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Abstract—This work focuses on a performance analysis of
tensor-train decomposition applied to the deep neural network
(DNN) based vector-to-vector regression. Tensor-train Network
(TTN), obtained through tensor-train decomposition, converts a
DNN based vector-to-vector regression into a tensor-to-vector
mapping with fewer parameters. We can therefore build an
over-parametrized DNN with the tensor-train representation such
that the optimization error can be significantly reduced, while
the upper bounds on the approximation and estimation errors
can be maintained. We compare TTN-based neural architecture
against an over-parametrized DNN on the MNIST dataset, and
the experimental evidence demonstrates the validity of our
conjectures on our proposed performance bounds.

Index Terms—Tensor-train decomposition, deep neural net-
work, vector-to-vector regression, over-parameterization, tensor-
to-vector regression

I. INTRODUCTION

Deep neural networks have thrived in various machine
learning and signal processing applications. One important
application is vector-to-vector regression [1]–[4], which aims
at building a functional mapping from input vectors to output
vectors. This process is mathematically formulated as

y = f(x) + e, (1)

where x ∈ Rd, y ∈ Rq , and a functional mapping f : Rd → Rq
is built up to transform the input vectors to the output space
such that target vectors can be closely approximated by the
output vectors.

Despite the remarkable success in a wide range of real-
world vector-to-vector regression tasks, most of the DNN
related work focuses on experimental studies, but the devel-
opment of the related performance analysis is far behind the
pace. Our work [5] attempts to offer upper bounds on the
representation power of DNN based vector-to-vector regres-
sion, and our recent work [6] generalizes the bounds through
separately upper bounding the approximation, estimation and
optimization errors which arise from the decomposition of
mean absolute error (MAE) [7]. Although the approximation
and estimation error is well-bounded by our theorems, the
optimization error, especially that based on the condition
of the over-parametrization, needs further discussion. Over-
parametrization is assumed as an asset to the DNN training

with global optima being guaranteed [8]–[11], but the condi-
tion requires the number of model parameters surpasses the
amount of training data, which is not normally adapted to
large datasets. In [6], we used the γ-Polyak-Lojasiewicz (γ-
PL) condition for non-convex functions [12], [13] to upper
bound the optimization error because big datasets, with the
size of approximately 1010, were used. Unfortunately, sizes
make over-parametrized DNN for vector-to-vector regression
difficult to configure. However, our experimental results in [6]
suggest that the optimization error dominates the overall MAE
score, and it cannot be easily decreased with an increase of
training data because its related upper bound solely depends
on the selection of optimizers and hyper-parameters like the
learning rate.

Hence, this work focuses on the study of lowering the
optimization error by employing the tensor-train decompo-
sition [14], [15] to hidden layers of DNN, which forms
a Tensor-Train Network (TTN) with a compact tensor-train
representation of the fully-connected hidden layers of DNN
with much fewer parameters. In other words, a DNN based
vector-to-vector regression can be flexibly converted to a
TTN based tensor-to-vector regression such that it is possible
to relax the parameter required for the over-parametrization
condition by applying TTN.

Furthermore, we justify that our bounds on MAE in [6] are
robust to the tensor-train representation of DNN for the vector-
to-vector regression. Therefore, we can transform an over-
parametrized DNN into the corresponding TTN with much
fewer parameters than the DNN, and the characteristics of the
over-parameterization can be maintained for the TTN.

Experiments based on the noisy MNIST datasets [16] are
used to justify our new theorems that TTN with much fewer
parameters is capable of maintaining the baseline results of
the over-parametrized DNN based vector-to-vector mapping.
In this work, two metrics are utilized for evaluating the results:
(i) a direct evaluation based on the MAE loss; (ii) an indirect
measurement based on the signal-to-noise ratio (SNR).

The remainder of this paper is organized as follows: Sec-
tion II introduces adequate notations and concepts used in
this work. Our previous theorems of upper bounding the
DNN based vector-to-vector regression is shown in Section III.
Section IV is devoted to the performance analysis of the over-
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parametrized DNN with the tensor-train representation for the
vector-to-vector regression. Our experiments of digit image de-
noising are presented in Section VI, and the paper is finally
concluded in Section VII.

II. PRELIMINARIES

A. Notations

• f ◦ g: The composition of functions f and g.
• ||v||p: Lp norm of the vector v.
• 〈x, y〉: Inner product of two vectors x and y.
• [q]: An integer set {1, 2, 3, ..., q}.
• ∇f : A first-order gradient of function f .
• RI1×I2×···×IM : set of M -mode real-valued tensors.
• G: Hypothesis space for the MAE loss function.
• H: Space of DNN based vector-to-vector functions.
• T: Space of TTN based tensor-to-vector functions.

B. Over-parametrization condition

Over-parametrization means that the number of model pa-
rameters m should be larger than the size of training data
N . Specifically, m should be a polynomial function of N as
follows:

m = poly(N). (2)

With the setup of over-parametrization for neural networks, a
naive stochastic gradient descent (SGD) can find the global
optima when the SGD algorithm gets converged [17].

C. γ-PL condition for non-convex functions

A function f : Rd → R satisfies the γ-Polyak-Lojasiewicz
(γ-PL) condition, if there is an inequality

||∇f(x)||22 ≥ γ(f(x)− f∗). (3)

where f∗ denotes the optimal value over the input domain.
The γ-PL condition can be taken as the generalization

of convex functions to non-convex ones because of a local
optimum of the non-convex function with the γ-PL condition
corresponds to the global one. Unlike the over-parametrization
condition, the γ-PL condition is independent of the size of
training data. Furthermore, a significant aspect is that a deep
neural architecture satisfies the γ-PL condition if its weights
are randomly initialized to be near the global points [8].

D. Tensor-Train Decomposition

The tensor-train decomposition can be described as fol-
lows: Given a set of ranks r = {r1, r2, ..., rK+1}, a tensor
W ∈ R(m1n1)×···×(mKnK) is decomposed into a multipli-
cation of core tensors according to Eq. (1). More specifi-
cally, for the given ranks rk and rk+1, the k-th core tensor
C [k](rk, ik, jk, rk+1) ∈ Rmk×nk , where ik ∈ [mk], jk ∈ [nk].
Besides, r1 and rK+1 are fixed to 1.

W ((i1, j1), ..., (iK , jK)) =
K∏
k=1

C [k](rk, ik, jk, rk+1). (4)

TTN is generated by utilizing the tensor-train factorization
to offer a compact representation of a feed-forward DNN with

fully-connected hidden layers. Since TTN only stores the low-
rank core tensors {Ck}Kk=1 of the size

∑K
k=1mknkrkrk+1

rather than a much larger storage of
∏K
k=1mknk for DNN

parameters. Moreover, instead of fine-tuning a TTN by de-
composing a well-trained DNN, core tensors of TTN can be
randomly initialized and trained by the SGD algorithms.

III. OUR THEOREMS FOR DNN BASED
VECTOR-TO-VECTOR REGRESSION

This section briefly presents our previous theorems on
the DNN based vector-to-vector regression [6]. Theorem 1
shows the MAE loss can be upper bounded by the sum of
approximation error, estimation error, and optimization error.

Theorem 1. Let L̂ ∈ G be the loss function for N training
samples drawn i.i.d. according to D, and denote a vector-
to-vector function f̂ : Rd → Rq as the empirical risk
minimization (ERM) [18] for L̂. For a generalized MAE loss
function L ∈ G, there is fε such that L(fε) ≤ inff∈H L(f)+ε,
where ε > 0 and 0 < δ < 1. We obtain that

L(f̂) ≤ inf
f∈H
L(f)︸ ︷︷ ︸

Approx. error

+ 2 sup
f∈H
|L(f)− L̂(f)|︸ ︷︷ ︸

Estimation error

+L(fε)− inf
f∈H
L(f)︸ ︷︷ ︸

Optimization error

≤ inf
f∈H
L(f) + 2R̂S(H) + ε,

(5)

where R̂S(H) is the empirical Rademacher complexity.

Moreover, we separately derive the upper bounds for the
approximation error, estimation error, and optimization error
as follows:
(a). An upper bound on the approximation error: for a
smooth tensor-to-vector regression target function f∗ : Rd →
Rq , there is a DNN f̄ with k(k ≥ 2) modified smooth ReLU
based hidden layers, where the width of each hidden layer is
greater than d+2 and the top hidden layer has nk(nk ≥ d+2)
units, then we can derive

inf
f∈H
L(f) = ||f∗ − f̄ ||1 = O

(
q

(nk + k − 1)
r
d

)
(6)

where r is the differential order of f .
(b). An upper bound on the estimation error: for a DNN
based vector-to-vector mapping function f(x) = Wk ◦ g ◦
Wk−1 ◦ · · · ◦W2 ◦ g ◦W1(x) : Rd → Rq with a smooth ReLU
function g as

g(x) = lim
t→+∞

ln(1 + exp(tx))

t
, (7)

and regularized weight matrix of Wi,∀i ∈ [k] for each hidden
layer i. Then, we derive

2 sup
f∈H
|L(f)− L̂(f)| ≤ 2R̂S(H) ≤ 2qΛ

′
Λk−1v√
N

s.t., ||Wk(i, :)||1 ≤ Λ
′
,∀i ∈ [q]

||Wj(a, :)||2 ≤ Λ,∀j ∈ [k − 1], a ∈ [nj ]

||x||2 ≤ v,

(8)

2020 54th Annual Conference on Information Sciences and Systems (CISS)

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on August 17,2021 at 01:25:53 UTC from IEEE Xplore.  Restrictions apply. 



where R̂S(H) is the empirical Rademacher complexity,
Wj(n, :) contains all weights from the n-th neuron in the j-th
hidden layer to all units in the (j−1)-th hidden layer, and the
input vector x is bounded by a constant v.
(c). An upper bound on the optimization error: with the
assumption of γ-PL condition, we derive

ε = L(fε)− inf
f∈H
L(f) ≤ µM2β

2γ
. (9)

where µ denotes the learning rate used for the SGD algorithm,
β is the constant associated with the smooth property of the
loss function L, and ||∇L̂(f)||2 ≤M is assumed.

To aggregate the upper bounds (6), (8) and (9) for the
approximation error, estimation error and optimization error,
we derive the upper bound on L(f̂) as

L(f̂) ≤ inf
f∈H
L(f) + 2R̂S(H) + ε

≤ O
(

q

(nk + k − 1)
r
d

)
+

2qΛ
′
Λk−1v√
N

+
µM2β

2γ

s.t., Smooth ReLU: lim
t→+∞

1

t
ln(1 + exp(tx))

Hidden Layers: nj ≥ d+ 2, ∀j ∈ [k]

Regularization: ||Wk(i, :)||1 ≤ Λ
′
,∀i ∈ [q]

||Wj(m, :)||2 ≤ Λ,∀j ∈ [k − 1],m ∈ [nj ]

||x||2 ≤ v
Parametrization: The number of parameters is large.

(10)

Next, we discuss the use of TTN for setting up the vector-
to-vector regression and justify that TTN is capable of main-
taining the upper bounds on the approximation error and
estimation error. Particularly, we can flexibly utilize the over-
parametrization condition for the TTN based tensor-to-vector
regression.

IV. TTN BASED VECTOR-TO-VECTOR REGRESSION

In this section, we first justify that TTN can keep the upper
bounds on approximation error and estimation error, respec-
tively. Then, we show that TTN can maintain the characteristic
of over-parametrized DNNs and own fewer parameters than
the DNN.

To begin with, we reformulate the generalized loss of the
tensor-to-vector regression over the ERM ĥ ∈ T, that is

L(ĥ) ≤ inf
h∈T
L(h) + 2 sup

h∈T
|L(h)− L̂(h)|+ L(hε)− inf

h∈T
L(h)

≤ inf
h∈T
L(h) + 2R̂S(T) + ε.

(11)

where hε denotes a TTN based tensor-to-vector function with
the optimization bias ε.

A. Analyzing the upper bound on the approximation error

As for the upper bound on the approximation error, we first
justify Theorem 2, where we substitute TTN based tensor-to-
vector regression for DNN based vector-to-vector regression.

Theorem 2. For a smooth tensor-to-vector regression target
function h∗, we can find a TTN h associated with a DNN f̄
with k(k ≥ 2) modified smooth ReLU based hidden layers in
which the width of each hidden layer is at least d + 2 and
the top hidden layer has nk(nk ≥ d + 2) units, then we can
derive that

inf
h∈T
L(h) = ||h∗ − h||1 = O

(
q∏M

t=1(n
[t]
k + k − 1)

r
d

)
,

where r is the differential order of f̄ , and nk =
∏M
t=1 n

[t]
k .

Proof. ∀t ∈ [M ], we assume h∗ =
∏M
t=1 h

∗
t , and h =

∏M
t=1 ht

in which ht corresponds to the tth core tensor of the top
hidden layer of h. Thus, ||h∗ − h||1 is decomposed to a
multiplication of ||h∗t − ht||1, t ∈ [M ]. From the upper bound
on the approximation error, the tensor-train representation of
f̄ is invariant to the depth k, and we know that

||h∗t − ht||1 = O

(
qi

(n
[t]
k + k − 1)

r
d

)
, (12)

Thus, we derive

||h∗ − h||1 =

∣∣∣∣∣
∣∣∣∣∣
M∏
t=1

h∗t −
M∏
t=1

ht

∣∣∣∣∣
∣∣∣∣∣
1

≤
M∏
t=1

||h∗t − ht||1

= O

(
M∏
t=1

qi

(n
[t]
k + k − 1)

r
d

)

= O

(
q∏M

t=1(n
[t]
k + k − 1)

r
d

)
.

(13)

where we assume that q =
∏M
t=1 qi.

B. Analyzing the upper bound on the estimation error

The bound on the estimation error was derived as

2 sup
h∈T
|L(h)− L̂(h)| ≤ 2R̂S(T) ≤ 2qΛ′Λk−1v√

N

s.t., ||Ŵk(i, :)||1 ≤ Λ
′
,∀i ∈ [q]

||Ŵj(a, :)||2 ≤ Λ,∀j ∈ [k − 1], a ∈ [nj ]

||x̂||2 ≤ v,

(14)

where Ŵk and Ŵi refer to the matricization of weight tensors
of the top hidden layer k and the other hidden layer i ∈ [k−1],
respectively. Besides, x̂ denotes the tensorization of the input
tensor.

The bound (14) is consistent with the bound on the esti-
mation error of the DNN based vector-to-vector regression.
We can simply justify the bound by folding all the weight

2020 54th Annual Conference on Information Sciences and Systems (CISS)

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on August 17,2021 at 01:25:53 UTC from IEEE Xplore.  Restrictions apply. 



tensors into matrices such that the TTN was transformed
back to the corresponding DNN. Based on the upper bound
on the estimation error for the DNN based vector-to-vector
regression, we obtain the bound (14).

C. Analyzing the upper bound on the optimization error
As shown in the introduction section, the tensor-train rep-

resentation of DNN is that it can keep the benefits of the
over-parametrization, while significantly lowering the number
of parameters required for the model setup. In particular, the
upper bound (9) for the optimization error still holds for TTN,
which is

ε = L(hε)− inf
h∈T
L(h) ≤ µM2β

2γ
. (15)

However, the γ-PL condition is ensured to be satisfied for
a TTN with the characteristic of DNN over-parametrization.
Unlike an over-parametrized DNN, the requirement of over-
parametrization for the number of TTN parameters can be
much lower because of the tensor-train compact representation
for the DNN.

D. Aggregating the three error bounds
By aggregating the bounds on the approximation, estima-

tion, and optimization errors, we can finally derive the upper
bound on L(ĥ) as

L(ĥ) ≤ inf
h∈T
L(h) + 2R̂(T) + ε

≤ O

(
q∏M

t=1(n
[t]
k + k − 1)

r
d

)
+

2qΛ′Λk−1v√
N

+
µM2β

2γ
.

s.t., Smooth ReLU: lim
t→+∞

1

t
ln(1 + exp(tx))

Hidden Layers:
M∏
t=1

n
[t]
j ≥ d+ 2, ∀j ∈ [k]

Regularization: ||Ŵk(i, :)||1 ≤ Λ
′
,∀i ∈ [q]

||Ŵj(m, :)||2 ≤ Λ,∀j ∈ [k − 1],m ∈ [nj ]

||x̂||2 ≤ v
Over-parametrization: The number of parameters of the

matricization of TTN is greater than N .
(16)

V. MAE ESTIMATION

This section presents how to use the bounds (10) and (16) to
estimate MAE values of DNN based vector-to-vector regres-
sion and TTN based tensor-to-vector regression, respectively.

A. MAE estimation for DNN based vector-to-vector regression
As shown in Proposition 2 in our work [6], we can estimate

the approximation error, estimation error, and optimization
error based on Proposition 1 as follows:

Proposition 1. For a smooth function f̂ : Rd → Rq , we use N
training data to well-train a fDNN with k smooth ReLU based
hidden layers (k ≥ 2). Then, the MAE loss can be derived as

MAE(f̂ , f) ≤ cq

(nk + k − 1)
r
d

+
2qΛ′Λk−1v√

N
+ b, (17)

where constants c and b are set based on Eqs. (18) and (19),
respectively.

c =
(MAE1 −MAE2)l

r/d
1 l

r/d
2

q(l
r/d
2 − lr/d1 )

, (18)

b = max(MAE1 −
(MAE1 −MAE2)l

r/d
2

l
r/d
2 − lr/d1

− 2qΛ′v√
N

, 0).

(19)
where MAE1 and MAE2 are two practical MAE loss values
of two artificial neural networks (ANNs) with hidden units l1
and l2, respectively.

B. MAE estimation for TTN based tensor-to-vector regression

As to the TTN based tensor-to-vector regression, we change
the bound (17) to (20).

MAE(f̂ , f) ≤ cq∏M
t=1(n

[t]
k + k − 1)

r
d

+
2qΛ′Λk−1v√

N
+b. (20)

Besides, we use Eqs. (18) and (19) where l1 =
∏M
t=1(l

[t]
1 +

k − 1) and l2 =
∏M
t=1(l

[t]
2 + k − 1).

VI. EXPERIMENTS

A. Experimental Goals

This section discusses TTN based vector-to-vector regres-
sion for digit image de-noising and associates the empirical
results with our theorems shown in the previous sections. In
particular, we aim at verifying the following conjectures:
• An over-parametrized DNN can reduce the training MAE

loss down to 0, while the testing MAE loss can be also
lowered to 0.

• TTN with the tensor-train representation of the corre-
sponding DNN can maintain the performance of DNN
based vector-to-vector regression, but TTN owns fewer
parameters.

• The performance of TTN for tensor-to-vector regression
is consistent under different noisy SNR levels.

Figure 1. Transforming a DNN-based vector-to-vector regression into a TTN-
based tensor-to-vector regression.
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B. Data preparation

This section presents our experiments of the image de-
noising based on the MNIST dataset. The original MNIST
dataset consists of 60000 and 10000 for clean digit images
for training and testing, respectively. To create two different
noisy datasets, we separately mix the datasets with the additive
Gaussian noises (AGN) with 10dB and 5dB SNR levels.

The DNN based vector-to-vector regression used in our ex-
periments employs a feed-forward neural network architecture,
where the inputs were 784-dimensional feature vectors of the
noisy images, and the outputs were 784-dimensional feature
vectors of either clean or enhanced images. The references of
clean image feature vectors associated with the noisy inputs
were assigned to the top layer of DNN in the training process,
but the top layer of DNN corresponded to the feature vectors
of the enhanced images for an evaluation during the testing
phase. Besides, there were 4 hidden layers configured for
DNN, and the hidden layers followed the structure 1024-1024-
1024-2048, where the smooth ReLU activation as Eq. (7)
was utilized. The related setups of hidden layers satisfy the
condition of over-parametrization because 1024 × 1024 +
1024 × 1024 + 1024 × 2048 + 768 × 1024 + 2048 × 768 =
6553600 > 60000. The SGD optimizer with a learning rate
10−3 and a momentum rate of 0.4 was used for the update
of model parameters. The weights of the first k − 1 hidden
layers were normalized by dividing the L2 norm of each row
of weights, which correspond to the term Λk−1 equal to 1
in Eq. (12), and we assume Λ′ as the maximum value of
(||Wk(1, :)||1, ..., ||Wk(q, :)||1).

As shown in Figure 1, we employed tensor-train decompo-
sition to the used DNN for composing a 4-order TTN, where
∀i ∈ [k] and the given ranks {1, r1, r2, r3, 1}, the weight
Wi ∈ R(mi,1mi,2)×(ni,1×ni,2) was factorized into two tensors
Ŵ

[1]
i ∈ Rr1×mi,1×mi,1×r2 and Ŵ

[2]
i ∈ Rr2×mi,2×mi,2×r3 .

Accordingly, the input vector O ∈ R(B1B2)×(Z1Z2) was de-
composed to a 4-order tensor format as Ô ∈ RB1×B2×Z1×Z2 .
To be more specific, given the ranks {1, 2, 2, 2, 1}, the hidden
layers of TTN were configured as 4× 8× 4× 8− 4× 8× 4×
8− 4× 8× 4× 8− 8× 4× 8× 8, and the input tensors follow
a tensor format of 4× 7× 4× 7.

C. Experimental results

Figure 2 and 3 show the trend of MAE losses of both
DNN and TTN based vector-to-vector regression on the noisy
MNIST datasets during the first 12 training epochs. Table I
and III compare DNN and TTN in terms of number of model
parameters, SNR levels, and final MAE loss on both training
and testing datasets after 100 training epochs.

Table I
THE PERFORMANCE OF DNN AND TTN ON THE NOISY MNIST DATASET

UNDER A 5DB SNR LEVEL AFTER 100 ITERATIONS.

Model MAE (Train) MAE (Test) Parameter SNR
DNN 0.0204 0.0229 5.56M 11.29
TTN 0.0171 0.0170 0.0019M 11.54

Figure 2. The MAE losses on noisy MNIST dataset with a 10dB SNR level.

Table II
THE MAE ESTIMATION FOR DNN AND TTN ON THE NOISY MNIST

DATASET UNDER A SNR AT 5DB.

Model AE EE OE MAE B
DNN 0.0034 0.0287 0.0031 0.0352
TTN 2.776× 10−6 0.0282 0.0036 0.0318

The curves in Figure 2 and 3 demonstrates that DNN and
TTN converge to close MAE values after 10 iterations, but
both DNN and TTN eventually converges to the similarly low
values on the training datasets after 10 iterations. Moreover,
the MAE loss on the testing datasets exhibits a similar trend.
The MAE loss on the testing datasets for DNN separately
goes down from 0.1298 and 0.1352 to 0.0256 and 0.0332
under SNRs of 10dB and 5dB, while the related values for
TTN decrease from 0.1321 and 0.1322 to 0.0220 and 0.0315,
respectively.

Experimental results for DNN based vector-to-vector regres-
sion exactly correspond to the over-parametrization condition,
which can lower the training loss close to 0. More impor-
tantly, the results for TTN maintain the over-parametrization
characteristic, which verifies our main theory in this work.

Furthermore, the results in Table I and III show that TTN
can achieve even better performance in terms of the lower

Figure 3. The MAE losses on noisy MNIST dataset with a 5dB SNR level.
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Table III
THE PERFORMANCE OF DNN AND TTN ON THE NOISY MNIST DATASET

UNDER A 10DB SNR LEVEL AFTER 100 ITERATIONS.

Model MAE (Train) MAE (Test) Parameter SNR
DNN 0.0269 0.0327 5.56M 15.43
TTN 0.0300 0.0299 0.0019M 15.89

Table IV
THE MAE ESTIMATION FOR DNN AND TTN ON THE NOISY MNIST

DATASET UNDER A SNR AT 10DB.

Model AE EE OE MAE B
DNN 0.0057 0.0274 0.0098 0.0416
TTN 4.653× 10−6 0.0261 0.0111 0.0372

MAE loss on the testing datasets (0.0170 vs. 0.0229 (10dB),
0.0299 vs. 0.0327 (5dB)) and higher SNR levels (11.54 vs.
11.29 (10dB), 15.89 vs. 15.43 (5dB)). In the meanwhile, the
parameters of TTN is much less than the DNN (0.0019Mb
vs. 5.56Mb), which suggests that the characteristics of over-
parametrized DNN can be maintained by the corresponding
TTN with a few numbers of parameters. Furthermore, the
TTN with significantly fewer parameters can obtain even better
performance.

Besides, Table II and IV shows the estimated MAE values
on the testing datasets under SNR levels at 10dB and 5dB,
respectively. We separately list the approximation error (AE),
estimation error (EE), optimization error (OE), and an overall
MAE bounded value (MAE B). Our estimated results show
that TTN can achieve lower MAE B scores (0.0318 vs. 0.0352
(10dB), 0.0372 vs. 0.0416 (5dB)). This is mainly because AE
values for TTN can be significantly reduced, while EE and
OE scores are kept to be quite close. Hence, our estimated
MAE scores based on our theorems can offer tight upper
bound to the practical MAE scores and they also correspond
to our experiments that TTN can be used for relaxing the
over-parametrization condition required for DNN.

VII. CONCLUSIONS

This work discusses a performance analysis of tensor-
train decomposition applied to DNN based vector-to-vector
regression. We first discuss our findings on the DNN based
vector-to-vector regression [6], and then we generalize and
justify them for the TTN case. In particular, we show that the
benefits of the over-parametrization condition for DNN can
be transferred to TTN because a TTN owns fewer parameters
than its related DNN, and the characteristics of an over-
parametrized DNN can be shared with the TTN.

Our experiments of digit image de-noising on the MNIST
datasets verify our theorems. On one hand, the MAE losses of
both DNN and TTN can consistently follow the condition of
the over-parametrization in different noisy backgrounds. On
the other hand, TTN with fewer parameters can obtain even
better performance than DNN in terms of the MAE losses and
the enhanced SNR levels. Furthermore, our estimated MAE

values based on our bounds in theorems correspond to the
experimental results and verify the advantages of TTN.
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