA feature or

BNF, DLR-based adaptation yields better performance

than STM-based adaptation and there are only two ex-

ceptions on No.17 and No.23 writers. Overall, the sys-

tem using BNF and DLR-based adpatation can achieve

the best recognition performance.

Table 2 lists a performance comparison of sys-

tems using different adaptation strategies averaged

across each testing set of all 105 writers. The base-

line system without adaptation is the same as that in

Fig. 3. Three configurations of writer adaptation us-

ing different number of adaptation samples are com-

pared, namely 1000, 3000, and 5000 corresponding

to “WA(1000)”, “WA(3000)”, “WA(5000)” in Table 2.

First, writer adaptation with LDA feature and STM can

achieve about 30% error reduction over baseline sys-

tem with LDA feature, which is much more significant

than those results in [23]. This is most likely because

our data samples are collected from real users in which

there are many samples for commonly used characters

and we just randomly divide them into two halves for

adaptation and testing while in [23] the design of adap-

tation and testing data is for a extremely difficult case

where there is no overlap of character classes for adap-

tation and testing and there is only one sample for each

character class. With the increased amount of adapta-
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tion data, the performance of the system with LDA and

STM is quickly saturated while the error rate of other

three adaptation systems using our proposed BNF and

DLR techniques is still significantly decreased, espe-

cially for DLR-based adaptation. The best system us-

ing BNF and DLR yields about 40% error reduction

(from 13.24% to 8.14%) over the system using LDA

and STM, which is very promising.

5. Conclusion

In this work, we investigate to use bottleneck fea-

tures and discriminative linear regression for writer

adaptation of online handwritten Chinese character

recognition. Very promising results are achieved on the

data from real applications by comparing to a conven-

tional adaptation approach. As for future work, unsu-

pervised, semi-supervised adaptation, and online adap-

tation strategy will be further explored.
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