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Abstract
In this paper, we describe a novel speech enhancement

transformer architecture. The model uses local causal self-
attention, which makes it lightweight and therefore particularly
well-suited for real-time speech enhancement in computation
resource-limited environments. In addition, we provide several
ablation studies that focus on different parts of the model and
the loss function to figure out which modifications yield best im-
provements. Using this knowledge, we propose a final version
of our architecture, that we sent in to the INTERSPEECH 2021
DNS Challenge, where it achieved competitive results, despite
using only 2% of the maximally allowed computation. Further-
more, we performed experiments to compare it with with LSTM
and CNN models, that had 127% and 257% more parameters,
respectively. Despite this difference in model size, we achieved
significant improvements on the considered speech quality and
intelligibility measures.
Index Terms: speech enhancement, transformer, causal

1. Introduction
In recent years, transformers have seen increasing use in many
fields of machine learning. Initially introduced for the purpose
of natural language processing (NLP) [1], they have now been
employed in many other areas such as image processing and
speech recognition [2, 3]. However, applications in speech en-
hancement have been limited so far.

Speech enhancement has had a long history, starting from
classical algorithms, such as spectral subtraction [4], minimum-
mean square error (MMSE) based spectral amplitude estima-
tors [5], Wiener filtering [6], Karhunen-Loéve transformations
(KLT) [7] and non-negative matrix factorization (NMF) [8] to
modern deep learning-based methods, which can be roughly
subdivided into fully connected neural networks (FNNs) [9, 10],
recurrent neural networks (RNNs) [11, 12] and convolutional
neural networks (CNNs) [13, 14, 15].

Previous applications of transformers in speech enhance-
ment include T-GSA [16], which uses Gaussian weighted self-
attention and MHANet [17], a causal architecture that is trained
using the deep xi learning approach [18]. Other approaches
have merged transformers with other types of neural networks,
two examples of these are [19], in which the authors com-
bine multi-head self-attention with bidirectional long short-term
memory (BLSTM) enhanced with speaker-aware features, and
Self-Attention Speech Enhancement Generative Adverserial
Network (SASEGAN) [20], which seeks to improve SEGAN
[15] with multi-head self-attention.

Building on these previous works, we introduce a novel
light-weight causal transformer model with local self-attention
for real-time speech enhancement and apply it to the 2021
INTERSPEECH DNS Challenge [21]. Previous transformer-
based speech enhancement models have either not been causal

and are therefore not suited to the task of real-time speech en-
hancement, and/or used global attention, resulting in an O(T 2)
computational complexity for a sequence length of T , which
also prohibits them from being used efficiently for real-time
speech enhancement. Besides this improvement, we perform a
number of ablation studies to determine which changes provide
the largest improvements, divided into four categories, each fo-
cusing on a different part of the transformer architecture or loss
function.

The structure of this paper is as follows: In the next section,
the transformer architecture will be introduced in detail. Then
in section 3, we will explain the local attention mechanism that
is used for our model. Section 4 describes the experimental
setup of the ablation studies, the results of which are described
in section 5. Finally, section 6 is devoted to the ablation studies

To summarize, our contributions are as follows:

• We introduce a novel speech enhancement transformer
with local self-attention. The model is light-weight and
causal, making it ideal for real-time speech enhancement
in low-resource environments.

• We perform a comparative study of different architec-
tures to find the optimal one.

• We apply our method to the 2021 INTERSPEECH DNS
Challenge.

2. Transformers
The defining feature of transformers is their multi-head self-
attention modules (MHA) [1].

Given an input X ∈ RT×n, where T is the number of time
steps and n is the hidden state dimension, a set of query, key and
value matrices is generated using the weight matricesWQ

h ,WK
h

and WV
h ∈ Rn×dk , respectively, where dk is the dimension of

the heads of the attention module. There is one embedding per
head, denoted by the subscript h.

Qh = XWQ
h , (1)

Kh = XWK
h , (2)

Vh = XWV
h . (3)

The keys and queries are multiplied with each other to obtain a
T × T attention matrix A. This matrix encodes the relative
importance of each time step, i.e. how much attention each
time step receives, by assigning each pair of time steps a scalar.
A softmax function with temperature

√
dk is applied to turn

this into a normalized distribution. Afterwards, the normalized
attention matrix is multiplied with the value matrix. This re-
sults in a linear combination of value embeddings for each time
step, where the most important embeddings receive the highest
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weights:

Atth = Softmax
(
QhK

>
h√

dk

)
Vh. (4)

The heads are then concatenated and transformed back to the
original dimension n via the weight matrix W out ∈ Rdk·nh×n,
where nh is the number of heads. Moreover, a residual connec-
tion is added, that connects the output to the input:

Xout = Concath(Atth)W out +X. (5)

Next, each of the time steps is standardized via layer nor-
malization. For time step t, the overall mean of the feature di-
mension is subtracted from the input, which is then divided by
the standard deviation. This is rescaled and shifted by the learn-
able parameters α and β:

Xnorm
t =

Xout
t − µt
σt

· α+ β, (6)

where

µt =
1

n

∑
i

Xout
ti , (7)

σt =

√
1

n

∑
i

(Xout
ti − µt)2. (8)

Then, a feedforward neural network is applied time step-
wise. This part typically consists of two fully connected layers
parameterized by the weight matrices W1 ∈ Rn×φn, W2 ∈
Rφn×n and bias vectors b1 ∈ Rφn, b2 ∈ Rn and a residual
connection:

f(Xnorm
t W1 + b1)W2 + b2 +Xnorm

t , (9)

where f(·) is an element-wise activation function, such as
Rectified Linear Unit (ReLU) or Gaussian Error Linear Unit
(GELU). Here, φ is a scaling factor for the inner dimension of
the feedforward module. Finally, another layer normalization is
applied.

3. Local Self-Attention
Transformers scale quadratically in the input length, this is pro-
hibitive when scaling to longer sequences. We resolve this issue
by introducing a novel speech enhancement transformer model
that relies on local attention [22, 23]. Local attention is partic-
ularly suited for speech enhancement, since predictions do not
rely on long-range correlations as is the case for NLP; often
sufficient information is contained within a couple of seconds
of the target time frame. This requirement is naturally incorpo-
rated with local attention.

Instead of taking inner products between all keys and
queries, we restrict the context size to only a window of length
W , which spans from the time step t −W + 1 to the current
time step t.This also enforces causality, as the frame at time
step t only has access to frames that lie in its past. However, it
is possible to extend the context size to several future time steps
at the cost of more latency. Formally, we can write that the keys
matrix is restricted as

K̃htwi =

{
Kh,t−w,i, if t− w > 0

0, otherwise
, (10)

where t and i are the time index and feature index, respectively.
The index w runs from 0 toW −1. Note that in general,W can
depend on both the layer number and the head number. Simi-
larly, the value matrix is also restricted: Ṽhtwi. The restricted
attention matrix is then computed as

Ãhtw =

∑
iQhtiK̃htwi√

dk
(11)

and the self-attention is

Atthtw =
∑
w

Softmax
(
Ãhtw

)
Ṽhtwi. (12)

This reduces memory costs of the attention matrix from a
quadratic time complexity O(T 2) to a linear one O(WT ).

The local context size W can be of the order of 32 frames,
corresponding to a second of audio. In speech enhancement,
where typical sample lengths range up to hundreds of thousands
of tokens, i.e. hours of speech, this yields significant improve-
ments.

4. Experimental Setup
For our experiments, we used the DNS-Challenge dataset1 [21],
containing a total of 760 hours of clean speech and 181 hours of
noise, as well as about 118,000 room impulse responses to con-
struct reverberant speech. This speech corpus covers English,
French, German, Mandarin Chinese, Russian and Spanish, as
well as emotional (English) utterances from speakers of differ-
ent ethnic backgrounds.

The audio was sampled at 16kHz and subsequently trans-
formed using a short-time Fourier transform with a window size
of 512 samples and a step size of 256 samples. This resulted in
each time frame having 257 frequency bins, ranging from 0 to
8 kHz. These were converted to log-power spectrum features
[24]. Additionally, we appended the average energy at each
time step.

As a base model, we used a four-module transformer
model, with causal local self-attention with context size 24. The
first layer was a causal convolutional layer with kernel size 3
responsible for projecting from the initial 257 + 1 dimensions
to the hidden state dimension n = 256. Similarly, the final
convolutional layer projected the output of the last transformer
module back to 257 dimensions, the number of frequency bins.
Further details are given in the next section.

The models were trained using an Adam optimizer [25]
with a cosine learning rate decay, going from an initial learning
rate of 1e−4 to a final learning rate of 1e−5. The speech qual-
ity and intelligibility measures that were used to judge the mod-
els were Perceptual Evaluation of Speech Quality (PESQ) [26]
and [Extended] Short-Time Objective Intelligibility ([E]STOI)
[27, 28], respectively.

5. Ablations
In addition to introducing local attention for speech enhance-
ment, we perform a series of ablation studies to find an archi-
tecture that makes optimal use of this and further improves per-
formance.

1https://github.com/microsoft/DNS-Challenge
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5.1. Positional encodings

The self-attention mechanism is invariant under permutations of
the inputs. To break this invariance and thereby give the model
the ability to differentiate between different time steps, the in-
puts are imbued with positional encodings. This can be done in
several ways. For the original version of the transformer model,
the authors used additive sinusoidal positional embeddings [1].
Later versions [29, 23] employed learnable relative positional
embeddings. In [30], the authors showed that it is beneficial to
only add embeddings to the key and query matrices. In the field
of speech enhancement, Kim et al. [16] proposed a method that
used multiplicative weights that follow a Gaussian distribution
with learnable variance σ2

h. This corresponds to the intuitive
notion that time steps closest by are most relevant to the current
time step. The authors also proposed absolute attention, here
the absolute value of the inner products between the keys and
queries is taken. The idea behind this is that anti-alignment be-
tween frames is of equal importance as alignment. In general
the methods described above can be written as

A′hij = e−|i−j|
2/2σ2

h

∣∣∣Ãhij + Pij

∣∣∣ , (13)

where the absolute operation is element-wise and Pij are the
learnable relative positional embeddings.

We performed experiments with different combinations of
relative positional embeddings, Gaussian weights and absolute
attention. The results of which are shown in Table 1.

Table 1: Results ablation study positional embeddings

Pos. Gauss. Abs. ESTOI(%) PESQ STOI(%)

Yes Yes Yes 79.6 3.27 89.0
No Yes Yes 79.4 3.25 88.9
No Yes No 79.2 3.26 88.7
Yes No Yes 79.5 3.27 88.7
Yes No No 79.4 3.27 88.1
No No No 79.1 3.25 88.5

The common denominator for the best performing models
on PESQ is that they all use relative positional embeddings.
Comparing the second and the third, and the fourth and the fifth
model, respectively, it can be seen that absolute attention gave
better ESTOI and STOI values. A similar conclusion can be
drawn for Gaussian weights, when comparing the first with the
fourth model and third with the sixth. Overall, the combination
of relative positional embeddings with Gaussian weighting and
absolute attention provided the best results.

5.2. Feedforward layers

The role of the feedforward layer in the transformer model is
to perform local operations, whereas the self-attention layers
are responsible for non-local operations. We opted to make the
feed-forward layers also consider nearby past time steps, since
relevant information is localized here, similar to Conformer [3].
This has the added benefit of increasing overall context size,
allowing information to propagate from time steps further back
in time. For example, in our model each layer uses a kernel
width of three, combined with an average context window size
of 24, this results in a total of about 3.1 seconds of context size
for a four-module network.

We generalized the feedforward layers further by enhancing
them with gating like the one used for Generalized Linear Units

(GLU) [31]. These add an extra linear layer to dynamically gen-
erate weights to rescale the connections of the first feedforward
layer.

Xl+1 = ((XlW1 + b1) ◦ f(XlW2 + b2))W3 + b3, (14)

where f(·) is an activation function such as Sigmoid, ReLU,
GELU or Swish. When W1 = 0 and b1 = 1, this reduces to
the standard feed-forward layer. The product between the input
Xl and the weight matrix W2 is understood as a convolution
with kernel width 3. The other convolutions are standard ma-
trix multiplications, i.e. they correspond to kernels of width 1.
This is done to reduce the computational demand of these lay-
ers. As before the inner dimension is scaled up by a factor of
φ. Moreover, we considered variations in which the convolu-
tions W1 and W2 are depthwise separable. It is important that
at least one of the layers is fully connected to allow information
between the channels of the feature dimension to travel. We de-
fined a grouping factor γ , where γ = 0 and γ = 1 correspond
to ungrouped and fully grouped convolutions respectively.

The final modification we considered is the recent Macaron
[32], which has shown to significantly improve performance in
NLP. It works by adding an extra feedforward layers before the
self-attention mechanism and rescaling them by a factor of 1/2.

Therefore, we considered the following five models, where
φ was chosen such that all the models had an approximately
equal number of parameters:

1. ReLU activation, γ = 0, φ = 1

2. GELU activation, γ = 0, φ = 1

3. ReLU activation, γ = 1, φ = 4

4. ReLU activation, γ = 1, φ = 2, GLU

5. ReLU activation, γ = 0, φ = 0.5, Macaron

The results of our experiments are shown in Table 2.

Table 2: Results ablation study feedforward layers

Model ESTOI(%) PESQ STOI(%)

1 80.1 3.31 89.4
2 80.3 3.33 88.9
3 80.0 3.30 89.2
4 79.4 3.26 88.8
5 NaN NaN NaN

It can be seen that the GELU activation function performed
better than ReLU, as it provided better results on two of the
three metrics. This is in line with findings from NLP. Compar-
ing the separated model (3) and the GLU model (4) with the
baseline (1), we see that neither yielded improvements on any
of the speech quality and intelligibility metrics. Finally, despite
tweaking learning rates and batch sizes, the Macaron model (5)
proved to be unstable.

5.3. Window sizes

In [33], the authors found that for NLP it is beneficial to start
with short context sizes in the lower layers and increase them
toward the higher layers. We replicated this experiment in the
context of speech enhancement. We considered three different
variants: increasing context length: from size 12 to 36 in steps
of 8, constant context length: all context size equal to 24 and
decreasing context length: 36 to 12 in steps of 8. The results
are shown in Table 3 below.
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Table 3: Results ablation study context sizes

Model ESTOI(%) PESQ STOI(%)

Ascending 80.1 3.31 89.5
Equal 80.1 3.31 89.4

Descending 79.9 3.29 88.6

We found that unlike in NLP, there was no significant per-
formance improvement when using ascending context sizes.
However, we did observe that descending context sizes resulted
in reduced performance.

5.4. Loss functions

As a base loss function we used a mean squared error (MSE)
loss function based on log-power spectrum (LPS) features [24].
Since this loss function does not capture perceptually relevant
effects such as correlations, differences in loudness and thresh-
old effects, we enhanced it by adding an auxiliary Perceptual
Metric for Speech Quality Evaluation (PMSQE) [34] loss func-
tion, based on PESQ. We compared this with the E2STOI loss
function [35], which is an ESTOI-based loss function. For both
we used a scaling factor of 0.1. The results are shown below in
Table 4.

Table 4: Results ablation study loss functions

Model ESTOI(%) PESQ STOI(%) SDR

PMSQE 80.1 3.31 89.5 10.63
E2STOI 83.0 3.01 92.0 13.87

The PMSQE-enhanced loss function provided better results
for the PESQ measure and the E2STOI-enhanced loss function
gave the best results for STOI and ESTOI. This is likely due to
the fact that PMSQE is based on PESQ and therefore optimizes
better for this. On the other hand, E2STOI for ESTOI, which is
closely related to STOI, was better able to improve STOI and
ESTOI. To give a more complete image, we also reported the
signal-to-distortion ratio (SDR) [36]. When taking only this
into account, the E2STOI-enhanced loss function performs best.

6. Full Model
The finding of our ablation studies were used to guide us in con-
structing the final model, that was sent into the INTERSPEECH
2021 DNS Challenge. Based on the first ablation study, we
chose to use positional embeddings, Gaussian weighting and
absolute attention. From the experiments of the feedforward
layers, we used GELU activation functions, unseparated convo-
lutions and an expansion factor of φ = 1. Window sizes were
kept constant throughout the layers at W = 16. Furthermore,
we combined the PMSQE and E2STOI loss functions to opti-
mize for both PESQ and STOI simultaneously.

6.1. Computational complexity

The number of multiply-add (MAdd) operations [37] for a feed-
forward layer as used in our model with dk input channels and
kernel size 3 applied to an input of length T is T (3n + 1)n +
T (n+ 1)n = T (4n+ 2). The the number of Madd operations
of the layer normalization is T ·n and that of the key, query and
value projections is T · nh · dk · n, respectively. As mentioned

before, the use of local attention gives us a complexity for the
attention mechanism of T ·nh ·W ·dk Madd operations instead
of for full T 2 · nh · dk. Softmax, multiplication with the value
matrix and the transformation combining the heads have a com-
plexity of T ·W ·nh, T ·nh ·dk ·W and T ·nh ·dk ·n, respectively.
Finally, the input and output layers add T · (3(nf + 1) + 1) · n
and T · (nf + 1) · n Madd operations, respectively, where nf
is the number of frequency bins. For a model of nl layers, this
leads to a total complexity of

T (nl(6n+ 2 + 4nhdkn+ 2Wnh(dk + 1)) + n(4nf + 3))

To simplify this further, we set n = nhdk. With this, the
complexity can be approximated as

Tn(nl(6 + 4n+ 2W ) + 4nf ))

The final model used a head dimension dk = 48, and the
number of heads nh = 8. The inner dimension n = 384.
With these settings, we found the total number of multiply-add
operations to be approximately 3.4 · 106. The total number of
parameters was 6.2 · 106. On an Intel I5 quad core clocked at
1.6 GHz the computational time per second was about 19 ms, a
mere 1.9% of the maximum allowed computation time.

6.2. Comparison models

We compared our model with similar LSTM and CNN archi-
tectures. The LSTM model was comprised of three LSTM lay-
ers, each with 1024 hidden units, for a total of 2.2 · 107 pa-
rameters. The CNN model used four convolutional layers with
causal kernels of width 3, batch normalization and ReLU activa-
tion functions. The number of channels was 1024. This model
had 1.4 · 107 parameters. Therefore, the proposed model had
only 28% and 44% the number of parameters of the LSTM and
CNN, respectively.

6.3. Results

In Table 5 below, the results of our final model and the compar-
ison models are listed.

Table 5: Results final model

Model ESTOI(%) PESQ STOI(%) Params.

Noisy 78.0 2.51 89.0 N/A
Proposed 83.2 3.35 92.3 6.2 · 106

LSTM 82.4 3.16 92.0 2.2 · 107
CNN 81.5 3.09 91.3 1.4 · 107

Our model outperformed the LSTM and CNN models on
all speech quality and intelligibility measures for a fraction of
the model complexity. In particular, on ESTOI it yielded a value
that was 0.8 percentage points and 1.7 percentage points above
the LSTM and CNN models, respectively. Similarly, its PESQ
score was 0.19 higher compared to the LSTM model and 0.26
compared to the CNN. And for STOI it improved the score by
0.3 percentage points and 1.0 percentage points.
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