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Abstract

This paper presents a study of designing compact
classifiers using deep neural networks for recogni-
tion of online handwritten Chinese characters. Two
schemes are investigated based on practical consider-
ations. First, deep neural networks are adopted purely
as a classifier with a state-of-the-art feature extractor of
online handwritten Chinese characters. Second, the so-
called bottleneck features extracted from a bottleneck
layer of deep neural networks are fed to the prototype-
based classifier. The experiments on an in-house de-
veloped online Chinese handwriting corpus with a vo-
cabulary of 15,167 characters show that compared with
prototype-based classifier widely developed on the mo-
bile device, deep neural network based classifier can
yield significant improvements of recognition accuracy
with acceptably increased footprint and latency while
the bottleneck-feature approach can bring a more com-
pact classifier with an observable performance gain.

1. Introduction

With the fast development of mobile internet, online

handwritten Chinese character recognition as an input

mode on a mobile device (e.g., Smartphone, Tablet) be-

comes increasingly popular. To deliver a compelling

user experience, a recognizer has to be designed to

have a small footprint, run efficiently on a mobile de-

vice, achieve high recognition accuracy. Several solu-

tions have been developed to achieve the above goals

[3, 17, 20]. Recently, the results of the Chinese hand-

writing recognition competition [21] reveal that the best

recognition performances of many tasks are achieved

by the research group using the deep learning technolo-

gies. Based on the competition report this year [21], the

system from Fujitsu R&D Center uses multiple convo-

lutional neural networks and yields the best results on

the offline character recognition task while the system

from University of Warwick also uses a large convo-

lutional neural network and achieves the best perfor-

mance on the online character recognition task. Fur-

thermore, after the competition, the researchers from

the Dalle Molle Institute for Artificial Intelligence (ID-

SIA) claim that their system using multi-column deep

neural networks [2] outperforms the best system for the

offline character recognition task after correcting a bug.

The long-short-term-memory recurrent neural network

is another showcase of deep learning technology which

becomes popular in handwriting recognition recently

[14, 6, 18]. In spite of those promising results, one com-

mon issue of deep learning in real applications is the

corresponding footprint and latency of the recognizer.

So the motivation of this work is to investigate the pos-

sibility of designing a compact product engine on the

mobile device for online handwritten Chinese character

recognition via the deep learning technology.

One of the state-of-the-art techniques to build a Chi-

nese handwriting recognizer is to use a so-called sam-

ple separation margin (SSM) based minimum classifica-

tion error (MCE) criterion [7] to train a prototype-based

classifier as reported in [3]. In spite of the large vo-

cabulary of Chinese characters, such a classifier can be

made both compact [20] and efficient [4] in the recog-

nition stage. The main contribution of this paper is to

propose two new classifiers via deep neural networks

(DNNs) [11, 10]. One classifier is purely based on

DNN which is directly modeling the posterior proba-

bility of each character class. The other classifier is

designed using the so-called bottleneck features (BNF)

[5, 22, 19] which is widely used in speech recognition

area. Those two classifiers demonstrate the superiority

to the prototype-based classifier in both recognition ac-

curacy and compactness of the recognizer.

The remainder of the paper is organized as follows.

In Section 2, we give a system overview of our pro-
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Figure 1. Overall development flow and architecture.
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posed approach. In Section 3, we present the detailed

description of three classifiers. In Section 4, we report

experimental results. Finally we conclude the paper in

Section 5.

2. System Overview

An overall system development flow and architec-

ture is illustrated in Fig. 1. Three classifiers, namely

prototype-based classifier, deep neural network based

classifier, and bottleneck-feature based classifier, are

designed and compared. In the training stage, first a

raw feature vector is extracted from each training sam-

ple [1], which is followed by LDA (linear discrimi-

nant analysis) transformation to obtain a lower dimen-

sional feature vector. After that, the prototype-based

classifier is constructed by using LBG clustering algo-

rithm [16], which is then refined by SSM-MCE train-

ing with an Rprop algorithm [13] while deep neural

network based classifier is initialized using RBM (re-

stricted Boltzmann machine) pre-training and then fine-

tuned based on the cross-entropy criterion. As for the

BNF-based classifier, a DNN with a bottleneck layer

(BNF-DNN) is trained first. Then new bottleneck fea-

tures are generated via BNF-DNN, which are fed to

the prototype-based classifier training. At the recogni-

tion stage, with the feature vector extracted from the

unknown sample, the normal recognition is performed

based on prototype-based classifier or DNN-based clas-

sifier while an additional bottleneck feature generation

step is needed for BNF-based classifier.

3. Classifiers Description

3.1. Prototype-based classifier

Suppose our classifier can recognize 𝑀 character

classes denoted as {𝐶𝑖∣𝑖 = 1, ...,𝑀}. For a multi-

prototype based classifier, each class 𝐶𝑖 is represented

by 𝐾𝑖 prototypes, 𝜆𝑖 = {m𝑖𝑘 ∈ ℛ𝐷∣𝑘 = 1, ...,𝐾𝑖},
where m𝑖𝑘 is the 𝑘th prototype of the 𝑖th class. Let’s

use Λ = {𝜆𝑖} to denote the set of prototypes. In the

classification stage, a feature vector y ∈ ℛ𝐷 is first ex-

tracted. Then y is compared with each of the 𝑀 classes

by evaluating a Euclidean distance based discriminant

function for each class 𝐶𝑖 as follows

𝑔𝑖(y;𝜆𝑖) = −min
𝑘
∥ y −m𝑖𝑘 ∥2 . (1)

The class with the maximum discriminant function

score is chosen as the recognized class 𝑟(y;Λ), i.e.,

𝑟(y;Λ) = argmax
𝑖

𝑔𝑖(y;𝜆𝑖) . (2)

Figure 2. Deep neural network.

In the training stage, given a set of training feature

vectors𝒴 = {y𝑟 ∈ ℛ𝐷∣𝑟 = 1, ..., 𝑅}, first we initialize

Λ by LBG clustering [16]. Then Λ can be re-estimated

by minimizing the following SSM-MCE objective func-

tion:

𝑙(𝒴;Λ) =
1

𝑅

𝑅∑

𝑟=1

1

1 + exp[−𝛼𝑑(y𝑟;Λ) + 𝛽]
(3)

where 𝛼, 𝛽 are two control parameters, and 𝑑(y𝑟;Λ) is

a misclassification measure defined by using a so-called

sample separation margin (SSM) as follows [7]:

𝑑(y𝑟;Λ) =
−𝑔𝑝(y𝑟;𝜆𝑝) + 𝑔𝑞(y𝑟;𝜆𝑞)

2 ∥m𝑝𝑘̂ −m𝑞𝑘 ∥
(4)

where

𝑘 = argmin
𝑘
∥ y𝑟 −m𝑝𝑘 ∥2 (5)

𝑞 = arg max
𝑖∈ℳ𝑟

𝑔𝑖(y𝑟;𝜆𝑖) (6)

𝑘 = argmin
𝑘
∥ y𝑟 −m𝑞𝑘 ∥2 (7)

and ℳ𝑟 is the hypothesis space for the 𝑟th sample, ex-

cluding the true label 𝑝.

To optimize the objective function in Eq. (3), the

same implementation of Rprop algorithm as described

in [3] is adopted here.

3.2. Deep neural network based classifier

A deep neural network is a feed-forward, artificial

neural network that has more than one layer of hidden

units between its inputs and outputs [9]. In this work,

DNN is adopted for classification to model the posterior
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probability of the character class. The DNN training is

illustrated in Fig. 2, which consists of generative pre-

training and supervised fine-tuning.

The pre-training procedure treats each consecutive

pair of layers as a RBM [10] whose joint probability is

defined as:

𝑝(𝒗,𝒉) =
1

𝑍
exp{−𝐸(𝒗,𝒉)} (8)

where 𝒗 and 𝒉 denote the observable variables and

latent (hidden) variables, respectively. 𝐸 is an en-

ergy function and 𝑍 is the partition function to ensure

𝑝(𝒗,𝒉) is a valid probability distribution. If both 𝒗 and

𝒉 are binary states, i.e., the Bernoulli-Bernoulli RBM,

the energy function is given by

𝐸(𝒗,𝒉) = −(𝒃⊤𝑣 𝒗 + 𝒃⊤ℎ 𝒉+ 𝒗⊤𝑾 𝑣ℎ𝒉) (9)

where 𝒃𝑣 , 𝒃ℎ are bias vectors of 𝒗 and 𝒉 respectively,

and 𝑾 𝑣ℎ is the weight matrix between them. If 𝒗
is real-valued data and 𝒉 is binary, i.e., the Gaussian-

Bernoulli RBM, the energy function is:

𝐸(𝒗,𝒉) =
1

2
(𝒗 − 𝒃𝑣)

⊤(𝒗 − 𝒃𝑣)− 𝒃⊤ℎ 𝒉− 𝒗⊤𝑾 𝑣ℎ𝒉 (10)

where we assume that the visible units follow the Gaus-

sian noise model with an identity covariance matrix if

the input data are pre-processed by mean and variance

normalization.

The RBM parameters can be efficiently trained in

an unsupervised fashion by maximizing the likelihood

over training samples of visible units with the approxi-

mate contrastive divergence algorithm [10]. As for our

DNN, a Gaussian-Bernoulli RBM is used for the first

layer while a pile of Bernoulli-Bernoulli RBMs can be

stacked behind the Gaussian-Bernoulli RBM. Then the

parameters of RBMs can be trained layer-by-layer. Hin-

ton et al. indicate that this greedy layer-wise unsuper-

vised learning procedure always helps over the tradi-

tional random initialization.

After pre-training for initializing the weights of the

first several layers, a supervised fine-tuning of the pa-

rameters in the whole neural network with the final out-

put layer is performed. For multiclass classification,

output unit 𝑗 converts its total input 𝑥𝑗 into a class prob-

ability 𝑝𝑗 by using the “softmax” non-linearity:

𝑝𝑗 =
exp(𝑥𝑗)∑
𝑘 exp(𝑥𝑘)

(11)

where 𝑘 is an index over all classes. Then the objective

function is the cross-entropy between the target prob

abilities 𝑝 and the outputs of the softmax 𝑝:

𝐶 = −
∑

𝑗

𝑝𝑗 log 𝑝𝑗 (12)

Figure 3. DNN for bottleneck features.

where the target probabilities, taking values of one or

zero, are the supervised information provided to train

the DNN classifier. As our task involves large training

samples, the objective function is optimized using back-

propagation procedure with stochastic gradient descent

in mini-batch mode. To address the over-fitting prob-

lem of DNN training, the dropout strategy in [12, 15]

is adopted. The main principle of dropout is randomly

omitting hidden units with certain probabilities on each

training case, which can be explained in two ways, one

is to prevent co-adaptations of the units, and the other is

to average the predictions of many different networks.

3.3. Bottleneck-feature based classifier

As shown in Fig. 3, bottleneck features [5, 22, 19]

can be generated from a DNN where one of the internal

layers (bottleneck layer) has a small number of hidden

units, relative to the size of the other layers. The bot-

tleneck layer creates a constriction in the network that

forces the information pertinent to classification into a

low dimensional representation. In this work, bottle-

neck features are created from a deep neural network

trained to predict character classes. The inputs to the

hidden units of the bottleneck layer are used as features

for prototype-based classifier. These bottleneck features

represent a nonlinear and discriminative transformation

of the input features. The training procedure of DNN

for bottleneck feature is almost the same as that de-

scribed in Section 3.2 except the dropout strategy as our

experiments show that dropout can not improve the per-

formance due to the small size of the bottleneck layer.
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4. Experiments and Results

The experiments are conducted on the task of rec-

ognizing isolated online handwritten characters with

a vocabulary of 15,167 character classes including 62

alphanumeric characters, 101 punctuation marks and

15,004 frequently used Chinese characters. For train-

ing, we totally use 14,846,606 character samples, about

1,000 samples per character class. There are 644,500

samples from 3,755 character classes in the testing set

which are written in regular style or cursive style. For

feature extraction, a 392-dimensional raw feature vec-

tor is extracted as described in [1], which is followed

by LDA transformation to obtain a 96-dimensional fea-

ture vector. For Rprop-based SSM-MCE training, the

setting of the control parameters can refer to [3]. The

tuning parameters of DNN are set according to [8]. To

handle the large-scale training data, the computations

of LBG clustering, SSM-MCE training with Rprop al-

gorithm are parallelized on the CPU cluster while DNN

training is implemented and optimized on GPUs.

Table 1 shows a performance comparison of systems

using prototype-based classifier with original features

under different settings of number of prototypes on the

testing set. “LBG” denotes a system trained using LBG

clustering while “SSM-MCE” refers to a system trained

by the SSM-MCE criterion. SSM-MCE systems con-

sistently and significantly outperform LBG systems on

the testing set with different number of prototypes. Ta-

ble 2 lists a performance comparison of systems using

BNF-based classifier under different settings of num-

ber of prototypes on the testing set. The DNN archi-

tecture for bottleneck feature is 96-1024-1024-1024-𝐾-

15167, which denotes that the sizes are 96 for input

layer, 1024 for three hidden layers, 𝐾 for bottleneck

layer, and 15167 for output layer. Three configura-

tions of 𝐾 (64, 96, 256) are compared, where BNF-

96 uses the same dimension as that of original feature

vector. For prototype-based classifier using bottleneck

features, SSM-MCE training can still yield significant

improvements over LBG clustering for all testing cases.

With the increased dimension of bottleneck feature vec-

tor, the recognition accuracies of the testing set also in-

crease monotonically under the same prototype setting.

By considering the tradeoff between recognition accu-

racy and the footprint (or size) of classifier, BNF-96 is

the best system which means BNF-64 is more compact

than BNF-96 but with observable performance degra-

dation while BNF-256 outperforms BNF-64 but with a

much bigger footprint. Compared with the results in

Table 1, BNF-based systems (e.g. BNF-96) always out-

perform the corresponding systems with original fea-

tures, especially for LBG clustering cases.

Table 1. Performance (recognition accu-
racies in %) comparison of systems us-
ing prototype-based classifier with origi-
nal features on the testing set.

#prototype 1 2 3 4

LBG 75.20 77.10 78.10 79.55

SSM-MCE 82.74 84.64 85.07 85.62

Table 2. Performance (recognition accura-
cies in %) comparison of systems using
BNF-based classifier on the testing set.

#prototype LBG SSM-MCE

1 80.13 84.76

BNF-64 2 81.23 85.32

4 82.10 85.74

1 80.94 85.33

BNF-96 2 81.97 85.83

4 82.84 86.28

1 81.11 85.37

BNF-256 2 82.26 85.99

4 83.22 86.65

Table 3 summarizes a performance comparison of

systems using three classifiers on the testing set. “Base-

line” denotes the SSM-MCE system with 4 proto-

types in Table 1. For the system footprint and la-

tency, the value is normalized to that of Baseline sys-

tem. “BNF-96-P1”, “BNF-96-P2”, “BNF-96-P4” rep-

resent the SSM-MCE trained BNF-96 systems in Ta-

ble 2 with 1 prototype, 2 prototypes, and 4 prototypes,

respectively. “DNN-96” and “DNN-1024” are the sys-

tems using DNN-based classifier where the architec-

tures are 96-1024-1024-1024-96-15167 and 96-1024-

1024-1024-15167, respectively. Based on those results,

we can observe that on top of the state-of-the-art Base-

line system, DNN-1024 system can achieve significant

improvements of recognition accuracy with an accept-

ably increased footprint and latency while BNF-96-P4

system can be considered as a tradeoff between Base-

line and DNN-1024 systems. Furthermore, BNF-96-

P2 system, with a smaller footprint and comparable la-

tency, still yields higher accuracy than Baseline system,

which indicates the compactness of BNF-based classi-

fier. Finally, with the same footprint and latency, BNF-

96-P1 system is superior to DNN-96 system in recog-

nition accuracy for the case of extremely compact and

efficient recognizer. Another advantage of BNF-based

classifier is that all the other techniques (e.g., writer

adaptation) can be directly applied.
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Table 3. Overall performance comparison
of systems using three classifiers on the
testing set.

Accuracy Footprint Latency

Baseline 85.62 1 1

BNF-96-P4 86.28 1.39 1.48

BNF-96-P2 85.83 0.89 0.98
BNF-96-P1 85.33 0.64 0.73

DNN-96 85.20 0.64 0.73

DNN-1024 88.53 3.04 3.10

5. Conclusion

In this work, we design compact classifiers using

deep neural networks for online handwritten Chinese

character recognition. Based on our experiments, com-

pared with the state-of-the-art prototype-based classi-

fier, bottleneck-feature based classifier can be made

more compact and efficient while deep neural network

based classifier can significantly improve the recogni-

tion accuracy with acceptably increased footprint and

latency for the development on the mobile device.
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