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ABSTRACT

This paper presents our main contributions of acoustic
modeling for multi-array multi-talker speech recognition
in the CHiME-6 Challenge, exploring different strategies
for acoustic data augmentation and neural network
architectures. First, enhanced data from our front-end
network preprocessing and spectral augmentation are
investigated to be effective for improving speech recognition
performance. Second, several neural network architectures
are explored by different combinations of deep residual
network (ResNet), factorized time delay neural network
(TDNNF) and residual bidirectional long short-term memory
(RBiLSTM). Finally, multiple acoustic models can be
combined via minimum Bayes risk fusion. Compared with
the official baseline acoustic model, the proposed solution
can achieve a relatively word error rate reduction of 19% for
the best single ASR system on the evaluation data, which is
also one of main contributions to our top system for the Track
1 tasks of the CHiME-6 Challenge.

Index Terms— Data augmentation, acoustic modeling,
model ensemble, multi-talker recognition, CHiME-6
Challenge

1. INTRODUCTION

Despite recent advances made in automatic speech
recognition (ASR) after the introduction of deep neural
network (DNN) based acoustic models [1, 2], noise,
reverberation and speech from other talkers still cause
severe degradations in the ASR performances. In particular,
multi-talker speech recognition that aims at recognizing
the individual speech sources from overlapped speech is
one of the most challenging issues for ASR [3–5] due
to the difficulty of separating target speech from other
interfering speech signals. A classic scenario is far-field
speech recognition in a daily home environment, such as a
dinner party [4, 5].

The latest 6th CHiME Speech Separation and Recognition
Challenge (CHiME-6) [5] was held to encourage researchers

interested in providing advanced solutions for distant multi-
array conversational speech recognition in everyday home
environments. The CHiME series of challenges is very
helpful in promoting the development of the state-of-
the-art ASR for diverse environments. The CHiME-6
Challenge revisits the previous CHiME-5 Challenge [4] and
further considers multi-microphone conversational speech
diarization and recognition. Speech materials are the same as
the previous CHiME-5 recordings except for an additional
accurate array synchronization. The corpus essentially
congregates all possible acoustic issues in real life including
mixtures of noises, reverberation and overlapping speech and
thus poses a big challenge to the current ASR technologies.

One way to improve distant multi-array conversational
speech recognition is to improve the robustness of acoustic
models with data augmentation techniques [6–8], better
training objectives [9–13], improved acoustic model
architectures [14–16], etc. More specifically, a series of data
generation methods that derive far-field data from existing
close-talk sets via simulation were introduced in [6, 7] to
augment the training set for improving the robustness of
acoustic models. In addition, SpecAugment [8] operating on
the log mel spectrogram of the input audio is an effective
data augmentation method and can be applied in an online
manner during training. Its implementation does not require
any additional data. As for the objectives for acoustic model
training, new sequence training criteria such as Connectionist
Temporal Classification [17] and Lattice-Free Maximum
Mutual Information (LF-MMI) [12] are commonly used
to improve the recognition performance and significantly
outperform the cross-entropy (CE) criterion. Advanced DNN
architectures have been developed to increase the robustness
of acoustic models, such as a factorized time delay neural
network (TDNNF) [18] that is a factored form of TDNN
[19] and a combination of convolutional neural network
(CNN), long short-term memory (LSTM)/bidirectional
LSTM (BiLSTM)/residual BiLSTM (RBiLSTM) [20] and
DNN/TDNN architecture [15, 20]. Another way to improve
the robustness of acoustic models is adopting speech
enhancement techniques. The speech enhancement method
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Fig. 1. The flowchart of the overall ASR system for Track 1
in the CHiME-6 Challenge.

based on spatial Gaussian mixture model (GMM) blind
source separation, named Guided Source Separation (GSS)
[21] is demonstrated to be very effective for the difficult
CHiME-6 dinner party recognition task.

The CHiME-6 Challenge contains two tracks, Track 1:
multiple-array speech recognition and Track 2: multiple-
array diariazation and recognition. In this paper, we focus on
Track 1: multiple-array speech recognition where annotations
can be used to recognize a given test utterance. We present
our main contributions of acoustic modeling for multi-array
multi-talker ASR in the CHiME-6 Challenge for Track1.
We explore different data augmentation methods including
the SpecAugment and GSS-enhanced data. In addition,
two novel architectures of neural network are designed by
different combinations of deep residual networks (ResNet)
[22, 23], TDNNF/TDNN, self-attention [24] and RBiLSTM,
denoted as ResNet-SelfAttention-TDNNF and ResNet-
TDNN-RBiLSTM, respectively. Experiments demonstrate
that they significantly outperform the CNN-TDNNF [25]
and CNN-TDNN-RBiLSTM [20] models commonly used
in CHiME-5 Challenge, and also extremely significantly
outperform the official TDNNF model. All the acoustic
models are trained using the LF-MMI criterion on the GMM
alignments. After realignment obtained from the ResNet-
TDNN-RBiLSTM model trained using the CE criterion on the
GMM alignments, better recognition results can be achieved.
Finally, to combine the recognition results from acoustic
models with different architectures and trained on the two
kinds of alignments, lattice fusion followed by Minimum
Bayes Risk (MBR) decoding [26] is performed.

2. CHIME-6 MULTIPLE-ARRAY SPEECH DATA

The CHiME-6 Challenge revisits the CHiME-5 Challenge
and further considers the problem of distant multi-
microphone conversational speech diarization and recognition
in everyday home environments. There are some differences
between the two challenges. First, the CHiME-6 Challenge
uses the same recordings as the CHiME-5 Challenge except
for an accurate array synchronization done by frame-dropping

and clock-drift. In addition, GSS-based speech enhancement
is applied to multiple arrays and achieves good recognition
results. Finally, the TDNNF acoustic model trained with
LF-MMI is adopted to replace the TDNN acoustic model in
the baseline system of CHiME-5. The training set denoted
as “worn simu u400k” for acoustic model training consists
of worn binaural microphone recordings, a subset of 400k
utterances from the array microphones and simulated data
generated using the worn data and point source noises
extracted from the noise regions in the CHiME-6 corpus.
Data cleanup is done by the hidden Markov model (HMM)-
GMM ASR system.

Fig. 1 shows our overall ASR system which achieves
the best recognition performance of the Track 1 among
submitted systems in the CHiME-6 Challenge. The training
data consists of worn binaural microphone recordings after
data cleanup, GSS-enhanced data and our proposed modified
GSS (MGSS)-enhanced data, where the first two data sets
are processed by a three-fold speed perturbation and all
of them are processed by a volume perturbation using a
random factor in [0.125, 2.0]. Moreover, the SpecAugment
data augmentation technique applied for spectral perturbation
of the input audio is used for augmenting the training set
and demonstrated to be very effective for the CHiME-6
dinner party recognition task. In addition, there are six
acoustic models used in our ASR system consisting of two
single-feature acoustic models and four multi-feature acoustic
models. In this paper, we only explore the two single-feature
acoustic models due to the space limitation here. We will
disclose more details of the multi-feature acoustic models and
our proposed MGSS algorithm in our future work.

3. ACOUSTIC MODELING

3.1. Training Data Augmentation

[21] proposed a novel speech enhancement method,
named GSS, which achieved a significant improvement
for evaluation data in multiple array settings. Moreover,
[25] demonstrated that using GSS-enhanced data in
training improves ASR results significantly. Therefore, we
incorporate the enhanced data after applying multi-array GSS
data cleaning into the training set for acoustic model training.
In this study, we select the worn microphone recordings
and the GSS-enhanced data as the training set denoted as
“worn gss”. The MGSS-enhanced data will be disclosed in
our future work. The speed and volume perturbations as used
in the CHiME-6 baseline recipe is also used to improve the
robustness of the acoustic models. Experiments demonstrate
that the acoustic model trained on this dataset produces better
recognition results compared with that trained on the official
training set “worn simu u400k”. In addition, we found
that the SpecAugment technique [8] applied for spectral
perturbation is very effective for the CHiME-6 task, which
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can achieve further performance gains. It is implemented
during training.

3.2. Acoustic Neural Network Architectures

The baseline ASR system in the CHiME-6 Challenge
uses a TDNNF which is a factored form of TDNN [19]
introduced in [18]. The TDNNF has 15 layers with a
hidden dimension of 1536 and a bottleneck dimension 160;
each layer also has a resnet-style bypass-connection from
the previous layer’s output, and a “continuous dropout”
schedule [27]. It is trained using the LF-MMI criterion.
The acoustic feature vector consists of 40-dimensional mel-
frequency cepstral coefficients (MFCCs) appended with 100-
dimensional i-vectors being extracted on top of PCA-reduced
spliced-MFCC features for speaker adaptation [28]. CNNs
have been previously shown to improve ASR robustness
[29]. Therefore, combining CNN and TDNNF layers is a
promising approach to improve the baseline system. [25]
has demonstrated that the CNN-TDNNF model whose
architecture consists of 6 CNN layers followed by 9 TDNNF
layers outperforms the TDNNF model for the CHiME-5
scenario. Accordingly, in this study, the CNN-TDNNF is
explored for the CHiME-6 scenario. In addition, the CNN-
TDNN-RBiLSTM architecture was proposed in [20, 30],
which consists of a CNN, TDNN, and RBiLSTM [20]. This
architecture is the main contribution of acoustic modeling for
the Hitachi/JHU CHiME-5 system that achieved the second-
best result in the CHiME-5 Challenge. The model has single-
channel and multi-channel input branches. We only explore
the part of the single-channel input branch in the CHiME-6
task. Note that log mel-filterbank is used as the input in
addition to MFCCs and i-vectors.

ResNets [31] are popular in computer vision due to
their increasing number of convolutional layers and ease
of optimization, achieving a better performance in almost all
the standard image recognition datasets. Moreover, ResNets
used as acoustic model architectures can improve robustness
against noisy conditions given that they are capable to
more effectively model the speech variability of data [22].
Accordingly, in this study, we use the ResNet to replace the
simple CNN to build the acoustic model architectures with
the combination with TDNN/TDNNF and RBiLSTM, etc.
We will give more details of our proprosed acoustic model
architectures in Section 3.2.1 and Section 3.2.2.

3.2.1. ResNet-TDNN-RBiLSTM

Here, we propose a new acoustic model consisting of a
ResNet, TDNN, and RBiLSTM. An overview of the acoustic
model is depicted in Fig. 2. In this figure, the red blocks
represent a CNN, the blue blocks represent a RBiLSTM
proposed in [20], the green blocks represent the batch
normalization [32], the yellow blocks represent a TDNN, the
grey blocks represent a rectified linear unit (ReLU) activation
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Fig. 2. The ResNet-TDNN-RBiLSTM architecture. A
number with an arrow indicates a time splicing index, which
forms the basis of TDNN [19]. The details of the residual
block (ResBlock) in the ResNet are shown in the blue solid
box.
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function, and the purple blocks represent a fully connected
layer. The blue dotted box represents the ResNet consisting
of convolution layers and several residual blocks [23] whose
details are shown in the blue solid box. It is trained using the
LF-MMI criterion and the Kaldi toolkit [33]. 40-dimensional
MFCCs appended with 100-dimensional i-vectors are used
as the inputs. Note that the SpecAugment in Kaldi is
implemented as an nnet layer which does the augmentation
on-the-fly during training. We denote this architecture as
ResNet-TDNN-RBiLSTM.

3.2.2. ResNet-SelfAttention-TDNNF

We also propose a new acoustic model consisting of a ResNet,
self-attention [24] and TDNNF. An overview of the acoustic
model is depicted in Fig. 3. In this figure, the orange
blocks represent a self-attention. The TDNNF layer has a
hidden dimension of 2560 and a bottleneck dimension 512.
This model is denoted as ResNet-SelfAttention-TDNNF. It is
trained using the LF-MMI criterion and the Kaldi toolkit. The
acoustic feature vector consists of 40-dimensional MFCCs
appended with 100-dimensional i-vectors.

3.3. Realignment

In the baseline recipe, a HMM-GMM system is used as a
seed system to get alignments for acoustic neural network
training. The GMM stages include standard triphone-based
acoustic model building with various feature transformations
including linear discriminant analysis, maximum likelihood
linear transformation, and feature space maximum likelihood
linear regression with speaker adaptive training. In this study,
we find that realignment [34] obtained from the acoustic
model trained using the CE criterion on GMM alignments can
bring better recognition results.

3.4. MBR Fusion

The different acoustic neural network architectures and
alignments have complementarity. Lattice fusion followed
by MBR decoding [26] is used to combine the recognition
results from acoustic models with different architectures and
trained on different alignments.

4. EXPERIMENTAL RESULTS

In this section, we report experimental results using the
acoustic modeling described in Section 3. All the experiments
were conducted on the Kaldi toolkit. The development data
(DEV) and evaluation data (EVAL) are processed by the GSS
enhancement refined using time annotations from ASR output
[25]. The 3-gram language model provided by the official
recipe is used in this paper.

4.1. Effect of Training Data Augmentation

We make a word error rate (WER) comparison among
different training data settings for acoustic models. Row
2 in Table 1 shows recognition results of the ASR systems
trained using the training set “worn gss” consisting of the
worn microphone recordings and the GSS-enhanced data as
described in Section 3.1. Row 1 in Table 1 shows recognition
results of the official training set “worn simu u400k” which
is five times the amount of the training set “worn gss”. Yet the
model trained on the training set “worn gss” gives an around
1.5% absolute reduction in WER compared with that trained
on the training set “worn simu u400k”. Furthermore, when
combining segments of the training set “worn gss” whose
durations are shorter than a specified minimum segment
length, i.e., 2s, a 1.8%/1.3% absolute improvement in WER is
obtained for the development/evaluation set as shown in row
3 of Table 1. Rows 3 and 4 show that replacing the TDNNF
with the CNN-TDNNF model yields about 1.1%/1.6%
absolute WER reduction for the development/evaluation
set. Row 5 uses SpecAugment data augmentation which
achieves more than 2% absolute WER reduction for both
the development (DEV) and evaluation (EVAL) sets. For
the remainder of the paper we report results of the acoustic
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Table 1. WER(%) results on DEV and EVAL (in
parentheses) sets for acoustic models trained with different
training settings.

Training data Data augm. AMs WER(%)
worn simu u400k - TDNNF 47.27 (50.34)

worn gss - TDNNF 45.69 (48.86)
worn gss com2s - TDNNF 43.83 (47.52)
worn gss com2s - CNN-TDNNF 42.76 (45.89)
worn gss com2s SpecAugment CNN-TDNNF 40.70 (43.73)

Table 2. WER(%) comparison for different acoustic models.

AMs DEV(%) EVAL(%)
CNN-TDNNF 40.70 43.73

CNN-TDNN-RBiLSTM 40.95 43.94
ResNet-TDNN-RBiLSTM 38.86 41.37

ResNet-SelfAttention-TDNNF 38.90 42.35

models using SpecAugment data augmentation trained with
the setting of “worn gss com2s”.

4.2. Effect of Neural Network Architecture

Table 2 shows the results of acoustic models with
different neural network architectures. We can make some
observations. First, rows 1 and 2 show that the CNN-
TDNNF acoustic model achieves slightly better recognition
results than the CNN-TDNN-RBiLSTM acoustic model.
Second, by comparing rows 1 and 4, it’s observed that
an absolute 1.8%/1.4% WER reduction is achieved for the
development/evaluation set when replacing the CNN layers
of CNN-TDNNF model with the ResNet shown in the blue
dotted box of Fig. 2, interleaving the self-attention layers into
the TDNNF layers and increasing the hidden dimension from
1536 to 2560 and the bottleneck dimension from 160 to 512
for the TDNNF. Third, the ResNet-TDNN-RBiLSTM model
achieves the best results, which yields an absolute 9% WER
reduction compared with the official baseline system shown
in the row 1 of Table 1.

4.3. Effect of Realignment

Aforementioned acoustc models are trained using the LF-
MMI criterion on the GMM alignments as used in the baseline
recipe. We trained the ResNet-TDNN-RBiLSTM model
using the CE criterion on the GMM alignments and then
used it to do realignment. Table 3 shows the improvements
of recognition results after realignment for different acoustic
models. It’s clearly observed that the realignment brings
around 0.7%/0.5% and 0.8%/1.4% absolute reductions
in WER to the ResNet-TDNN-RBiLSTM and ResNet-
SelfAttention-TDNNF models on the development/evaluation

Table 3. WER(%) Comparison for acoustic models trained
on speech data with different alignments.

Configuration DEV(%) EVAL(%)
ResNet-TDNN-RBiLSTM 38.86 41.37

+ realign 38.19 40.81
ResNet-SelfAttention-TDNNF 38.90 42.35

+ realign 38.10 40.96
MBR fusion 34.43 37.30

set, respectively. Overall, the ResNet-TDNN-RBiLSTM
model after realignment achieves the best single system result
on the evaluation set, which improves the WER from 50.34%
of the official baseline result to 40.81%.

4.4. Effect of MBR Fusion

Lattice fusion followed by MBR decoding is performed to
combine recognition results from different models trained
on the two kinds of alignments, i.e., GMM alignments and
realignment. In Table 3, it’s observed that MBR fusion
achieves more than 3% absolute WER reduction over the
best single system and yields the recognition result of
34.43%/37.30% on the development/evaluation set.

5. SUMMARY

In this paper, we present the acoustic modeling efforts
in developing our CHiME-6 ASR system for Track 1
tasks. We explored data augmentation approaches for
improving robustness against noisy conditions and found that
SpecAugment data augmentation is effective and achieves
a 2% absolute WER reduction. In addition, we investigated
various acoustic neural network architectures, and yielded the
best single system result using the ResNet-TDNN-RBiLSTM
model trained using the LF-MMI criterion. Furthermore, after
realignment obtained from the ResNet-TDNN-RBiLSTM
model trained with the CE criterion on the GMM alignments,
another 0.5% absolute WER reduction for the ResNet-
TDNN-RBiLSTM model was achieved on the evaluation
data. Finally, lattice fusion followed by MBR decoding is
adopted to combine recognition results from different models
trained on the two kinds of alignments, which achieved more
than 3% absolute WER reduction. Our front-end acoustic
signal processing effort, a key to our overall Track 1 ASR
system, is described in another companion paper submitted
to the same conference.
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