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ABSTRACT

Automatic speech recognition is more and more widely and effec-
tively used. Nevertheless, in some automatic speech analysis tasks
the state of the art is surprisingly poor. One of these is “diariza-
tion", the task of determining who spoke when. Diarization is key to
processing meeting audio and clinical interviews, extended record-
ings such as police body cam or child language acquisition data, and
any other speech data involving multiple speakers whose voices are
not cleanly separated into individual channels. Overlapping speech,
environmental noise and suboptimal recording techniques make the
problem harder. During the JSALT Summer Workshop at CMU in
2017, an international team of researchers worked on several aspects
of this problem, including calibration of the state of the art, detection
of overlaps, enhancement of noisy recordings, and classification of
shorter speech segments. This paper sketches the workshop’s results,
and announces plans for a “Diarization Challenge" to encourage fur-
ther progress.

Index Terms— diarization, overlap detection, speech enhance-
ment, automatic speech recognition

The research reported here was conducted at the 2017 Frederick Jelinek
Memorial Summer Workshop on Speech and Language Technologies, hosted
at Carnegie Mellon University and sponsored by Johns Hopkins University
with unrestricted gifts from Amazon, Apple, Facebook, Google, and Mi-
crosoft. This work used the Extreme Science and Engineering Discovery
Environment (XSEDE), which is supported by National Science Foundation
grant number OCI-1053575. Specifically, it used the Bridges system, which
is supported by NSF award number ACI-1445606, at the Pittsburgh Super-
computing Center (PSC).

1. INTRODUCTION

Digital audio is increasingly pervasive, and automatic speech recog-
nition is more and more widely and effectively used, for interac-
tive applications as well as for data mining and indexing of audio
archives. Nevertheless, the state of the art for some automatic speech
analysis tasks is surprisingly poor. One of these is “diarization", the
task of determining who spoke when.

Diarization is key to processing meeting audio and clinical in-
terviews, extended recordings such as police body cam or child lan-
guage acquisition data, and any other speech data involving multi-
ple speakers whose voices are not cleanly separated into individual
channels, including both audio archives and multi-speaker interac-
tive applications. Overlapping speech, environmental noise and sub-
optimal recording techniques make the problem harder. During the
JSALT Summer Workshop at CMU in 20171, an international team
of researchers worked on several aspects of this problem, including
calibration of the state of the art, detection of overlaps, enhance-
ment of noisy recordings, and the classification of shorter speech
segments.

In this paper we sketch the workshop’s results. We begin by cal-
ibrating the performance of existing approaches and variant forms of
those approaches (Section 3). An important background issue is the
choice of scoring techniques and scoring parameters – the methods
most commonly used in past diarization projects can give a over-
optimistic picture of system performance, since large unscored “col-
lars" at the edges of speech segments cause these methods to ignore
short speech segments that are critical in some applications. In addi-
tion, the decision to ignore overlapped speech, or to score any of the
simultaneous speakers as correct, can be a problem in highly inter-

1https://www.lti.cs.cmu.edu/2017-jelinek-workshop
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Fig. 1. Box-and-whiskers plots of recording level DER as a function of number of target clusters across four corpora for the VBDiarization
system.

active conversations. We discuss how to avoid these problems, and
present open-source code implementing several alternative scoring
techniques and scoring parameterizations (Section 2).

Workshop researchers also explored several novel approaches to
improving diarization. One of these projects explored the value in
diarization tasks of speech enhancement via deep recurrent autoen-
coders (Section 4). Another project worked on improving the state-
of-the-art in overlap detection (Section 5). Still another explored
improvements to multi-channel far-field acoustic modeling using 3-
D convolutional networks (Section 6). We also explored the idea that
a functional analysis of (stochastic) conversational dynamics might
help in performing the diarization task, as well as providing informa-
tion of value in its own right. And finally, we explored the potential
value of human-in-the-loop architectures, where a relatively small
amount of human judgment can be used to improve performance by
seeding a system with relevant training segments, constraining the
number of speakers, or evaluating system-proposed segment clus-
ters.

A wide variety of datasets were used in these explorations,
including the AMI meeting corpus [1], a soon-to-be-published
collection of Autism Diagnostic Observation Schedule (ADOS) in-
terviews [2], henceforth referred to as ADOS, three collections of
day-long child language acquisition recordings [3, 4, 5], a soon-
to-be-published collection of broadcast interviews (YouthPoint),
and a sample of neuropsychological testing interviews from the
Framingham Heart Study (FHS) [6].

Progress in recent years on corpora such as CALLHOME[7],
where diarization error rates (DER) have fallen below 10% [8], have
lead some researchers to view diarization as a problem that, if not
solved, is mostly solved. And for corpora such as CALLHOME,
which consist of relatively clean conversational telephone speech,
performance is indeed quite good. However, performance degrades
markedly for other domains, as is clearly illustrated by Fig. 1,
which depicts DER of one freely available, competitive i-vector
based diarization system, VBDiarization2, as a function of the target
number of clusters on four corpora: the single distance microphone

2https://github.com/Jamiroquai88/VBDiarization

(SDM) condition of AMI, YouthPoint, Seedlings, and ADOS. For
the latter two, which include abundant child speech, diarization
is abysmal and even for YouthPoint, which consists of wideband,
cleanly recorded interview speech and should be relatively easy,
DER is poor for many recordings.

Given the success of diarization on CALLHOME and the rel-
atively low error rates in recent Speaker Recognition Evaluations
(SRE), this might surprise some researchers. So, as a test, we treated
diarization as a speaker verification problem, by taking all utterances
from the (gold standard transcription of the) AMI Dev meetings that
are at least 3 seconds long, and using a state-of-the-art i-vector-based
system to evaluate whether the two members of each pair came from
the same speaker or not. Equal error rates ranged from 17.5% to
26.3%, depending on which microphones were used. For shorter
segments, the performance is expected to be lower, because i-vector
techniques become increasingly unstable as shorter windows are an-
alyzed. More than 78% of the speech segments in the ADOS inter-
views are shorter than 3 seconds, and almost 30% are shorter than 1
second. In the FHS interviews, the proportion of short speech seg-
ments is even higher. And as the speech segments to be classified
get shorter, we predict that the performance of i-vector based SRE
techniques will fall nearly to chance level.

2. SCORING METRICS

The evaluation metric most commonly used for this task is “Diariza-
tion Error Rate" (DER) [9], which implements the simple and intu-
itive idea of measuring the fraction of analysis frames that are not
correctly attributed, whether to a speaker or to non-speech. We have
used this metric in reporting many of our results, given its status as
the standard. However, there are several problems with this metric.
First, the metric involves an unscored “collar" around the edges of
speech segments, by default 250 ms, to allow inexactness of seg-
ment boundaries. This means that segments shorter than 500 ms
are not scored at all, and longer segments are only partially scored.
Second, the metric ignores overlapped speech, which may constitute
a significant percentage of highly-interactive conversation (e.g. 30-
50% of speech segments and about 12% of audio frames in the NIST
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DER tauYX B3Prec B3Rec B3F1 H(X|Y)
DER 1.000 0.784 0.752 0.168 0.665 0.667
tauYX 0.784 1.000 0.995 0.459 0.959 0.973
B3Prec 0.752 0.995 1.000 0.469 0.996 9.988
B3Rec 0.168 0.459 0.469 1.000 0.677 0.514
B3F1 0.665 0.959 0.966 0.677 1.000 0.970
H(X|Y) 0.667 0.973 0.988 0.514 0.970 1.000

Table 1. Absolute value of correlation matrix for metrics in 100
ADOS Interviews (X=reference labeling and Y=system labeling).

meeting corpus [10]. And third, as Fig. 1 illustrates, the metric’s re-
sults are highly unstable as a function of the number of hypothesized
speakers, which itself is hard to get right. For example, a system that
splits the frames belonging to a particular speaker into two equal but
pure sets will get the same score as a system that assigns half of that
speaker’s frames to other random speakers or to non-speech.

Therefore we explored three other metrics. The first one is
Goodman & Kruskal’s tau [11], which estimates the fraction of
variability in the categorical variable A that can be explained by the
corresponding values of the categorical variable B. In our case this
is the fraction of variability in the sequence of reference (“gold")
speaker labels that can be explained by the sequence of hypothe-
sized (“system") speaker labels. The second new metric is B-cubed
[12] – given analysis frame Fi in hypothesized speaker category C
with true speaker S, we define that frame’s B-cubed precision as the
proportion of all frames in C that correspond to S, and that frame’s
B-cubed recall as the proportion of all frames from speaker S that
are in category C. Overall B-cubed Precision and Recall are then
the mean precision and recall of all frames, and the overall B-cubed
F-measure is the usual harmonic mean of precision and recall. Our
third new diarization metric is simply Conditional Entropy, where
H(X|Y) is the entropy of the discrete random variable X given the
discrete random variable Y. In this case, X is the sequence of true
frame-wise speaker labels, and Y is the sequence of hypothesized
speaker labels.

As Table 1 shows, there is a high correlation between the tau, B-
cubed F1, and Conditional Entropy measures. We’ve implemented
all four of these diarization metrics in an open-source suite of Python
tools available on GitHub3.

3. IMPROVEMENTS IN I-VECTOR BASED DIARIZATION

We explored improvements to a state-of-the-art i-vector based di-
arization system similar to that of [8], which uses overlapping
1.5 second sliding-window i-vectors reduced with a conversation-
dependent PCA and scored via probabilitistic linear discriminant
analysis (PLDA) [13]. The i-vector extractor and PLDA were
trained on 80 hours of the SDM condition of the AMI meeting
corpus using a 3 second window size to encourage more stable
i-vectors. Segmentation was performed using agglomerative hi-
erarchical clustering (AHC) using an adaptive stopping criterion
[13].

Since diarization is highly sensitive to the input speech segmen-
tation, we chose to omit speech activity detection and instead use the
oracle segmentation throughout the workshop. For similar reasons,
we also omitted a final resegmentation stage. On the AMI SDM
condition, the baseline system achieves a DER of 18.77%.

Long windows were found to improve the quality of the PLDA,

3https://github.com/nryant/dscore

despite this resulting in a mismatch between the window sizes of
i-vectors seen in training and testing. During one experiment, we
varied the extraction window from 10 to 180 seconds by combining
speech segments in the training data. Performance was found to be
highest with PLDA windows of 180 seconds: 17.68% DER.

We also examined the impact of training set size, by retrain-
ing the i-vector extractor on a large corpus of non-AMI wideband
speech comprising SRE08, parts of Mixer 6 [14], and VoxCeleb [15].
Despite the resulting mismatched train/test conditions this caused,
training the i-vector extractor on the external set exclusively reduced
DER on AMI to 14.29%, a relative reduction in error of 23.87%
compared to the baseline.

Recently, DNN embeddings have been proposed as an alterna-
tive to i-vectors for speaker representation [8], especially for shorter
segments. Given that AMI contains a large proportion of short seg-
ments, which are known to be problematic for i-vectors, we also ex-
amined the impact of switching to DNN embeddings. Alone, DNN
embeddings do about as well as more traditional i-vectors, 14.37%
as compared to 14.29%, when trained on the same external corpus.
However, the DNN embeddings appear to learn structure that is com-
plementary to that learned by i-vectors. A fusion of the two repre-
sentations yield large reductions in error compared to either repre-
sentation alone. In a system using both i-vector and DNN features,
DER on the AMI SDM condition is reduced to 9.84%, a relative
reduction in error of 48.4% compared to the baseline and 31.14%
compared to either representation alone.

4. SPEECH ENHANCEMENT

Traditional approaches to speech enhancement such as short term
spectral amplitude (STSA) estimation [16] or a priori signal-to-
noise (PSNR) estimation [17] are unable to effectively deal with
non-stationary noise sources, rendering them insufficient for many
real world speech environments. Moreover, the resulting speech
often suffers from “musical noise” artifacts [18], which can actually
reduce system performance. For instance, on the AMI corpus in
the SDM condition, when using DiarTK [19] and the oracle number
of speakers, DER rises from 29.73% 30.55% with STSA and to
36.06% with PSNR!

Recent work [20, 21, 22] has sought to overcome these deficits
using supervised deep learning methods. See, for instance, [22], who
train a long short-term memory (LSTM) [23] based autoencoder to
reconstruct clean log power spectra from noisy spectra. When ap-
plied prior to diarization, these deep speech enhancement techniques
reliably lead to lower DER. Indeed, on the SDM condition of AMI,
the LSTM-DM model of [22] achieves a relative reduction in DER of
2.42%, despite the extreme mismatch between training and test con-
ditions (trained on nearfield read newswire speech/tested on farfield
meeting speech). ADOS represents a yet more extreme train/test
mismatch given the presence of abundant child speech, totally absent
during training, yet LSTM enhancement is able to realize a relative
reduction of 10.15% in DER even for this corpus.

During the workshop we further improved LSTM-based en-
hancement with three modifications to the LSTM-DM model. First,
following [21] intermediate targets are introduced into the network
so that it must achieve progressively larger SNR gains at higher lev-
els; that is, if the noisy input is 0 dB, the network has intermediate
targets at 10 dB and 20 dB in addition to clean speech. Second,
we utilize multitarget learning (MTL) [20], forcing the network to
both reconstruct denoised signals AND predict the ideal ratio mask
(IRM) [24]. Third, we borrow from computer vision by utilizing a
DenseNet [25] inspired structure which connects each layer to every

5156



other layer in a feed-forward fashion . The resultant model achieves
relative reductions in DER of 5.9% for AMI and 11.46% for ADOS.
Compared to the simpler LSTM-DM model, these represent reduc-
tions of 3.56% and 1.47% relative. The network is implemented in
CNTK and will be released as an open source tool.

5. OVERLAP DETECTION

The presence of overlapping speech in audio recordings poses a great
challenge for many speech applications such as automatic speech
recognition (ASR) [26], speaker identification (SID) and speaker di-
arization. For instance, speaker diarization relies on agglomerative
clustering of i-vector features extracted from speech segments, each
of which is assumed to come from a single speaker. When speech
is overlapped within a segment and this remains undetected, the ex-
tracted i-vector comes from a different distribution, which poses ob-
vious problems for clustering. As anywhere between 30% and 50%
of segments (and 10-13% of all frames) in conversational speech –
for instance, CALLHOME, the NIST meeting corpora, and AMI –
are overlapped, undetected and unhandled overlapped speech consti-
tutes a major source of error.

While ideally a system would not only detect overlap but also
perform source separation to tease out the individual speakers,
source separation is challenging in practice and in many cases the
mere detection and omission of overlapped regions is sufficient to
achieve reduced error rates [27]. For instance, on AMI, we observe
a 27.55% reduction in DER (relative) for the baseline from Section
3 when overlaps are removed prior to diarization. However, the
state-of-the-art in this area remains well below acceptable levels
for use in a processing pipeline; see, for instance, [28], who re-
port 67 % precision and 34% recall on synthetic overlapped speech
produced by combining TIMIT [29] utterances. During the work-
shop, we explored a constellation of models for overlap detection,
first in the context of artificial overlaps produced using TIMIT ut-
terances in a way similar to [28], then with meeting speech taken
from the SDM condition of the AMI corpus. A variety of input
features were considered, including Mel filterbanks, gammatone
filterbanks, kurtosis of the power spectrum, and Wiener entropy. We
also investigated a number of different acoustic model architectures,
including diagonal covariance gaussian mixture models (GMMs),
fully-connected neural networks, shallow convolutional neural net-
works (CNNs), long short-term memory (LSTM) networks, and
convolutional long short-term memory, fully-connected deep neural
networks (CLDNN) [30].

The best performance for the synthetic TIMIT overlap data
was achieved using Mel filterbank features and an architecture con-
sisting of a unidirectional LSTM and three fully connected layers.
On TIMIT, this model achieved frame-level accuracy of 73.7% for
non-overlapped speech and 83.1% for overlapped speech. Perfor-
mance on the AMI SDM data was not quite as good, but the model
still achieved a frame-level accuracy of 77.0% for non-overlapped
speech and 68.0% for overlapped speech. Further improvements
were achieved by adding a 3-state HMM on top of the acoustic
model and using Viterbi decoding, resulting in 87.9% accuracy for
non-overlapped speech and 71% accuracy for overlapped speech.
Most importantly, when utilized as part of a preprocessing stage for
a variant of the diarization system described in Section 3, DER on
AMI was reduced from 19.4% to 15.2%, a relative improvement of
21.7%. More details on overlap detection can be found in [31].

6. MULTI-CHANNEL FAR-FIELD ASR

Even with the recent advancements on ASR, the recognition of far-
field multi-speaker conversational speech is quite challenging. The
problem arises mainly due to the artifacts present in the signal caused
by reverberation as well as the presence of multiple speakers. The
conventional method is to enhance the signal using delay-sum beam-
forming followed a single channel ASR system. During the work-
shop, we proposed a three-dimensional CNN architecture for multi-
channel far-field ASR. The proposed architecture consists of a front-
end that utilizes the time-frequency-channel dimensions of the input
spectrogram to derive representations that are fed to a unidirectional
LSTM. The models are trained with regularized version of sequence
discriminative lattice-free maximum mutual information (MMI) cost
function. Experiments are performed on the AMI database using
the first three channels from the MDM condition microphone ar-
ray. The proposed methods show significant improvements over the
baseline system that uses beamforming of the multi-channel audio
along with a 2-D conventional CNN framework (absolute improve-
ments of 1.1% over the best beamformed baseline system on AMI
dataset). More details of various ASR experiments can be found in
[32]. These experiments suggest that end-to-end modeling with the
ASR cost function may be more optimal than the conventional two-
stage design of a beamforming method followed by a ASR acoustic
modeling stage.

7. CONCLUSION

During the JSALT 2017 summer workshop, we explored several new
approaches to diarization, and made some improvements in standard
methods. But as we expected, the general problem is by no means
solved. So to encourage further progress, we have organized a new
annual diarization challenge, DIHARD, the first of which is being
held in conjunction with Interspeech 2018. The goals of this chal-
lenge are threefold: (1) to create an evaluation set drawn from a
diverse set of challenging domains; (2) to establish a baseline of
performance for existing diarization technologies on this set; (3) to
release the reference data and results for continued research after the
evaluation to encourage further testing and development.

DIHARD will focus on “hard” diarization in challenging cor-
pora where the expectation is that current state-of-the-art will fare
poorly. The materials will consist of short (5-10 minute) single-
channel recordings involving various numbers of speakers from a
wide variety of domains, including clinical interviews, child lan-
guage recordings, business meetings, web video, conversations in
restaurants, courtroom discussions, sociolinguistic interviews, and
audiobooks. Two tracks are supported: (1) given the audio and a ref-
erence SAD, perform diarization; (2) given only the audio, perform
diarization from scratch. Both tracks will be evaluated in terms of
DER and frame-wise mutual information.

Future Challenges might include such things as the use of mul-
tiple audio channels, analysis of conversational dynamics, grounded
diarization where (a smaller or larger amount of) training material
is provided for some speakers, evaluation of human-in-the-loop effi-
ciency for alternative methods, and so on.
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