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Abstract—In this paper, we show that, in vector-to-vector regres-
sion utilizing deep neural networks (DNNs), a generalized loss of
mean absolute error (MAE) between the predicted and expected
feature vectors is upper bounded by the sum of an approximation
error, an estimation error, and an optimization error. Leveraging
upon error decomposition techniques in statistical learning theory
and non-convex optimization theory, we derive upper bounds for
each of the three aforementioned errors and impose necessary
constraints on DNN models. Moreover, we assess our theoretical
results through a set of image de-noising and speech enhancement
experiments. Our proposed upper bounds of MAE for DNN based
vector-to-vector regression are corroborated by the experimental
results and the upper bounds are valid with and without the “over-
parametrization” technique.

Index Terms—Deep neural network, mean absolute error, vector-
to-vector regression, non-convex optimization, image de-noising,
speech enhancement.

I. INTRODUCTION

V ECTOR-TO-VECTOR regression, also known as multi-
variate regression, provides an effective way to find un-

derlying relationships between input vectors and their corre-
sponding output ones at the same time. The problems of vector-
to-vector regression are of great interest in signal processing,
wireless communication, and machine learning communities.
For example, speech enhancement aims at finding a vector-to-
vector mapping to convert noisy speech spectral vectors to the
clean ones [1], [2]. Similarly, clean images can be extracted
from the corrupted ones by leveraging upon image de-noising
techniques [3]. Besides, wireless communication systems are
designed to transmit local encrypted and corrupted codes to
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targeted receivers with decrypted information as correct as pos-
sible [4], [5]. Moreover, the vector-to-vector regression tasks are
also commonly seen in ecological modeling, natural gas demand
forecasting, and drug efficacy prediction domains [6].

The vector-to-vector regression can be theoretically formu-
lated as follows: given a d-dimensional input vector space R

d

and a measurable q-dimensional output vector spaceRq, the goal
of vector-to-vector regression is to learn a functional relation-
ship f : Rd → R

q such that the output vectors can approximate
desirable target ones. The regression process is described as:

y = f(x) + e, (1)

where x ∈ R
d, y ∈ R

q , e is an error vector, and f refers to the
regression function to be exploited. To implement the regression
function f , linear regression [7] was the earliest approach and
several other methods, such as support vector regression [8]
and decision tree regressions [9], were further proposed to
enhance regression performance. However, deep neural net-
works (DNN) [10], [11] with multiple hidden layers offer a
more efficient and robust solution to dealing with large-scale
regression problems. For example, our previous experimental
study [12] demonstrated that DNNs outperform shallow neural
networks on speech enhancement. Similarly, auto-encoders with
deep learning architectures can achieve better results on image
de-noising [13].

Although most endeavors on DNN based vector-to-vector
regression focus on the experimental gain in terms of mapping
accuracy, the related theoretical performance of DNN has not
been fully developed. Our recent work [14] tried to bridge the
gap by analyzing the representation power of DNN based vector-
to-vector regression and deriving upper bounds for different
DNN architectures. However, those bounds particularly target
experiments with consistent training and testing conditions, and
they may not be adapted to the experimental tasks where unseen
testing data are involved. Therefore, in this work, we focus on
an analysis of the generalization power and investigate upper
bounds on a generalized loss of mean absolute error (MAE) for
DNN based vector-to-vector regression with mismatched train-
ing and testing scenarios. Moreover, we associate the required
constraints with DNN models to attain the upper bounds.

The remainder of this paper is organized as follows: Section II
highlights the contribution of our work and its relationship with
the related work. Section III underpins concepts and notations
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used in this work. Section IV discusses the upper bounds on
MAE for DNN based vector-to-vector regression by analyzing
the approximation, estimation, and optimization errors, respec-
tively. Section V presents how to utilize our derived upper
bounds to estimate practical MAE values. Section VI shows the
experiments of image de-noising and speech enhancement to
validate our theorems. Finally, Section VII concludes our work.

II. RELATED WORK AND CONTRIBUTION

The recent success of deep learning has inspired many studies
on the expressive power of DNNs [15]–[18], which extended
the original universal approximation theory on shallow artificial
neural networks (ANNs) [19]–[23] to DNNs. As discussed
in [24], the approximation error is tightly associated with the
DNN expressive power. Moreover, the estimation error and
optimization error jointly represent the DNN generalization
power, which can be reflected by error bounds on the out-of-
sample error or the testing error. The methods of analyzing DNN
generalization power are mainly divided into two classes: one
refers to algorithm-independent controls [25]–[27] and another
one denotes algorithm-dependent approaches [28], [29]. In the
class of algorithm-independent controls, the upper bounds for
the estimation error are based on the empirical Rademacher com-
plexity [30] for a functional family of certain DNNs. In practice,
those approaches concentrate on techniques of how weight reg-
ularization affects the generalization error without considering
advanced optimizers and the configuration of hyper-parameters.
As for the algorithm-dependent approaches [28], [29], several
theoretical studies focus on the “over-parametrization” tech-
nique [31]–[34], and they suggest that a global optimal point
can be ensured if parameters of a neural network significantly
exceed the amount of training data during the training process.

We notice that the generalization capability of deep models
can also be investigated through the stability of the optimization
algorithms. More specifically, an algorithm is stable if a small
perturbation to the input does not significantly alter the output,
and a precise connection between stability and generalization
power can be found in [35], [36]. Besides, in [37]–[39], the
authors investigate the stability and oscillations of various com-
petitive neural networks from the perspective of equilibrium
points. However, the analysis of the stability of the optimization
algorithm is out of the scope of the present work, and we do not
discuss it further in this study.

In this paper, the aforementioned issues are taken into account
by employing the error decomposition technique [40] with re-
spect to an empirical risk minimizer (ERM) [41], [42] using three
error terms: an approximation error, an estimation error, and an
optimization error. Then, we analyze generalized error bounds
on MAE for DNN based vector-to-vector regression models.
More specifically, the approximation error can be upper bounded
by modifying our previous bound on the representation power of
DNN based vector-to-vector regression [14]. The upper bound
on the estimation error relies on the empirical Rademacher
complexity [30] and necessary constraints imposed upon DNN
parameters. The optimization error can be upper bounded by
assumingγ-Polyak-Lojasiewicz (γ-PL) [43] condition under the

“over-parameterization” configuration for neural networks [44],
[45]. Putting together all pieces, we attain an aggregated upper
bound on MAE by summing the three upper bounds. Further-
more, we exploit our derived upper bounds to estimate practical
MAE values in experiments of DNN based vector-to-vector
regression.

We use image de-noising and speech enhancement experi-
ments to validate the theoretical results in this work. Image
de-noising is a simple regression task from [0, 1]d to [0, 1]d,
where the configuration of “over-parametrization” can be simply
satisfied on datasets like MNIST [46]. Speech enhancement is
another useful illustration of the general theoretical analysis
because it is an unbounded conversion fromR

d → R
q . Although

the “over-parametrization” technique could not be employed in
the speech enhancement task due to a significantly huge amount
of training data, we can relax the “over-parametrization” setup
and solely assume the γ-PL condition to attain the upper bound
for MAE. In doing so, the upper bound can be adopted in
experiments of speech enhancement.

III. PRELIMINARIES

A. Notations

• f ◦ g: The composition of functions f and g.
• ||v||p: Lp norm of the vector v.
• 〈x,y〉 and xTy: Inner product of two vectors x and y.
• [q]: An integer set {1, 2, 3, . . ., q}.
• ∇f : A first-order gradient of function f .
• E[X]: Expectation over a random variable X .
• wj : The j-th element in the vector w.
• fv: DNN based vector-to-vector regression function.
• gu: Smooth ReLU function.
• 1: A vector of all ones.
• 1m: Indicator vector of zeros but with the m-th dimension

assigned to 1.
• R

d: d-dimensional real coordinate space.
• F: A family of the DNN based vector-to-vector functions.
• L: A family of generalized MAE loss functions.

B. Numerical Linear Algebra

• Hölder’s inequality: Let p, q ≥ 1 be conjugate: 1
p + 1

q = 1.
Then, for all x,y ∈ R

n,

|〈x,y〉| ≤ ||x||p||y||q, (2)

with equality when |yi| = |xi|p−1 for all i ∈ [N ]. In par-
ticular, when p = q = 2, Hölder’s inequality becomes the
Cauchy-Shwartz inequality.

C. Convex and Non-Convex Optimization

• A function f is β-Lipschitz continuous if ∀x,y ∈ R
n,

||f(x)− f(y)|| ≤ β||x− y||. (3)

• Let f be a β-smooth function on R
n. Then, ∀x,y ∈ R

n,

f(x)− f(y) ≤ ∇f(y)T (x− y) +
β

2
||x− y||22. (4)
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• A function f satisfies the γ-Polyak-Lojasiewicz (γ-PL)
condition [43]. Then, ∀x ∈ R

n,

||∇f(x)||22 ≥ γ(f(x)− f ∗). (5)

where f ∗ refers to the optimal value over the input do-
main. The γ-PL condition is a significant property for a
non-convex function f because a global minimization can
be attained from ∇f(x) = 0, and a local minimum point
corresponds to the global one. Furthermore, if a function
is convex and also satisfies γ-PL condition, the function is
strongly convex.

• Jensen’s inequality: LetX be a random vector taking values
in a non-empty convex setK ⊂ R

n with a finite expectation
E[X], and f be a measurable convex function defined over
K. Then, E[X] is in K, E[f(X)] is finite, and the following
inequality holds

f(E[X]) ≤ E[f(X)]. (6)

D. Empirical Rademacher Complexity

Empirical Rademacher complexity [30] is a measure of how
well the function class correlates with the Rademacher random
value. The references [24], [47], [48] show that a function class
with a larger empirical Rademacher complexity is more likely
to be overfitted to the training data.

Definition 1: A Rademacher random variable takes on values
±1 and is defined by the uniform distribution as:

σi =

{
1, with probability 1

2

−1, with probability 1
2 .

(7)

Definition 2: The empirical Rademacher complexity of a
hypothesis space H of functions h : Rn → R with respect to
N samples S = {x1,x2, . . .,xN} is:

R̂S(H) := Eσ

[
sup
h∈H

1

N

N∑
i=1

σih(xi)

]
, (8)

where σ = {σ1, σ2, . . . , σN} indicates a set of N Rademacher
random variables.

Lemma 1 (Talagrand’s Lemma [49]): Let Φ1, . . .,ΦN be L-
Lipschitz functions and σ1, . . ., σN be Rademacher random
variables. Then, for any hypothesis space H of functions h :
R

n → R with respect to N samples S = {x1,x2, . . .,xN}, the
following inequality holds

1

N
Eσ

[
sup
h∈H

N∑
i=1

σi(Φi ◦ h)(xi)

]
≤ L

N
Eσ

[
sup
h∈H

N∑
i=1

σih(xi)

]

= LR̂S(H). (9)

E. MAE and MSE

Definition 3: MAE measures the average magnitude
of absolute differences between N predicted vectors
S = {x1,x2, . . .,xN} and N actual observations S∗ =
{y1,y2, . . .,yN}, which is related to L1 norm (|| · ||1) and the

corresponding loss function is defined as:

LMAE(S, S
∗) =

1

N

N∑
i=1

||xi − yi||1. (10)

Mean Squared Error (MSE) [50] denotes a quadratic scoring
rule that measures the average magnitude of N predicted vec-
tors S = {x1,x2, . . .,xN} and N actual observations S∗ =
{y1,y2, . . .,yN}, which is related to L2 norm (|| · ||2) and the
corresponding loss function is shown as:

LMSE(S, S
∗) =

1

N

N∑
i=1

||xi − yi||22. (11)

IV. UPPER BOUNDING MAE FOR DNN BASED

VECTOR-TO-VECTOR REGRESSION

This section derives the upper bound on a generalized loss
of MAE for DNN based vector-to-vector regression. We first
discuss the error decomposition technique for MAE. Then, we
upper bound each decomposed error, and attain an aggregated
upper bound on MAE.

A. Error Decomposition of MAE

Based on the traditional error decomposition approach [49],
[51], we generalize the technique to the DNN based vector-to-
vector regression, where the smooth ReLU activation function,
the regression loss functions, and their associated hypothesis
space are separately defined in Definition 4.

Definition 4: A smooth vector-to-vector regression function
is defined as f ∗

v : Rd → R
q , and a family of DNN based

vector-to-vector functions is represented as F = {fv : Rd →
R

q}, where a smooth ReLU activation is given as:

gu(x) = lim
t→∞

ln(1 + exp(tx))

t
. (12)

Moreover, we assume L = {L(fv, f ∗
v) : R

d × R
d → R, fv ∈

F} as the family of generalized MAE loss functions. For sim-
plicity, we denote L(fv, f ∗

v) as L(fv). Besides, we denote D as
a distribution over Rd.

The following proposition bridges the connection of
Rademacher complexity between the family L of generalized
MAE loss functions and the family F of DNN based vector-to-
vector functions.

Proposition 1: For any sample set S = {x1, . . .,xN} drawn
i.i.d. according to a given distribution D, the Rademacher com-
plexity of the family L is upper bounded as:

R̂S(L) ≤ R̂S(F), (13)

where R̂S(F) denotes the empirical Rademacher complexity
over the family F, and it is defined as:

R̂S(F) = Eσ

[
1

N
sup
fv∈F

N∑
i=1

(σi1)T fv(xi)

]
. (14)

Proof: We first show that MAE loss function is 1-Lipschitz
continuous. For two vectors y1,y2 ∈ R

q and a fixed vector y ∈

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on November 29,2020 at 22:44:09 UTC from IEEE Xplore.  Restrictions apply. 



3414 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 68, 2020

R
q , the MAE loss difference is

|L(y1,y)− L(y2,y)|
= |||y1 − y||1 − ||y2 − y||1|
≤ ||y1 − y2||1 (triangle inequality).

(15)

Since the target function f ∗
v is given, L(fv) ∈ L is 1-Lipschitz.

By applying Lemma 1, we obtain that

R̂S(L) =
1

N
Eσ

[
sup
fv∈F

N∑
i=1

σiL(fv(xi))

]

=
1

N
Eσ

[
sup
fv∈F

N∑
i=1

σiL
(

q∑
m=1

〈1m, fv(xi)〉1m

)]

≤ 1

N
Eσ

[
sup
fv∈F

N∑
i=1

(σi1)
T fv(xi)

]
= R̂S(F). (16)

�
Since R̂S(F) is an upper bound of R̂S(L), we can utilize

the upper bound on R̂S(L) to derive the upper bound for
R̂S(F). Next, we adopt the error decomposition technique to
attain an aggregated upper bound which consists of three error
components.

Theorem 1: Let L̂ ∈ L denote the loss function for a set of
samples S drawn i.i.d. according to a given distribution D, and
define f̂v ∈ F as an ERM for L̂. For a generalized MAE loss
function L ∈ L, ε > 0, and 0 < δ < 1, there exists f ε

v ∈ F such
that L(f ε

v) ≤ inffv∈F L(fv) + ε. Then, with a probability of δ,
we attain that

L(f̂v)
≤ inf

fv∈F
L(fv)︸ ︷︷ ︸

Approx. error

+2 sup
fv∈F

|L(fv)− L̂(fv)|︸ ︷︷ ︸
Estimation error

+L(f ε
v)− inf

fv∈F
L(fv)︸ ︷︷ ︸

Optimization error

≤ inf
fv∈F

L(fv) + 2R̂S(F) + ε. (17)

Proof:

L(f̂v) = inf
fv∈F

L(fv) + L(f̂v)− L(f ε
v) + L(f ε

v)− inf
fv∈F

L(fv)

≤ inf
fv∈F

L(fv) + L(f̂v)− L(f ε
v) + ε

≤ inf
fv∈F

L(fv) + L(f̂v)− L̂(f̂v) + L̂(f ε
v)− L(f ε

v) + ε

≤ inf
fv∈F

L(fv) + 2 sup
fv∈F

|L(fv)− L̂(fv)|+ ε.

Then, we continue to upper bound the term
2 supfv∈F |L(fv)− L̂(fv)|. We first define μ as the expected

value of supfv∈F |L(fv)− L̂(fv)|, and then introduce the fact
that

μ = E

[
sup
fv∈F

∣∣∣L(fv)− L̂(fv)
∣∣∣
]
≤ 2R̂S(L), (18)

which is justified by Lemma 2 in Appendix A. Then, for a small
δ (0 < δ < 1), we apply the Hoeffding’s bound [52] as follows

P

(
2 sup
fv∈F

∣∣∣L(fv)− L̂(fv)
∣∣∣ ≤ ν

)
≥ 1− 2 exp

(−2N(ν − μ)2
)

≥ 1− 2 exp
(
−2N(ν − 2R̂S(L))

2
)

= δ,

which can derive ν as:

ν = 2R̂S(L) +

√
1

2N
ln

(
2

1− δ

)
,

and we thus obtain that

2 sup
fv∈F

∣∣∣L(fv)− L̂(fv)
∣∣∣ ≤ 2R̂S(L) +

√
1

2N
ln

(
2

1− δ

)
.

Therefore,

L(f̂v) ≤ inf
fv∈F

L(fv) +
(
2R̂S(L) +

√
1

2N
ln

(
2

1− δ

))
+ ε

≤ inf
fv∈F

L(fv) + 2R̂S(F) +

√
1

2N
ln

(
2

1− δ

)
+ ε

≈ inf
fv∈F

L(fv) + 2R̂S(F) + ε (for sufficiently large N ).

�
Next, the remainder of this section presents how to upper

bound the approximation error, approximation error, and opti-
mization error, respectively.

B. An Upper Bound for Approximation Error

The upper bound for the approximation error is shown in
Theorem 2, which is based on the modification of our previous
theorem for the representation power of DNN based vector-to-
vector regression [14].

Theorem 2: For a smooth vector-to-vector regression target
function f ∗

v : Rd → R
q , there exists a DNN f̄v ∈ F with k(k ≥

2) modified smooth ReLU based hidden layers, where the width
of each hidden layer is at least d+ 2 and the top hidden layer
has nk(nk ≥ d+ 2) units. Then, we derive the upper bound for
the approximation error as:

inf
fv∈F

L(fv) = ||f ∗
v − f̄v||1 = O

(
q

(nk + k − 1)
r
d

)
, (19)

where a smooth ReLU function is defined in Eq. (12), and r
refers to the differential order of fv .

The smooth ReLU function in Eq. (12) is essential to derive
the upper bound for the optimization error. Since Theorem 2
is a direct result from Lemma 2 in [53] where the standard
ReLU is employed and does not consider Barron’s bound for
activation functions [21], the smooth ReLU function can be
flexibly utilized in Theorem 2 because it is a close approximation
to the standard ReLU function. Moreover, Theorem 2 requires at
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least d+ 2 neurons for a d-dimensional input vector to achieve
the upper bound.

C. An Upper Bound for Estimation Error

Since the estimation error in Eq. (17) is upper bounded by the
empirical Rademacher complexity R̂S(F), we derive Theorem 3
to present an upper bound on R̂S(F). The derived upper bound is
explicitly controlled by the constraints of weights in the hidden
layers, inputs, and the number of training data. In particular, the
constraint of L1 norm is set to the top hidden layer, and L2 norm
is imposed on the other hidden layers.

Theorem 3: For a DNN based vector-to-vector map-
ping function fv(x) = Wk ◦ gu ◦Wk−1 ◦ · · · ◦W2 ◦ gu ◦
W1(x) : R

d → R
q with a smooth ReLU function gu as in

Eq. (12) and ∀i ∈ [k], Wi being the weight matrix of the
i-th hidden layer, we obtain an upper bound for the empirical
Rademacher complexity R̂S(F) with regularized constraints of
the weights in each hidden layer, and the L2 norm of input
vectors x is bounded by s.

2 sup
fv∈F

|L(fv)− L(f̂v)| ≤ 2R̂S(F) ≤ 2qΛ
′
Λk−1s√
N

s.t., ||Wk(i, :)||1 ≤ Λ
′
, ∀i ∈ [q]

||Wj(a, :)||2 ≤ Λ, ∀j ∈ [k − 1], a ∈ [nj ]

||x||2 ≤ s, (20)

where Wj(m,n) is an element associated with the j-th hidden
layer of DNN where m is indexed to neurons in the j-th hidden
layer and n is pointed to units of the (j − 1)-th hidden layer,
and Wj(m, :) contains all weights from the m-th neuron to all
units in the (j − 1)-th hidden layer.

Proof: We first consider an ANN with one hidden layer of
n neuron units with the smooth ReLU function gu as Eq. (12),
and also denote F̂ as a family of ANN based vector-to-vector
regression functions. F̂ can be decompoed into the sum of q
subspaces

∑q
i=1 F̂i and each subspace F̂m is defined as:

F̂m=

⎧⎨
⎩x →

n∑
j=1

wjgu(u
T
j x) · 1m : ||w||1 ≤ Λ

′
, ||uj ||2≤Λ

⎫⎬
⎭,

where n is the number of hidden neurons, ∀j ∈ [n], w
and uj separately correspond to W2(m, :) and W1(j, :) in
Eq. (20). Given N data samples {x1,x2, . . .,xN}, the empirical
Rademacher complexity of F̂m is bounded as:

R̂S(F̂m) =
1

N
Eσ

⎡
⎣ sup
||w||1≤Λ′ ,||uj ||2≤Λ

N∑
i=1

σi

n∑
j=1

wjgu(u
T
j xi)

⎤
⎦

=
1

N
Eσ

⎡
⎣ sup
||w||1≤Λ′ ,||uj ||2≤Λ

n∑
j=1

wj

N∑
i=1

σigu(u
T
j xi)

⎤
⎦

≤ Λ
′

N
Eσ

[
sup

||uj ||2≤Λ

max
j∈[n]

∣∣∣∣∣
N∑
i=1

σigu(u
T
j xi)

∣∣∣∣∣
]

(Hölder’s ineq.)

=
Λ

′

N
Eσ

[
sup

||u||2≤Λ

∣∣∣∣∣
N∑
i=1

σigu(u
Txi)

∣∣∣∣∣
]
.

≤ Λ
′

N
Eσ

[
sup

||u||2≤Λ

∣∣∣∣∣
N∑
i=1

σiu
Txi

∣∣∣∣∣
]

(c.f. Lemma 1)

≤ ΛΛ
′

N
Eσ

[∥∥∥∥∥
N∑
i=1

σixi

∥∥∥∥∥
2

]
(Cauchy-Schwartz ineq.)

≤ ΛΛ
′

N

√√√√√Eσ

⎡
⎣
∥∥∥∥∥

N∑
i=1

σixi

∥∥∥∥∥
2

2

⎤
⎦ (Jensen’s inequality).

(21)

The last term in the inequality (21) can be further simplified
based on the independence of σi s. Thus, we finally derive the
upper bound as:

R̂S(F̂m) ≤ ΛΛ
′

N

√√√√√Eσ

⎡
⎣
∥∥∥∥∥

N∑
i=1

σixi

∥∥∥∥∥
2

2

⎤
⎦

=
ΛΛ

′

N

√√√√ N∑
i,j=1

Eσ[σiσj ](xT
i xj)

=
ΛΛ

′

N

√√√√ N∑
i=1

||xi||22 (independence of σis)

≤ ΛΛ
′
s√

N
. (22)

The upper bound for R̂S(F̂) is derived based on the fact
that for q families of functions F̂m,m ∈ [q], there is R̂S(F) =

R̂S(
∑q

m=1 F̂m) =
∑q

m=1 R̂S(F̂m), and thus

R̂S(F̂) =

q∑
m=1

R̂S(F̂m) ≤ qΛΛ
′
s√

N
, (23)

which is an extension of the empirical Rademacher identi-
ties [49], which is demonstrated in Lemma 3 of Appendix A.

Then, for the family of DNNsFwith k hidden layers activated
by the smooth ReLU function, we iteratively apply Lemma 1 and
end up attaining the upper bound as:

R̂S(F)

= Eσ

⎡
⎣ sup
∀l,wjl

∈U

q∑
m=1

N∑
i=1

σi

nk∑
jk=1

wjkgu(· · ·
n1∑

j1=1

wj1gu(u
T
j xi))

⎤
⎦

≤ Eσ

⎡
⎣ sup
∀l,wjl

∈U

q∑
m=1

N∑
i=1

σi

nk∑
jk=1

wjk · · ·
n1∑

j1=1

wj1u
T
j xi

⎤
⎦

≤ qΛ
′
Λk−1s√
N

,
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where wj1 , . . ., wjk are selected from the hypothesis space

U = {wj1 , . . ., wjk :
∑nk

jk=1 |wjk | ≤ Λ
′
,
√∑ni

ji=1 w
2
ji
≤

Λ, ∀i ∈ [k − 1]}. �

D. An Upper Bound for Optimization Error

Next, we derive an upper bound for the optimization error.
A recent work [54] has shown that the γ-PL property can be
ensured if neural networks are configured with the setup of the
“over-parametrization” [45], which is induced from the two facts
as follows:

• Neural networks can satisfy γ-PL condition, when the
weights of hidden layers are initialized near the global
minimum point [45], [55].

• As the neural network involves more parameters, the up-
date of parameters moves less, and there exists a global
minimum point near the random initialization [33], [34].

Thus, the upper bound on the optimization error can be
tractably derived in the context of the γ-PL condition for the gen-
eralized MAE loss L(·) ∈ L. Since the smooth ReLU function
admits smooth DNN based vector-to-vector functions, which
can lead to an upper bound on the optimization error as:

ε = L(f ε
v)− inf

fv∈F
L(fv) ≤ μM2β

2γ
. (24)

To achieve the upper bound in Eq. (24), we assume that the
stochastic gradient descent (SGD) algorithm can result in an
approximately equal optimization error for both the generalized
MAE loss L(·) ∈ L and the empirical MAE loss L̂(·) ∈ L.

More specifically, for two DNN based vector-to-vector re-
gression functions f ε

v ∈ H and f̂ ε
v ∈ H, we have that

ε = L(f ε
v)− inf

fv∈F
L(fv) ≈ L̂(f̂ ε

v)− inf
fv∈F

L̂(fv). (25)

Thus, we focus on analyzing L̂(fv) because it can be updated
during the training process. We assume that L̂(fv) is β-smooth
with ||∇L̂(fv)||2 ≤ M and it also satisfies the γ-PL condition
from an early iteration t0. Besides, the learning rate of SGD is
set to μ.

Moreover, we define fv,wt
∈ F as the function with an up-

dated parameter wt at the iteration t, and denote fv,w∗ ∈ F as
the function with the optimal parameter w∗. The smoothness of
L̂(·) implies that

L̂(fv,wt+1
)− L̂(fv,wt

)− 〈∇L̂(fv,wt
),wt+1 −wt〉

≤ β

2
||wt −wt+1||22.

(26)

Then, we apply the SGD algorithm to update model parame-
ters at the iteration t as:

wt+1 = wt − μ∇L̂(fv,wt
). (27)

Next, we substitute −μ∇L̂(fv,wt
) in Eq. (27) for wt+1 −wt

in the inequality (26), we have that

L̂(fv,wt+1
)− L̂(fv,wt

) + μ||∇L̂(fv,wt
)||22

≤ βμ2

2
||∇L̂(fv,wt

)||22.
(28)

By employing the condition ||∇L̂(fv,wt
)||22 ≤ M2, we fur-

ther derive that

L̂(fv,wt+1
)− L̂(fv,wt

) + μ||∇L̂(fv,wt
)||22 ≤ μ2M2β

2
. (29)

Furthermore, we employ the γ-PL condition to Eq. (29) and
obtain the inequalities as:

L̂(fv,wt+1
)− L̂(fv,w∗)

≤
(
L̂(fv,wt

)− L̂(fv,w∗)− γμ(L̂(fv,wt
)− L̂(fv,w∗))

)

+
μ2M2β

2

≤ (1− μγ)
(
L̂(fv,wt

)− L̂(fv,w∗)
)
+

μ2M2β

2

≤ (1− μγ)2
(
L̂(fv,wt−1

)− L̂(fv,w∗)
)

+

1∑
i=0

(1− γμ)i
μ2M2β

2
≤ · · ·

≤ (1− μγ)t−t0+1
(
L̂(fv,wt0

)− L̂(fv,w∗)
)

+

t−t0∑
i=0

(1− γμ)i
μ2M2β

2

≤ (1− μγ)t−t0+1
(
L̂(fv,wt0

)− L̂(fv,w∗)
)
+

μM2β

2γ

≤ exp(−μγ(t− t0 + 1))
(
L̂(fv,wt0

)− L̂(fv,w∗)
)
+

μM2β

2γ
.

(30)

By connecting the optimization error in Eq. (24) to our derived
Eq. (30), we further have that

ε = L(f ε
v)− inf

fv∈F
L(fv)

≈ L̂(f ε
v)− inf

fv∈F
L̂(fv)

≤ exp(−μγ(T + 1))

(
L̂(fv,w0

)− inf
fv∈F

L̂(fv)
)
+

μM2β

2γ

≈ μM2β

2γ
, (31)

where T = t− t0 and fv,w0
∈ F denotes a function with an ini-

tial parameter w0. The inequality in Eq. (31) suggests that when
the number of iterations T is sufficiently large, we eventually
attain the upper bound as Eq. (24).

Remark 1: The “over-parametrization” condition becomes
difficult to be configured in practice when large datasets have to
be dealt with. In such cases, the upper bound on the optimization
error cannot be always guaranteed, but we can relax the configu-
ration of “over-parametrization” for DNNs and assume the γ-PL
condition to derive the upper bound on the optimization error.
In doing so, our proposed upper bound can be applied to more
general DNN based vector-to-vector regression functions.
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E. An Aggregated Bound for MAE

Based on the upper bounds for the approximation error, es-
timation error and optimization error, we can derive an upper
bound for L(hERM

S ). Besides, the constraints as shown in
Eq. (32), which arise from the upper bounds on the approxi-
mation, estimation and optimization errors, are necessary con-
ditions to derive the upper bound (with a probability δ ∈ (0, 1))
as:

L(f̂v) ≤ inf
fv∈F

L(fv) + 2R̂S(F) + ε

≤ O
(

q

(nk + k − 1)
r
d

)
+

2qΛ
′
Λk−1s√
N

+
μM2β

2γ

s.t., Smooth ReLU: lim
t→+∞

1

t
ln(1 + exp(tx))

Hidden Layers: nj ≥ d+ 2, ∀j ∈ [k]

Regularization: ||Wk(i, :)||1 ≤ Λ
′
, ∀i ∈ [q]

||Wj(m, :)||2 ≤ Λ, ∀j ∈ [k − 1],m ∈ [nj ]

Bounded Inputs: ||x||2 ≤ s

Over-parametrization: The number of parameters exceeds

the amount of training data.
(32)

Eq. (32) suggests that several hyper-parameters are required
to derive the upper bound, which makes it difficult to be utilized
in practice because the prior setup of μ, M , β and γ are strong
assumptions in use. Section V discusses how to estimate MAE
values of ANN or DNN based vector-to-vector regression in

practical experiments. Besides, the term qΛ
′
Λk−1s√
N

in Eq. (32)
may become arbitrarily large when a large k and Λ > 1 are
concerned. Thus, we set Λ as 1 to ensure normalized weights of
the first k − 1 layers, and the amount of training data N could
be large enough to ensure a small estimation error.

The configuration of “over-parametrization” requires that the
number of model parameters exceeds the amount of training data
such that theγ-PL condition can be guaranteed and consequently
the upper bound on the optimization error can be attained.
However, when the setup of “over-parametrization” cannot be
strictly satisfied, the γ-PL condition does not always hold. Then,
we can still assume the γ-PL condition to obtain the upper
bound (24), which allows the derived upper bound applicable for
more general DNN based vector-to-vector regression functions.

Remark 2: Our work employs MAE as the loss function in-
stead of MSE for the following reasons: (i) MSE does not satisfy
the Lipschitz continuity such that the inequality Eq. (16) cannot
be guaranteed; (ii) The MAE loss function for vector-to-vector
regression tasks can achieve better performance than MSE in
experiments [56].

V. ESTIMATION OF THE MAE UPPER BOUNDS

MAE can be employed as the loss function for training an
ANN or DNN based vector-to-vector regression function. In

this section, we discuss how to make use of the theorems in
Section IV to estimate MAE upper bounds for the vector-to-
vector regression models in our experiments.

Proposition 2 provides an upper bound on MAE based on
our theorem in Eq. (32), where c and b are two non-negative
hyper-parameters to be estimated from the experimental MAE
losses of the ANN based vector-to-vector regression. An ANN
with the smooth ReLU activation function in Eq. (12) is a convex
and smooth function, which implies that the local optimum
point returned by the SGD algorithm corresponds to a global
one. Then, the estimated hyper-parameters c and b can be used
to estimate the MAE values of DNN-based vector-to-vector
regression.

Proposition 2: For a smooth target function f̂v : Rd → R
q,

we use N training data samples to obtain a DNN based vector-
to-vector regression function fv ∈ Fwith k smooth ReLU based
hidden layers (k ≥ 2), where the width of each hidden layer is
at least d+ 2. Then, we can derive an upper bound for MAE as:

MAE(f̂v, fv) ≤ cq

(nk + k − 1)
r
d
+

2qΛ
′
Λk−1s√
N

+ b, (33)

where the hyper-parameters c and b are separately set as:

c =
(MAE1 −MAE2)l

r/d
1 l

r/d
2

q(l
r/d
2 − l

r/d
1 )

, (34)

and

b = max

(
MAE1 − (MAE1 −MAE2)l

r/d
2

l
r/d
2 − l

r/d
1

− 2qΛ
′
s√

N
, 0

)
.

(35)
Note that MAE1 and MAE2 are two practical MAE loss
values associated with two ANNs with hidden units l1 and l2,
respectively.

Proof: For two ANNs with hidden layers with units l1 and
l2, we set k to 2 and then estimate their corresponding MAE
losses as:

cq

l
r/d
1

+
2qΛ

′
s√

N
+ b = MAE1, (36)

cq

l
r/d
2

+
2qΛ

′
s√

N
+ b = MAE2, (37)

which can result in hyper-parameters c and b. In particular, we
substitute μM2β

2γ for b in Eq. (32) and then subtract two sides of
Eq. (36) by Eq. (37), which can result in Eq. (34). By replacing
c in Eq. (36) with Eq. (34), we finally obtain Eq. (35). �

Compared with our previous approaches to estimating practi-
cal MAE values in [14] where the DNN representation power is
mainly considered, our new inequality (33) arises from the upper
bound on the DNN generalization capability such that it can
be used to estimate MAE values in more general experimental
settings.
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VI. EXPERIMENTS

A. Experimental Goals

Our experiments separately employ the DNN based vector-to-
vector regression for both image de-noising and speech enhance-
ment with particular attention to linking empirical results with
our proposed theorems. Unlike our analysis of the representation
power of the DNN based regression tasks in [14], this work
focuses on the generalization capability of the DNN based
vector-to-vector regression based on our derived upper bounds.
More specifically, we employ the tasks of image de-noising and
speech enhancement, where inconsistent noisy conditions are
mixed to the clean training and testing data, to validate our
theorems by comparing the estimated MAE upper bound (MAE_
B) with the practical ones.

Moreover, the image de-noising experiment corresponds to
the “over-parametrization” setting in which the number of DNN
parameters is much larger than the amount of training data,
but we cannot set up the “over-parametrization” for speech
enhancement tasks due to a significantly large amount of train-
ing data. However, we assume the γ-PL condition and eval-
uate our derived upper bounds on the speech enhancement
tasks.

Therefore, our experiments of image de-noising and speech
enhancement aim at verifying the following points:

• The estimated MAE upper bound (MAE_ B) matches with
experimental MAE values.

• A deeper DNN structure corresponds to a lower approxi-
mation error (AE).

• A significantly small optimization error can be achieved
if the “over-parametrization” configuration is satisfied.
Otherwise, the optimization error could be large enough
to dominate MAE losses, even if the γ-PL condition is
assumed.

B. Experiments of Image De-noising

1) Data Preparation: This section presents the image de-
noising experiments on the MNIST dataset [46]. The MNIST
dataset consists of 60000 images for training and 10000 ones
for testing. We added additive Gaussian random noise (AGRN),
with mean 0 and variance 1, to both training and testing data.
The synthesized noisy data were then normalized such that for
each image the condition ||xnoisy||2 ≤ 1 is satisfied.

2) Experimental Setup: The DNN based vector-to-vector re-
gression in the experiments followed a feed-forward neural
network architecture, where the inputs were 784-dimensional
feature vectors of the noisy images and the outputs were 784-
dimensional features of either clean or enhanced images. The
reference of clean image features associated with the noisy
inputs was assigned to the top layer of DNN in the training
process, but the top layer corresponds to the features of the
enhanced images during the testing stage. Table I exhibits the
structures of neural networks used in the experiments. In more
details, the vector-to-vector regression model was first built
based on ANN. The width of the hidden layer of ANN1 was

TABLE I
MODEL STRUCTURES FOR VARIOUS VECTOR-TO-VECTOR REGRESSION

TABLE II
HYPER-PARAMETERS FOR THE ESTIMATION OF MAE UPPER BOUNDS

TABLE III
THE EVALUATION RESULTS UNDER THE AGRN NOISE

set to 1024, which satisfies the constraint of the number of
neurons in hidden layers based on both the inequality Eq. (32)
(d = 784, d+ 2 = 786 < 1024) and the “over-parametrization”
(784× 1024 = 802816 > 60000) condition. Whereas, ANN2
had a width of 2048 neurons, which is twice more than ANN1.
Next, we studied the DNN based vector-to-vector regression by
increasing the number of hidden layers of DNN1. Specifically,
DNN1 was equipped with 4 hidden layers with widths 1024-
1024-1024-2048. Additional two hidden layers of width 1024
were further appended to DNN2, which brings an architecture
with 6 hidden layers 1024-1024-1024-1024-1024-2048.

Moreover, the SGD optimizer with a learning rate of 0.02 and
a momentum rate of 0.2 was used to update model parameters
based on the standard back-propagation (BP) algorithm [57].
The weights of the k − 1 hidden layers were normalized by
dividing the L2 norm, which corresponds to the term Λk−1

configured to 1 in the inequality Eq. (33). The weights of the
top hidden layer were normalized by dividing the L1 norm such
that Λ′ is set to 1. Besides, MAE was employed as the evalu-
ation metric in our experimental validation because the MAE
metric is directly connected to the objective loss function of
MAE.

3) Experimental Results: We present our experimental re-
sults on the noisy MNIST dataset, where AGRN was added to the
clean images. Table II shows the setup of hyper-parameters l1, l2,
N , and r in Eq. (33) to estimate MAE_B. Table III exhibits our
estimated MAE values are in line with the practical MAE ones.
Specifically, DNN2 attains a lower MAE (0.1278 vs. 0.1263)
than DNN1. Moreover, our estimated MAE_B score for DNN2 is
also lower than that for DNN1, namely 0.1438 vs. 0.1434, which
arises from the decreasing AE score for DNN2 with a deeper
architecture. Since we keep Λ and Λ′ equal to 1, estimation error
(EE) and optimization error (OE) for both DNN1 and DNN2
share the same values. Furthermore, although the OE values are
comparatively larger than AE and EE, they also stay at a small
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level because of the “over-parametrization” technique adopted
in our experiments.

C. Experiments of Speech Enhancement

1) Data Preparation: Our experiments of speech en-
hancement were conducted on the Edinburgh noisy speech
database [58], where the noisy backgrounds of the training
data are inconsistent with the testing ones. More specifically,
clean utterances were recorded from 56 speakers including 28
males and 28 females from different accent regions of both
Scotland and the United States. Clean material was randomly
split into 23075 training, and 824 testing waveforms, respec-
tively. The noisy training waveforms at four SNR values, 15 dB,
10 dB, 5 dB, and 0 dB, were obtained using the following
noises: a domestic noise (inside a kitchen), an office noise (in
a meeting room), three public space noises (cafeteria, restau-
rant, subway station), two transportation noises (car and metro)
and a street noise (busy traffic intersection). In sum, there
were 40 different noisy conditions for synthesizing many noisy
training data (ten noises × four SNRs). In the noisy test set,
the noise types included: a domestic noise (living room), an
office noise (office space), one transport (bus) and two street
noises (open area cafeteria and a public square), and SNR
values included: 17.5 dB, 12.5 dB, 7.5 dB, and 2.5 dB. Thus,
there were 20 different noisy conditions for creating the testing
dataset.

2) Experimental Setup: The DNN based vector-to-vector re-
gression for speech enhancement also followed the feed-forward
ANN architecture, where the input was a normalized log-power
spectral (LPS) feature vector [59], [60] of noisy speech, and
the output was LPS feature vector of either clean or enhanced
speech. The references of clean speech feature vectors associated
with the noisy inputs were assigned to the top layer of DNN in
the training process, but the top layer of DNN corresponds to the
feature vectors of the enhanced speech during the testing phase.
The smooth ReLU function in Eq. (12) was employed in the
hidden nodes of the neural architectures assessed in this work,
whereas a linear function was used at the output layer. To im-
prove the subjective perception in the speech enhancement tasks,
the global variance equalization [61] was applied to alleviate
the problem of over-smoothing by correcting a global variance
between estimated features and clean reference targets [62]. In
the training stage, the BP algorithm was adopted to update the
model parameters, and the MAE loss was used to measure the
difference between a normalized LPS vector, and the reference
one. Noise-aware training (NAT) [63] was also employed to
enable non-stationary noise awareness, and feature vectors of
3-frame size were obtained by concatenating frames within
a sliding window [64]. Moreover, the SGD optimizer with a
learning rate of 1× 10−3 and a momentum rate of 0.4 was used
for the update of parameters. The weights of the first k − 1
hidden layers are normalized by dividing the L2 norm of each
row of weights, which correspond to the term Λk−1 equal to 1
in Eq. (32). Moreover, we set s in Eq. (32) as the maximum
value of L2 norm of the input, and assume Λ

′
in Eq. (32)

TABLE IV
MODEL STRUCTURES FOR VARIOUS VECTOR-TO-VECTOR REGRESSION

TABLE V
HYPER-PARAMETERS FOR THE ESTIMATION OF MAE UPPER BOUNDS

TABLE VI
THE MAE RESULTS ON THE EDINBURGH SPEECH DATABASE

as the maximum value of (||Wk(1, :)||1, . . ., ||Wk(q, :)||1),
which are different from the setup of image de-noising.

Table IV exhibits the architectures of neural networks
used in our experiments of speech enhancement. Two ANN
models (ANN1 and ANN2) were utilized to estimate the
hyper-parameters in Eq. (33), which were then used to estimate
the MAE values of DNN models based on Eq. (33).

Two evaluation metrics, namely MAE and Perceptual Eval-
uation of Speech Quality (PESQ) [65], were employed in our
experimental validation. Different from the MAE metric, PESQ
is an indirect evaluation which is highly correlated with speech
quality. The PESQ score, which ranges from −0.5 to 4.5, is
calculated by comparing the enhanced speech with the clean one.
A higher PESQ score corresponds to a higher quality of speech
perception. All of the evaluation results on testing datasets are
listed in Tables VI.

3) Experimental Results: We now present our experimental
results on the Edinburgh speech database. Table V shows that the
parameters used in the experiments to estimate the upper bound
based on the inequality (33). The experimental results as shown
in Table VI are in line with those observed in the consistent noisy
conditions. Specifically, DNN2 attains a lower MAE (0.6859 vs.
0.7060) and higher PESQ values (2.85 vs. 2.82) than DNN1.
Moreover, the MAE_ B score for DNN2 is also lower than that
for DNN1, namely 0.7124 vs. 0.7236. Furthermore, DNN2 owns
a better representation power in terms of AE scores (0.0081 vs.
0.0161) and a better power generalization capability because
of a lower (EE + OE) score. More significantly, the OE term
actually is the key contributor to the MAE_ B score, which
suggests that the MAE loss is primarily from OE, as expected.
In fact, optimization plays an important role when it comes to
training large neural architectures [1], [12], which in turn shows
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that the proposed upper bounds are in line with current research
efforts [29], [33], [44], [45] on the optimization strategies.

D. Discussions

The experimental results of the image de-noising and speech
enhancement suggest that our proposed upper bounds on the
generalized loss of MAE can tightly estimate the practical
MAE values. Unlike our previous work on the analysis of the
representation power, which is strictly constrained to consistent
noisy environments, our MAE bounds aim at the generalization
power of DNN based vector-to-vector regression and can be
generalized to more general noisy conditions.

Experimental results are based on our aggregated bound in
Eq. (32), and the related practical methods in Eq. (33). The
decreasing AE scores of DNN2 correspond to Eq. (19), where a
deeper depth k can lead to smaller AE values. In the meanwhile,
Eqs. (34) and (35) suggest that a smaller EE is associated with
a larger OE, which also corresponds to our estimated results.
Furthermore, deeper DNN structures can result in a larger Λ′,
which slightly escalates the AE scores and also decreases OE
values. With the setup of “over-parametrization” for neural
networks in image de-noising experiments, OE can be lowered
to a small scale compared to AE and EE. However, OE becomes
much lager than AE and EE without the “over-parametrization”
configuration in the speech enhancement tasks.

VII. CONCLUSION

This study focuses on the theoretical analysis of an upper
bound on a generalized loss of MAE for DNN based vector-
to-vector regression and corroborates the theorems with image
de-noising and speech enhancement experiments. Our theorems
start from decomposing a generalized MAE loss, which can be
upper bounded by the sum of approximation, estimation, and op-
timization errors for the DNN based vector-to-vector functions.
Our previously proposed bound on the representation power of
DNNs can be modified to upper bound the approximation error,
and a new upper bound based on the empirical Rademacher
complexity is derived for the estimation error. Furthermore, the
smooth modification of the ReLU function and the assumption
of γ-PL conditions under the “over-parametrization” configu-
ration for neural networks can ensure an upper bound on the
optimization error. Thus, an aggregated upper bound for MAE
can be derived by combining the upper bounds for the three
errors.

Our experimental results of image de-noising and speech
enhancement show that a deeper DNN with a broader width
at the top hidden layer can contribute to better generalization
capability in various noisy environments. The estimated MAE
based on our related theorems can offer tight upper bounds
for the experimental values in practice, which can verify our
theorem of upper bounding MAE for DNN based vector-to-
vector regression. Besides, our theories show that the MAE value
mainly arises from the optimization error for well-regularized
DNNs, and an “over-parametrization” for neural networks can
ensure small optimization errors.

APPENDIX A

Lemma 2: Let L̂ ∈ L denote the loss function for N samples
S = {x1,x2, . . .,xN} drawn i.i.d. according to a distributionD.
For a generalized MAE loss function L ∈ L, we have that

E

[
sup
fv∈F

∣∣∣L(fv)− L̂(fv)
∣∣∣
]
≤ 2R̂S(F). (38)

Proof: We utilize the method of symmetrization [66] to
bound E[supf∈F |L(fv)− L̂(fv)|]. The symmetrization intro-
duces a ghost dataset S ′ = {x′

1,x
′
2, . . .,x

′
N} drawn i.i.d. from

D. Let L̂′ ∈ L be the empirical risk with respect to the
ghost dataset, and we assume L(fv) = ES′ [L̂′(fv)]. Assuming
L(fv) ≥ L̂(fv), ∀fv ∈ F, we derive that

ES

[
sup
fv∈F

∣∣∣L(fv)− L̂(fv)
∣∣∣
]

= ES

[
sup
fv∈F

(
L(fv)− L̂(fv)

)]

= ES

[
sup
fv∈F

(
ES′ [L̂′(fv)]− L̂(fv)

)]

≤ ES

[
ES′

[
sup
fv∈F

(
L̂′(fv)− L̂(fv)

)]]

≤ ES,S′

[
sup
fv∈F

1

N

N∑
i=1

σi(L̂′(fv(x′
i))− L̂(fv(xi)))

]

≤ 2R̂S(F),

where σ1, σ2, . . ., σN are Rademacher random variables. Simi-
larly, the assumption ofL(fv) ≤ L̂(fv), ∀fv ∈ F also brings the
same result. Thus, we finish the proof of Lemma 2. �

Lemma 3 (An extension of empirical Rademacher identities):
Given any sample set S = {x1,x2, . . .,xN}, and hypothesis
sets F1, F2, ..., Fq of functions f

(1)
v ∈ F1, f

(2)
v ∈ F2, ...,

f
(q)
v ∈ Fq mapping from R

d to R
q , we have that

R̂S

(
q∑

i=1

Fi

)

=
1

N
Eσ

⎡
⎣ sup
f
(1)
v ∈F1,...,f

(q)
v ∈Fq

N∑
i=1

σi

⎛
⎝ q∑

j=1

f (j)
v (xi)

⎞
⎠
⎤
⎦

=
1

N

q∑
j=1

Eσ

[
sup

f
(1)
v ∈F1,...,f

(q)
v ∈Fq

N∑
i=1

σif
(j)
v (xi)

]

=

q∑
i=1

R̂S(Fi).

APPENDIX B

Fig. 1 illustrates both training and testing curves of MAE
over epochs in our experiments of image de-noising and speech
enhancement. The simulations suggest that DNN2 with deeper
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Fig. 1. Training and testing MAE curves over epochs in the two experiments.

architectures consistently achieves lower training and testing
MAE values than DNN1 over epochs. When the update of
model parameters gets converged, DNN2 finally attains the best
performance on the two experiments.
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