
Scene Text Recognition with Self-supervised
Contrastive Predictive Coding

Xinzhe Jiang1, Jianshu Zhang2, Jun Du1,*, Zhenrong Zhang1, Jiajia Wu2

1National Engineering Research Center of Speech and Language Information Processing
University of Science and Technology of China, Hefei, Anhui, P. R. China

2iFLYTEK Research
Email: xzjiang@mail.ustc.edu.cn, jszhang6@iflytek.com

jundu@ustc.edu.cn, zzr666@mail.ustc.edu.cn, jjwu@iflytek.com

Abstract—Self-supervised visual pre-training has recently
emerged in scene text recognition (STR), which designs the
pretext tasks and takes unlabeled data as input to obtain useful
representations for STR. However, most current self-supervised
methods do not pay special attention to the importance of
sequence awareness. Accordingly, we propose a novel self-
supervised STR method based on contrastive predictive coding
(STR-CPC), which regards a text instance as a sequence from left
to right and captures the visual sequence correlation. Considering
the information overlap problem within the feature map induced
by the deep convolutional neural network (CNN) encoder, we
design a widthwise causal convolution during model pre-training
and a progressive recovery training strategy (PRTS) during
model fine-tuning to improve the STR performance. Experiments
on scene text show that our STR-CPC method outperforms the
existing self-supervised methods, which testifies the advantage
of visual sequence correlation for STR. Additionally, STR-
CPC observably boosts performance compared with supervised
training when the amount of labeled data decreases.

I. INTRODUCTION

Text recognition [1]–[5] attempts to translate the text in-
stance into machine-readable text, which plays a crucial role
in daily applications such as autonomous vehicles navigation
[6] and document electronization [7].

There is a consensus that the mainstream models for scene
text recognition (STR) are trained on large synthetic data such
as MJSynth (MJ) [8] and SynthText (ST) [9], instead of real-
world text images. However, [4] claims that the synthetic data
lacks diversity which is more important than the amount of
data. The real-world labeled data can bring more diversity into
STR, while its annotation is time-consuming and expensive.
Hence, it is cost-effective to explore the hidden potential of the
large-scale unlabeled data via self-supervised representation
learning without human annotation.

The self-supervised learning frameworks formulate pretext
tasks and help models learn useful representations, which have
achieved outstanding success in the field of image classifica-
tion [10]–[12]. Nevertheless, self-supervised learning for text
recognition has rarely been researched. [13] utilizes two self-
supervised methods for STR, RotNet [14] and MoCo [11].
The two methods treat the text instance as a whole image
rather than a semantic sequence, then undertake the rota-
tion prediction and instance discrimination tasks respectively,
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which lack the sequence awareness for text instances. [15]
proposes a framework of sequence-to-sequence contrastive
learning (SeqCLR), applied to the individual elements of the
sequence using an instance-mapping function, which aims
at instance discrimination and cares less about the visual
sequence correlation within the text instances.

Where the sequence correlation is concerned, wav2vec [16],
which utilizes the contrastive predictive coding (CPC) with
a contrastive loss, takes raw audio as input, and extracts
slow features that can be fed to a speech recognition system.
However, when a text instance is regarded as a sequence from
left to right, the vanilla CPC [17] cannot perform well in STR
due to the information overlap problem. A deep convolutional
neural network (CNN) with a large receptive field is often
adopted in a traditional STR model, making the CPC task
trivial since future information has already been leaked during
the encoding process.

In this paper, we introduce a self-supervised STR method
based on contrastive predictive coding (STR-CPC), exploit-
ing low-cost unlabeled text instances to capture the visual
sequence correlation. STR-CPC possesses a CNN encoder
that takes text instance images as input and generates useful
representations that can be further fed to the downstream STR
models. We also utilize the InfoNCE [17] loss as the training
objective of STR-CPC, which requires the model to distinguish
a positive future sample from negatives. Moreover, we design a
widthwise causal convolution during pre-training to alleviate
the information overlap problem and then introduce a pro-
gressive recovery training strategy (PRTS) that progressively
converts the widthwise causal convolution to the common
convolution for improving the STR performance during fine-
tuning.

The main contributions of our work are summarized as:
• We introduce the self-supervised STR-CPC for scene text

recognition and explore the information overlap problem
in the vanilla CPC.

• We design the widthwise causal convolution and progres-
sive recovery training strategy to mitigate the limitation
of the information overlap problem.

• Extensive experiments show that the proposed STR-CPC
explicitly improves the performance of the STR models
and outperforms the existing self-supervised methods.



When the amount of labeled data decreases, STR-CPC
observably boosts performance compared with supervised
training, indicating its capability in low-resource settings.

To our best knowledge, STR-CPC is the first predictive-
coding-based self-supervised method for text recognition, and
it further leads to significant improvement for the STR models.

II. RELATED WORK

A. Scene Text Recognition

Scene text recognition (STR) has received extensive at-
tention due to its universal application in daily life. The
mainstream STR models can be divided into two approaches
according to their decoding manners, Connectionist Temporal
Classification (CTC) [18] based ones and attention mechanism
based ones. For CTC-based methods, [1], [19] adopt LSTM
for sequence modeling and CTC for prediction. These methods
are effective and practical for real-world application scenarios.
[20] gives a theoretical explanation of CTC from the viewpoint
of the Expectation-Maximization algorithm and proposes a
pseudo-label-based L1 regularization and voting decoding
algorithm to improve the performance of text recognition.
For attention-based methods, [2] proposes an attention and
language ensemble method to boost prediction jointly, with
both visual cues and linguistic rules captured. [3] proposes
a sequential transformation network consisting of a series of
patch-wise basic transformations, which makes the irregular
scene text images more readable for the attention-based rec-
ognizer.

B. Unsupervised Learning for Text Recognition

In spite of the success of unsupervised representation learn-
ing in computer vision tasks such as image classification and
object detection [10]–[12], most text recognition methods have
not taken advantage of enormous unlabeled text images.

[21] proposes an unsupervised method that learns a predic-
tor to convert images into strings that statistically match the
target corpora, implicitly reproducing quantities such as letter
and word frequencies and n-grams. [15] proposes a framework
of sequence-to-sequence contrastive learning (SeqCLR) and
divides each feature map into different instances over which
the contrastive loss is computed. [13] uses two self-supervised
methods, RotNet [14] and MoCo [11], which consider the
input text instance as a whole to accomplish the rotation
prediction and instance discrimination tasks respectively.

C. Contrastive Predictive Coding

There are a number of works utilizing a predictive-coding-
based method called contrastive predictive coding (CPC) to
learn useful latent representations from unlabeled data in an
unsupervised manner. The reason why using a contrastive
objective rather than a generative one is that the generative
objective tends to make the model focus on minor details
and local noise [22]. [17] compresses high-dimensional data
into a compact latent embedding space and utilizes Noise-
Contrastive Estimation [23] for the loss function. [16] ap-
plies unsupervised pre-training to improve supervised speech

recognition, adopting a contrastive loss that requires the model
to distinguish a true future audio sample from negatives.
[24] modifies CPC via patch-based image augmentations and
predictions in four directions, improving the ImageNet classi-
fication accuracy.

III. PROPOSED APPROACH

As the proposed self-supervised approach for STR is based
on CPC, we first review this algorithm concisely and then
discuss why the vanilla CPC cannot perform well for STR.
Subsequently, we detail our STR-CPC framework and the
downstream STR model fine-tuning.

A. Preliminary

1) Vanilla CPC: CPC forces the model to predict future
timesteps in the latent space. With the text instances regarded
as sequences, the left and right within text instances corre-
spond to the past and future in time. We utilize the vanilla
CPC method to process the text instances from left to right,
predicting the future based on past information.

A non-linear encoder network is utilized to map an un-
labeled text instance image x to a sequence of latent rep-
resentations zt. Subsequently, a context network is used to
provide a context latent representation ct. Instead of generating
the future samples xt+k directly via a generative model, an
unnormalized density ratio fk(xt+k, ct) which estimates the
mutual information between xt+k and ct, is calculated by a
log-bilinear model:

fk (xt+k, ct) = exp
(
z⊤t+kWkct

)
(1)

A linear transformation Wkct is adopted to predict the k future
timesteps, with a separate Wk corresponding to each step k.
The density ratio fk(xt+k, ct) calculates the similarity between
zt+k and ct, where the similarity score means the prediction
probability. The model parameters are updated via optimizing
the InfoNCE loss function:

L = −E
X

[
log

fk (xt+k, ct)∑
xj∈X fk (xj , ct)

]
(2)

The InfoNCE loss is intrinsically the categorical cross-
entropy, classifying the positive sample correctly from a set
X = {x1, . . . , xN}. Note that the set X consists of N random
samples, in which one positive sample is from p (xt+k|ct) and
N − 1 negative samples are from the ‘proposal’ distribution
p (xt+k). To be specific, the negative samples are obtained by
uniformly choosing distractors from each feature map itself.
For the context vector ct, {zt+1, . . . zt+k} are the positive
samples.

I (xt+k, ct) ≥ log(N)− L (3)

The mutual information between the ct and xt+k can
be evaluated as Equation 3, which points out that a lower
bound on mutual information is maximized via optimizing the
InfoNCE loss function.



Widthwise Causal Convolution 

Each Convolution Layer

Encoder Network

Context Network

Predictions

zt

ct

zt+1 zt+2 zt+3 zt+4

Wn M0

Fig. 1: The architecture of self-supervised STR-CPC pre-training. The encoder and context network are the WC-CNN and
linear projection, respectively. The model predicts the future time steps based on the past context.

2) Why Vanilla CPC Cannot Perform Well for STR:
Different from time-series data like audio signals, the non-
linear encoder of text instance images always prefers the
deeper CNN. The convolution operation for the input text
instance images results in the information overlap problem
within adjacent timesteps in the feature map. Hence the pretext
classification task is likely to become trivial when it predicts
the adjacent future timesteps. The deeper the CNN encoder is,
the larger the receptive field size is, and the more trivial the
pretext task will be.

Equation 4 is the objective function under the ideal condi-
tion, which means there is no information overlap problem.

L = −EX

 z⊤t+kWkct∑
z̃∼pn

z̃⊤Wkct

 (4)

where z̃ is the negative sample drawn from pn. In practice, we
set the negative sampling distribution as pn(z) =

1
T , where T

is the width of the feature map z.
Considering the information overlap problem induced by

the large receptive field size of the encoder, there are many
overlaps between the past and future. On this account, the
information of the future zt+k leaks into the past context ct,
and predicting the nearby future timesteps becomes trivial.
The problem seriously hinders the model training and leads to
incorrect convergence. The problem induces the worse lower
bound on mutual information, and the pre-trained encoder
cannot provide high-quality representations for STR. The main
challenge of applying CPC in STR is the information overlap
problem, which motivates us to propose the STR-CPC method.

B. Our STR-CPC Approach

In this section, we introduce the proposed STR-CPC frame-
work, which includes: (1) STR-CPC pre-training as shown in
Fig. 1, where unlabeled text instances are exploited to obtain
effective representations via the pretext task; and (2) STR
model fine-tuning as shown in Fig. 2, which integrates the pre-
trained encoder into the downstream STR models for feature
extraction.

1) Widthwise Causal Convolution for STR-CPC Pre-
training: The proposed STR-CPC takes unlabeled text in-
stances as input and considers them as the sequences from
left to right. STR-CPC enables the model to extract high-level
information and incorporates the visual sequence correlation
into latent representation learning. We hypothesize that the
visual sequence correlation within text instances is beneficial
to learning effective representations for STR.

The architecture for STR-CPC is depicted in Fig. 1. Inspired
by the causal convolutional layers in [25], we design a
widthwise causal convolution to decrease information overlaps
between the past and the future, where the right half of
the kernel in convolution is masked by zero. The widthwise
causal CNN (WC-CNN) encoder consists of widthwise causal
convolution layers, while the common CNN encoder consists
of common convolution layers without mask operation. The
widthwise causal convolution is defined as Equation 5.

gwcc (x) = b+

D∑
n=1

M0 ·Wn ⋆ xn (5)

where xn is the n-th channel of the input x, D is the
number of input channels, b is the bias term, Wn is the
kernel weights matrix for xn, M0 is the widthwise causal
mask for Wn, · is the Hadamard product, ⋆ is the valid 2D
cross-correlation operator. If the widthwise causal mask M0 is
removed, the widthwise causal convolution will revert to the
common convolution.

According to [26], we can compute the receptive field size
of the L-layer CNN by Equation 6.

ro =

L∑
l=1

(
(kl − 1)

l−1∏
i=1

si

)
+ 1 (6)

where kl and sl are the kernel size and the stride of l-th layer,
and ro is the receptive field size.

Once the original common convolution is substituted by
widthwise causal convolution, the width of kernel for l-th layer
is reduced from kl to ⌈kl

2 ⌉. When we only consider the convo-
lution layers, the receptive field size of the WC-CNN encoder
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Fig. 2: The STR model with PRTS during fine-tuning. The
typical STR models consist of four modules: transformation
(Trans.), feature extraction (Feat.), sequence modeling (Seq.),
and Prediction (Pred.). The l-th convolution layer will convert
to common convolution from widthwise causal convolution
when the training iterations reach pl.
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(
⌊kl

2 ⌋
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)
compared with the

common CNN encoder. Consequently, the information overlap
problem is greatly alleviated.

2) Progressive Recovery Training Strategy for STR Model
Fine-tuning: Given the disparity between the WC-CNN en-
coder and the common CNN encoder, there are structural
mismatches between pre-training and fine-tuning. The mis-
matches inevitably degenerate model performance during fine-
tuning. As illustrated in Fig. 2, we propose the progressive
recovery training strategy (PRTS) to reduce mismatches via
progressive switching from widthwise causal convolution to
common convolution in fine-tuning. The training strategy is
defined as Equation 7 and 8.

gl (x) = b+

D∑
n=1

M ·Wn ⋆ xn (7)

mi,j =

{
1 j ⩽ ⌈kl

2 ⌉
u(iterations− pl) j > ⌈kl

2 ⌉
(8)

where gl is the l-th convolution layer, M is the mask matrix for
Wn, mi,j is the element of row i and column j of M . u (·) is
the unit step function, and p1 > p2 > · · · > pl. As iterations
reaches pl, the gl is converted to the common convolution
from widthwise causal convolution.

At the beginning of fine-tuning, the feature extractor of the
STR models is defined as the WC-CNN encoder and initialized
from the STR-CPC pre-trained WC-CNN encoder weights. As
training iteration goes, the widthwise causal convolution is

progressively converted to common convolution layerwisely,
which preserves the latent visual sequence correlation and
improves the STR model performance.

IV. EXPERIMENTS

A. Datasets

Three public datasets Book32 [27], TextVQA [28], and
ST-VQA [29] are pre-processed and consolidated by [13]
for self-supervised pre-training, which is called the Real-
U dataset. With 4.2M unlabeled text instances obtained, we
utilize the Real-U dataset for the STR-CPC pre-training in
our experiments. During fine-tuning, we use the Real-L dataset
for STR model training, same as [13], which includes 276K
training and 63K validation sets.

Six standard benchmark datasets include SVT [30], IIIT
[31], IC13 [32], IC15 [33], SVTP [34] and CUTE [35] are
adopted to evaluate the performance of STR models. The
word-level accuracy is calculated only on the alphabet and
digits, in accordance with [36]. For convenience, we calculate
the total accuracy of the union of six benchmark datasets
(7,672 in total). In the following, the accuracy indicates total
accuracy for performance comparison.

B. STR Baseline Models

According to [4], STR is performed in four stages, which
include transformation (Trans.), feature extraction (Feat.), se-
quence modeling (Seq.), and prediction (Pred.) as shown in
Fig. 2. We specifically adopt two classic STR models: CRNN
[1] and TRBA [4]. To ensure a fair comparison, the chosen
STR models are the same as [13]. CRNN is a CTC-based
STR model without the transformation stage, which consists
of VGG, BiLSTM, and CTC. Concerned with performance,
CRNN is inferior to state-of-the-art methods, but it is widely
used in practical applications due to its fast speed and low
memory requirement. TRBA is a typical attention-based STR
model consisting of TPS [37], ResNet, BiLSTM, and Attention
for each stage, which has higher accuracy than CRNN, with
relatively slow speed and high memory requirement.

C. Implementation Details

1) STR-CPC Pre-training: We use the Real-U dataset for
STR-CPC pre-training. Specifically, we choose the VGG and
ResNet as the encoder networks, corresponding to the feature
extractors of CRNN and TRBA respectively. The prediction
networks Wk are linear layers, and the prediction step k is 8.
All pre-training experiments are implemented with 4 NVIDIA
P40 GPUs.

2) STR Model Fine-tuning: In all our experiments, we use
the Real-L dataset during fine-tuning stage. We adopt the
Adam [38] optimizer and the one-cycle learning rate scheduler
[39] with a maximum learning rate of 0.0005, and train the
STR models on a single NVIDIA P40 GPU.



TABLE I: Accuracy of STR models on six benchmark datasets for comparison. Methods with symbol ∗ denote the results are
reported while the others are our implementations. CRNN† means the model setting is different from our CRNN.

Model Pre-training method Training data IIIT SVT IC13 IC15 SVTP CUTE Total Total*0.1

CRNN† SeqCLR [15]∗ ST [9] 80.9 - 86.3 - - - - -
TRBA SeqCLR∗ ST 82.9 - 87.9 - - - - -

CRNN

None Real-L 83.5 75.5 86.3 62.2 60.9 64.7 74.8 40.9
MoCo [11] Real-L 83.9 77.9 85.9 62.9 63.1 65.9 75.6 56.9
RotNet [14] Real-L 84.5 77.4 87.5 64.2 63.3 64.9 76.3 56.9

Vanilla CPC [17] Real-L 83.8 77.6 85.4 62.0 61.1 64.6 75.0 54.3
STR-CPC w/o PRTS Real-L 82.7 78.1 84.8 60.9 61.9 63.5 74.2 56.1

STR-CPC Real-L 84.7 79.6 88.7 64.7 64.3 68.1 77.077.077.0 58.758.758.7

TRBA

None Real-L 93.5 87.5 92.6 76.0 78.7 86.1 86.6 41.3
MoCo Real-L 92.2 86.2 91.8 73.2 76.6 83.7 84.9 59.8
RotNet Real-L 92.8 87.2 92.0 75.7 77.8 85.0 85.8 62.2

Vanilla CPC Real-L 92.9 88.1 91.9 75.5 77.1 87.2 86.1 61.9
STR-CPC w/o PRTS Real-L 93.3 88.4 92.5 75.0 80.3 87.9 86.5 64.7

STR-CPC Real-L 93.4 88.1 93.6 76.9 79.5 88.2 87.287.287.2 66.966.966.9

TABLE II: Ablation study on the number of convolution layers
and kernel size of VGG in CRNN.

VGG Model Settings Pre-training method
None Vanilla CPC STR-CPC

Convolution Layers
7 40.9 54.3 58.7
9 43.5 49.5 58.3
11 47.3 51.6 59.9

Kernel Size
3 × 3 40.9 54.3 58.7
5 × 5 41.0 48.7 53.8
7 × 7 33.2 39.3 47.0

D. STR Performance

The comparison of our STR-CPC method and other self-
supervised pre-training methods is shown in Table I, where
‘Total’ is the total accuracy and ‘Total*0.1’ is the total accuracy
when only 10% labeled data is used for training. In Table I,
the ‘None’ in the column ‘Pre-training method’ refers to
the baseline STR models, which are trained in a supervised
manner without any self-supervised pre-training. To strictly
perform a fair comparison, we reproduce two self-supervised
methods, MoCo and RotNet. In the aspect of SeqCLR, the
CRNN and training data are not exactly the same as ours.
Therefore, we do not focus on comparing the results between
the STR-CPC and SeqCLR.

In the aspect of CRNN, MoCo, RotNet, and STR-CPC
methods improve the accuracy by 0.8%, 1.5%, and 2.2%
from CRNN baseline model. Although MoCo and RotNet
methods achieve improvements for CRNN on benchmarks,
STR-CPC gets better performance compared with them. For
TRBA, the STR-CPC improves the accuracy by 0.6% from
TRBA baseline model. Contrary to CRNN, TRBA model
performance is even degraded by the MoCo and RotNet pre-
training methods.

To evaluate the influence of the information overlap prob-
lem, we conduct the ablation study on the receptive field size
of VGG in CRNN with 10% training data. We enlarge the
receptive field size of VGG by utilizing the more convolution
layers and larger kernel size, respectively. Note that we do
not simultaneously change the number of convolution layers

and kernel size. The basic VGG consists of seven convolution
layers and 3 × 3 kernels. Table II shows that the performance
increment of vanilla CPC is degraded gradually with the
increase of convolution layers and kernel size. However, the
proposed STR-CPC tends to keep substantial improvement
upon the baseline model performance when the receptive field
size of VGG is enlarged.

Fig. 3: Accuracy of different methods with the decrease of
labeled data.

For both CRNN and TRBA, our STR-CPC outperforms the
vanilla CPC. The vanilla CPC has a more negative influence
on TRBA than CRNN due to the deeper CNN encoder and
larger receptive field size in TRBA. As can be seen from the
comparison in Table I, the removal of PRTS decreases the ac-
curacy by 2.8% and 0.7% for the STR-CPC pre-trained CRNN
and TRBA models, which indicates that the combination of
widthwise causal convolution and PRTS is valuable to the
STR-CPC. In the scenarios of all labeled data and 10% labeled
data for training, the STR-CPC achieves the best results on
STR benchmarks for both CRNN and TRBA models, which



demonstrates the capability of the STR-CPC.

E. Varying Amount of Labeled Data

To explore the effectiveness of self-supervised pre-training
methods in low-resource settings, we decrease the amount
of labeled data proportionately and conduct experiments for
comparison. Note that the amount of unlabeled data of pre-
training keeps unchanged. As shown in Fig. 3, the accuracies
of CRNN and TRBA baseline models descend 19.8% and
17.9% respectively when the ratio of labeled data is reduced
from 100% to 20%, which demonstrates the baseline models
cannot perform well in low-resource settings. Moreover, the
STR-CPC observably boosts the performance (+9.7% for
CRNN and +5.9% for TRBA) and excels the RotNet and
MoCo methods when only 20% labeled data is utilized during
fine-tuning. When the amount of labeled data proportionately
rises, the performance of all methods increases, whereas the
gains of self-supervised methods decline.

F. Representation Quality

To further compare the representation quality of different
self-supervised methods, we train the STR models with all
labeled data during fine-tuning and keep the pre-trained en-
coders frozen. As illustrated in Fig. 4, the accuracy comparison
among different self-supervised methods demonstrates that
the best result is accomplished by our STR-CPC method. In
addition, it is worth noting that the RotNet method can provide
few high-quality representations for STR when the pre-trained
encoders are frozen during fine-tuning, even though it gains
an increment for CRNN in low-resource settings as shown in
Fig. 3.

Fig. 4: Accuracy of different methods with frozen encoders.

G. Performance Comparison of Different Text Lengths

Due to the error accumulation among decoding steps, the
attention-based models tend to perform poorly for the long
text instances. The proposed STR-CPC method equipped with
sequence awareness can strengthen the attention-based TRBA
model performance in the situation of long text instances.

Fig. 5: The Word Error Rate of different methods for variable
label lengths. For instance, group 1-4 includes the samples
whose label lengths range from 1 to 4.

For a clearer comparison, we divide the STR benchmark
datasets into three groups according to the label lengths and
calculate the Word Error Rate (WER) for each group. As
shown in Fig. 5, experiment results demonstrate that the STR-
CPC outperforms other self-supervised methods for the long
text instances. For groups 5-8 and 9-12, STR-CPC achieves
2.0% and 2.9% reductions on WER for TRBA baseline model,
respectively. Benefiting from STR-CPC pre-training, TRBA
model is able to capture the visual sequence correlation and
ease the restriction of error accumulation among decoding
steps.

V. CONCLUSION

In this paper, we propose a self-supervised STR method
based on Contrastive Predictive Coding (STR-CPC), which
regards a text instance as a sequence from left to right and
forces the model to predict future timesteps in the latent
space. The combination of the widthwise causal convolution
in pre-training and the PRTS in fine-tuning is capable of
mitigating the information overlap problem and improving the
performance of STR models. The key takeaway is that the
latent visual sequence correlation within the text instance is
beneficial to the performance of the STR models. Experiments
on STR benchmarks demonstrate that the proposed STR-CPC
method not only boosts the performance of the baseline models
but also outperforms the existing self-supervised methods.
Moreover, with the decrease of labeled data, STR-CPC consid-
erably improves model performance compared with supervised
training. In the future, we will further explore the performance
of STR-CPC for other languages like Chinese to validate its
generalization capability.

Nowadays, the self-supervised works for STR are still
limited. We hope that our STR-CPC method can inspire other
researchers to offer deeper insight into self-supervised learning
for text recognition in the future.
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