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Online Speaker Adaptation Using Memory-Aware
Networks for Speech Recognition

Jia Pan

Abstract—In our previous work, we introduced our attention-
based speaker adaptation method, which has been proved to be
an efficient online speaker adaptation method for real-time speech
recognition. In this paper, we present a more complete framework
of this method named memory-aware networks, which consists
of the main network, the memory module, the attention module
and the connection module. A gate mechanism and a multiple-
connections strategy are presented to connect the memory with the
main network in order to take full advantage of the memory. An
auxiliary speaker classification task is provided to improve the ac-
curacy of the attention module. The fixed-size ordinally forgetting
encoding method is used together with average pooling to gather
both short-term and long-term information. Furthermore, instead
of only using traditional speaker embeddings such as i-vectors
or d-vectors as the memory, we design a new form of memory
called residual vectors, which can represent different pronuncia-
tion habits. Experiments on both the Switchboard and AISHELL-2
tasks show that our method can perform online speaker adaptation
very well with no additional adaptation data and with only a rel-
ative 3% increase in decoding computation complexity. Under the
cross-entropy criterion, our method achieves a relative word error
rate reduction of 9.4% and 8.3% compared to that of the speaker-
independent model on the Switchboard task and the AISHELL-2
task, respectively, and approximately 7.0 % compared to that of the
traditional d-vector-based speaker adaptation method.

Index Terms—Speaker adaptation, speech recognition, neural
network, memory-aware networks.

1. INTRODUCTION

ECENTLY, the accuracy of automatic speech recognition

(ASR) has been greatly improved by the use of deep
neural network (DNN) acoustic models such as convolutional
neural networks (CNNSs) and recurrent neural networks (RNNSs)
[1]-[4]. However, the performance is still unsatisfactory if the
acoustic condition of the test data is mismatched to that of
the training data. The adaptation technique is a useful way to
alleviate the mismatch between training and testing conditions,
and speaker adaptation is one of the most widely used and
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investigated adaptation techniques at present. In the past few
years, many speaker adaptation methods have been proposed
to improve the performance of ASR. Most of these methods
fall into two categories: model adaptation and speaker adaptive
training (SAT).

Model adaptation methods carry out adaptation by fine-tuning
the speaker-independent (SI) model using adaptation data, so the
fine-tuned model becomes a speaker-dependent (SD) model.
Given a large quantity of annotated adaptation data, the SD
model can achieve a significant performance improvement over
the SI model. However, the gain wears off quickly when the
quantity of annotated adaptation data decreases. Moreover, the
performance of the SD model may be worse than that of the SI
model if very few adaptation data are available. To alleviate the
problem of overfitting, much effort has been made. One method
is restricting the number of SD parameters. In [5]-[8], an addi-
tional layer is inserted into the SI model, and only the parameters
of the additional layer are tuned during adaptation, while all the
other parameters are fixed. Analogously, in [9], [10], an addi-
tional amplitude parameter is defined for each hidden unit. The
amplitude parameters are tied for each speaker and are learned
while keeping the other parameters fixed. In [11], the authors find
that only parts of the weights of recurrent neural networks should
be retrained to reduce the number of free parameters. In [12],
only the parameters of batch normalization layers are updated
during adaptation. In [13], [14], the weight matrix is factorized
into three matrices via singular value decomposition (SVD),
and only the diagonal matrix is taken as adaptation parameters.
Similarly, in [15], each delta matrix between the adapted and
SI models is factorized into two low-rank matrices via SVD to
further reduce the number of SD parameters. Another method is
conservative training. In [16], the Kullback-Leibler divergence
(KLD) is adopted to keep the output of the SD model close to
that of the original SI model. In [17], the L2 prior regularization
proves to be helpful for improving the generalization of adapted
models. An auxiliary monophone classification task is adopted
in [18] to suppress the influence of prediction errors when the
adaptation data are not annotated. The authors in [19] apply
adversarial learning to regularize the distribution of deep hidden
features in the SD model to be similar to that of the ST model
during adaptation.

Speaker adaptive training methods try to obtain a compact
model that converts original features into speaker-normalized
features. These methods are called speaker adaptive training
because the adaptation process is mostly performed during the
training stage. One method to perform speaker adaptive training
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is using auxiliary features that contain information about speak-
ers. In [20], feature-space maximum likelihood linear regression
(f-MLLR) transformations are estimated to perform speaker
adaptation on a hidden Markov model with a Gaussian mixtures
(GMM-HMM) acoustic model, and then, the f-MLLR trans-
formed features are taken as input for a DNN-based acoustic
model. In [21]-[24], speaker i-vectors or bottleneck vectors are
obtained using a pretrained speaker recognition model. Then,
acoustic features concatenated with the corresponding speaker
vectors are fed to a DNN-based acoustic model. The authors
in [25]-[27] use speaker codes to represent speaker character-
istics. The speaker codes are learned together with the acoustic
model. To make speaker embeddings play a more important role
in adaptation, [28], [29] try to generate the SD parameters via a
controller network that takes speaker embeddings as input, and
the controller network is shared among all speakers. In [30],
several canonical transformations are presented for each hidden
layer of a DNN-based acoustic model, and the interpolation
weights to combine the canonical transformations are taken
as SD parameters. The canonical transformations are learned
together with the interpolation weights. A similar method is
also used in [31]. Another method to perform speaker adaptive
training is using an adversarial learning scheme. Similar to
the methods used in domain adaptation [32]-[34], in [35], a
DNN-based acoustic model and a speaker classification model
are jointly optimized via adversarial learning. In [36], a recon-
struction network is trained to predict the input speaker i-vector.
The mean-squared error loss of the i-vector reconstruction and
the cross-entropy loss of the acoustic model are jointly optimized
through adversarial multitask learning. In [37], domain-private
components and an auxiliary task to reconstruct the original
speech feature are designed to improve the degree of the domain-
invariance and the ASR performance of the acoustic model.
Despite the progress, when we perform speaker adaptation in
some real-world dictation tasks, there remain two main prob-
lems. First, online speaker adaptation is necessary to control the
latency of ASR. Most of the model adaptation methods and some
speaker adaptive training methods need to tune the adaptation
parameters via the backpropagation algorithm with the current
utterance, so they cannot implement speaker adaptation with
low latency. In [38], the authors use the click-through data of a
user to generate the SD model. However, in most cases, there
are insufficient adaptation data, especially for new speakers,
and the mismatch between the previous click-through data and
the current utterance may largely degrade the performance of
adaptation. Second, the adaptation data are scarce. In an extreme
case, when one uses a speech recognition service for the first
time, only the current utterance can be used as adaptation data.
There are few speaker adaptation methods that can work well
under this circumstance. The i-vector-based speaker adaptation
methods are the mainstream approaches that can meet both
requirements, but their performance is unsatisfactory because
the i-vector is unreliable for very short segments. In our previous
work [39], we proposed an attention-based speaker adaptation
method. In this approach, the i-vectors for the speakers in
the training set are extracted and stored as a static memory
in advance. Then, at each frame, the nearest i-vectors are se-
lected from the memory via the attention mechanism, and the
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combination of these i-vectors is connected with the main net-
work to provide information about the current speaker. Experi-
ments on the Switchboard corpus have shown that the proposed
method could achieve a decent performance improvement com-
pared to that of the i-vector-based speaker adaptation method
without the need of additional adaptation data and with only a
limited increase in decoding time.

In this study, we extend the conference version of our previous
work with the following new contributions. First, we propose
a more complete framework named memory-aware networks
(MANSs) with several improvements: 1) Instead of concatena-
tion, a gate mechanism and a multiple-connections strategy are
presented to connect the memory with the main network such
that the main network could take full advantage of the memory
to generate speaker-normalized representations. 2) An auxil-
iary speaker classification task is added to force the attention
module to provide more accurate information about the speaker.
3) The fixed-size ordinally forgetting encoding (FOFE) method
is used together with average pooling so that both short-term
information and long-term information are utilized to further
improve the accuracy of the attention module. 4) Instead of using
speaker i-vectors, which are not directly related to the speech
recognition task, we design a new form of memory that consists
of residual vectors (r-vectors). We calculate the residual vector
between the ground truth and the posterior probability estimated
by the acoustic model at each frame and then obtain the average
residual vector for each speaker. The cluster centers of the
speaker-level residual vectors are taken as a memory. Therefore,
the speaker-level residual vectors can both contribute to the loss
function of the speech recognition task and preserve discrim-
ination between speakers with different pronunciation habits.
Second, we conduct a series of comprehensive experiments on
both the Switchboard and AISHELL-2 tasks. The quality of
the aggregated speaker vector that is generated by the attention
module is verified via visualization of the distances between the
aggregated speaker vectors and embedding vectors of different
speakers. The results show that the proposed approach achieves
a decent performance improvement compared to that of the
traditional d-vector-based online speaker adaptation method.

The rest of the paper is organized as follows. Section II gives
an overview of the framework of MANs. In Section III, we
elaborate the details of each module. In Section IV, we report
and analyze the experimental results. Finally, we conclude our
findings in Section V.

II. THE FRAMEWORK OF MANS

The framework of MANs is presented by extending the
attention-based speaker adaptation method proposed in our pre-
vious work [39]. The key point of the method is generating
embedding vectors for the current speaker via a combination
of the embedding vectors of similar speakers. With the help of
the attention mechanism and the direct guidance of the ASR
objective function, the generated speaker embeddings can pro-
vide useful information for ASR. The major advantage of the
method is that it works very well without additional adaptation
data, and itachieves a performance comparable to that of speaker
adaptation methods, which use considerable adaptation data. In
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Fig. 1. The framework of MANS, including the memory module, the main
network, the attention module and the connection module.

this study, we present a more complete framework and make it
robust to the model structure. As shown in Fig. 1, the architecture
of MANSs consists of four parts, namely, the main network,
the memory module, the attention module and the connection
module. The details are introduced below.

A. The Main Network

The main network plays two roles in the framework of MANSs:
acoustic modeling and providing information for the attention
module. The role of acoustic modeling is to remove the speaker
and other variabilities from the model except for the phoneme
information, while the other role is to preserve the speaker
information that is necessary for the attention module. To resolve
conflicts, we propose that the main network is composed of two
parts. The lower part consists of the hidden layers near the input
layer, and the upper part consists of the hidden layers near the
output layer. The lower part contains some long-term informa-
tion in addition to the speaker information because the phone-
irrelevant information is removed gradually. Accordingly, the
outputs of the last layer of the lower part are provided for the at-
tention module. The upper part takes the outputs of the attention
module as input to generate a speaker-normalized representation
for speech recognition. Determining how to divide the main
network is important especially for very deep neural networks,
which will be investigated in our experiments.

The main network can be any type of deep neural network used
for acoustic modeling, including feedforward neural networks,
CNNs and RNNs. CNNs and RNNs are preferred because of
their excellent ability of sequence representation. Given an
utterance with 7" speech frames, the acoustic features are rep-
resented by X = {xj,X2,...,xr}, where each x; represents
the feature vector at the frame ¢. The corresponding outputs of
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the [-th hidden layer of the main network are denoted as H' =
(hi,hb,.... L),

B. The Memory Module

The memory module is one of the most important parts of
MANSs because it provides additional information for adaptation.
In this study, the memory module is more flexible; it may
contain an arbitrary number of memories rather than only one
memory, as in our previous work [39]. Each memory consists
of a group of vectors. The vectors in a memory are easily
distinguished from each other by its corresponding speaker. To
build amemory, a speaker recognition model should be trained in
advance. For example, we can train a traditional i-vector system
based on the recipe of a universal background model with GMM
(GMM-UBM). Then, speaker embeddings are obtained through
the pretrained speaker recognition model. Finally, a clustering
algorithm such as K-means [40] is adopted to control the number
of vectors in a memory, and the cluster centers are taken as a
memory.

It is worth mentioning that the speakers included in a memory
are not limited to those included in the training set of the acoustic
model. This is important because the training dataset of large-
scale real-world ASR tasks usually consists of diverse sources
of data, and not all the utterances in the training dataset have
information about the speaker’s identity. This issue prevents
traditional SAT methods from working well. Our experiment
demonstrates that the performance does not degrade if we re-
move the vector corresponding to the speaker of the current
utterance from the memory during the training stage.

Different memories can be distinguished by the different
speaker recognition models that are used to obtain the speaker
embeddings. For example, we can build one memory with
speaker i-vectors [41] and another with d-vectors [42]. Because
the i-vectors are obtained from a GMM-UBM recipe and the d-
vectors are obtained from an end-to-end recipe, the information
contained in them may be complementary, and the performance
of speaker adaptation may be improved with both memories.
Different memories can be distinguished by different signal
channels alternatively. For example, one memory may include
speaker embeddings under far-field scenes, while another mem-
ory may contain speaker embeddings under near-field scenes.
This configuration of memories gives the acoustic model better
compatibility with different scenes. In this paper, we design a
new form of memory to enhance the complementarity among
different memories, which will be elaborated in Section III.

A memory module containing K kinds of memories is de-
noted by M = {m', m?, m’}, in which m* represents the
k-th memory. Assuming that the k-th memory has Ny, vectors,
the memory is denoted by m* = {m’f, mlg7 R m?vk },in which
m? represents the i-th vector in the k-th memory.

C. The Attention Module

The attention module is equipped to select the vectors that are
most similar to the current speech segment from each memory.
It consists of two blocks: the information gathering block and
the combination block. The information gathering block is used
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to obtain information about the current speech segment. The
more speaker information that the block obtains, the better the
accuracy the attention module can achieve. However, if we use
a complex model such as a neural network for information
gathering, we may face the overfitting problem. Therefore, the
average pooling layer described in the following formula is
suitable due to its simplicity.

t
1 low
St = % Tz_:lhT

In Eq. (1), h'°% is the output of the last layer in the lower part of
the main network at the frame 7. Usually, one phoneme only lasts
approximately 0.1 seconds, so with ¢ increasing, more long-term
information, such as speaker and channel information, can be
preserved by s;, and the phoneme information becomes blurred.
Instead of the average pooling layer, some other layers can be
adopted alternatively. For example, we use FOFE together with
average pooling for information gathering. The details will be
introduced in Section III.

The combination block aims to select the vectors most similar
to the current speech segment from each memory and combine
them into a vector named the aggregated speaker vector. The ad-
ditive attention mechanism [43] is adopted to learn the similarity
scores between s; and each vector in a memory, as described in
the following formula.

ef’i = v*" tanh(W*s; + U*m?)

ey

@)

In Eq. (2), efyi is the attention value scoring the similarity
between s; and m¥. The matrices W* and U¥, the vector v are
the parameters of the attention model for memory k. We choose
the additive instead of multiplicative attention [44] because we
find that the additive attention can achieve higher accuracy on
some other tasks such as end-to-end speech recognition, and we
think this conclusion can be extended to the current task.

The attention values are normalized through the logistic sig-
moid operation instead of the softmax operation to avoid the
sparsity problem [45].

ay; =1/(1+ exp(—ef;)) 3)

We try to replace the logistic sigmoid operation by tanh or
linear functions to relax restrictions on the range of normalized
attention values, but achieve no gains, so we still use the logistic
sigmoid operation as a default.

The normalized attention values are used to compute a
weighted sum of the vectors in each memory as follows:

N,
k __ k k
¢ = E Qy ;1M
i=1

In Eq. (4), c¥ is the aggregated speaker vector from the k-th
memory at the frame ¢. The aggregated speaker vectors from all
memories are concatenated to form a total aggregated speaker
vector, which can be denoted as c;.

“

D. The Connection Module

The connection module connects the aggregated speaker vec-
tor with the main network, and the main network generates
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speaker-normalized representations using the speaker informa-
tion in the aggregated speaker vector. A simple method is
concatenating the aggregated speaker vector with the outputs
of the last layer in the lower part of the main network as flio“’ =
[hlewT ¢, T]T. However, h!®® and c; belong to two different
feature spaces, and it is difficult for the upper part of the main
network to further process the concatenated vector, especially
when using deep CNNs as the main network. For deep CNNSs,
if the lower part of the main network consists of few layers, the
receptive field of the last layer of the lower part will not be wide
enough and long enough, so the output feature maps of this layer
can only represent local and short-term features. However, the
speaker information contained in the aggregated speaker vector
is usually considered long-term features. Therefore, the above
simple connection method may affect the extraction of spatial
structure information from the time-frequency feature maps by
the upper part of the main network. In this study, we propose a
multiple-gated-connections mechanism to solve this issue. The
details are described in Section III.

III. IMPLEMENTATION DETAILS OF MANS

In this section, we introduce the details of the methods men-
tioned above, including the new form of memory with r-vectors,
FOFE, multiple-gated-connections strategies and the auxiliary
speaker recognition task.

A. The Memory With R-Vectors

As shown in the previous section, the speaker i-vectors or
d-vectors extracted by a pretrained speaker recognition model
can be regarded as a memory. The i-vector approach is first
introduced for speaker recognition in [41]. In this method, a large
GMM with C full-covariance Gaussian components is trained as
a UBM to represent the distribution of acoustic features, denoted
as

C
X~ chN(X; e, zc) Q)
c=1

In Eq. (5), ie, 2. and w, represent the mean, covariance and
weight of the k-th Gaussian component, respectively, and x
represents the acoustic feature vector. Then, the mean vectors
of all Gaussian components are concatenated as a supervector,
and the supervector is adapted for each speaker as the following
expression:

z, =7+ Twy (6)

In Eq. (6), z is the supervector of the UBM, T is a matrix
with low rank called the loading matrix, and w is the i-vector
for speaker s. T and w are learned jointly using a maximum
a posteriori (MAP) criterion. Normally, linear discrimination
analysis (LDA) [46] is subsequently performed to reduce the
dimension and improve the discrimination of i-vectors.

The d-vector approach [42] uses neural networks to gen-
erate speaker embeddings. The neural network is trained by
speaker discriminative criteria such as the cross-entropy or
triplet loss [47]. After training, the output of the last hidden layer
is obtained to produce a frame-level speaker representation, and
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Algorithm 1: The Extraction Process of R-Vectors.

for n in number of utterances: do
for ¢ in number of frames of utterance n: do
=7 vy
end for
end for
for d in number of mono-phones: do
R?[d] = Zj:phone(j):d I‘?[]]
if R}[d] < threshold then
R}[d] =0
end if
end for
for s in number of speakers: do
N¢ = Number of frames for speaker s
E, = NLg Zj:speaker(j):s Zt R?
end for
return E

all the frame-level representations are then averaged to form an
utterance-level speaker embedding called a d-vector.

Both the i-vectors and the d-vectors have a low intraspeaker
variance to guarantee the accuracy of speaker classification,
so the short-term information such as phoneme information
is not well contained in these traditional speaker embeddings.
However, the speaker information contained in the output of
the lower part of the main network is weak because the task is
ASR. Furthermore, the speech segment is not long enough for
the attention module to select similar speaker vectors. Is there
a type of speaker embedding that contains adequate speaker
information and works well on short speech segments?

People usually have their own pronunciation habits, e.g.,
accents. In a certain accent, there are fixed patterns of pronun-
ciation errors. For example, in a southern Chinese accent, ‘n’ is
usually mispronounced as ‘1. These pronunciation habits can
distinguish between different speakers and are not explicitly
considered in the design of i-vectors or d-vectors. Inspired
by these considerations, we design a new speaker embedding
method called r-vectors. The extraction process of r-vectors
is divided into four steps. First, we calculate the posterior
probabilities of triphone states using a pretrained SI acoustic
model and obtain the residual vector between the ground-truth
one-hot vector and the posterior probability vector at each speech
frame of each utterance in the training data. Second, we convert
the residual vector from a state-level to phone-level vector by
summing up values of the states that belong to the same phone.
This conversion is necessary to reduce the dimensionality of
the residual vector. Third, to enhance the discrimination of the
residual vector and highlight the pronunciation error pairs, a
threshold is set to prune the unrepresentative values. Finally,
the frame-level residual vectors belonging to the same speaker
are averaged to obtain the speaker-level residual vector. The
frame-level residual vector may be influenced by many factors,
such as environmental noise, but the utterances of one speaker
may happen in different scenes, so the speaker-level residual
vector is more robust than the frame-level vector, and to some
extent, can represent pronunciation habits. The procedure is
described in Algorithm 1.
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The speaker-level r-vectors are clustered via the K-means
algorithm, and the cluster centers are taken as a memory. Unlike
the i-vectors or d-vectors, r-vectors are clustered using the Eu-
clidean distance as the distance measure rather than the cosine
distance. In addition to relaxing the requirement of a large quan-
tity of data, another advantage of r-vectors is that the contained
information of pronunciation error pairs may help the acoustic
model correct pronunciation errors. We do not care much about
the performance of speaker classification for r-vectors because
our main task is speech recognition. Due to the very different
characteristics of speaker embeddings, it is necessary for us to
use both r-vectors and i-vectors/d-vectors as memories.

B. Fixed-Size Ordinally Forgetting Encoding

In the information gathering block of the attention module, an
average pooling is often used to obtain long-term information.
The average pooling means that all the frames have the same
importance. However, the final task of the aggregated speaker
vector is to recognize the current speech frame, so nearby
frames should have more importance than the remote frames.
To realize this idea, we introduce fixed-size ordinally forgetting
encoding [48] into our framework. FOFE can uniquely encode
any variable-length sequence into a fixed-size code with an
emphasis on near-term tokens. The key point of FOFE is the
forgetting factor. With a suitable factor, FOFE can achieve
considerable gains on many tasks, such as language modeling.
Another advantage of FOFE is that it is a nonparametric model,
and it is not necessary to consider the problem of overfitting.
The process of FOFE is described by the following formula.

t—1
St = Z OéThéofj- (7)
7=0

In Eq. (7), « is the forgetting factor, which is constrained to
(0, 1). Moreover, when we use r-vectors as a memory, FOFE is
more important because both FOFE and r-vectors focus on local
information. In general, average pooling pays close attention to
global information, while FOFE focuses on near-term informa-
tion, so we can use them together via the multihead attention
mechanism introduced in [49].

C. Multiple Gated Connections

In our previous work, the aggregated speaker vector is only
connected to the first layer of the upper part of the main net-
work. When deep convolutional neural networks are adopted
as the main network, this simple connection mechanism seems
a bit inappropriate. Using this connection mechanism, the first
convolution layer in the upper part of the main network will
add the linearly transformed aggregated speaker vector to the
output feature maps pixel by pixel. If the receptive field of the
layer is not wide enough, this operation means adding global
information to local information, and it is a burden for the
later convolution layers to process both types of information
together. To solve this issue, similar to the approach in [50],
we propose a channelwise gate mechanism described by the
following formula.

by, =h (., ©8 =hi, ., ©c(We +b) (8
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In Eq. (8), g’ is the vector denoting the gates for the output
channels of the [-th convolutional layer. hé,(u’ ) is the out-
puts of the I-th convolutional layer for pixel (u,v), so it is
an M-dimensional vector, where M is the number of output
channels. o(e) denotes the logistic function that operates on
each element of a vector. ® means the elementwise product
operation. The parameter W' is a matrix used to transform c;
into an M -dimensional vector. In other words, a channelwise
and elementwise product operation is adopted. Each feature map
has a gate, and all the elements in a feature map share the gate.
flé} (u,0) is used as the input of the next layer.

Inspired by ResNet [51], we add direct connections between
the aggregated speaker vector and layers of the upper part of
the main network. These direct connections may alleviate the
gradient vanishing problem and further improve the effect of the
aggregated speaker vector. Combining the gate mechanism with
the direct-connections mechanism, such connection strategy is
called multiple gated connections.

D. The Auxiliary Speaker Classification Task

Through the above introduction, the aggregated speaker vec-
tor is automatically generated using the attention mechanism.
We cannot guarantee that the aggregated speaker vectors are
close for the same speaker and distinguished for different speak-
ers. This fact may increase the risk of overfitting, especially when
the speaker vectors in the memory are obtained using a small
quantity of data. Under this circumstance, the attention model
may learn to measure the similarity via some noise rather than
the speaker information. In our previous work [39], a recurrent
attention mechanism was proposed to guarantee that the atten-
tion values do not change greatly between consecutive frames
within an utterance, but there was no constraint on the attention
values among utterances belonging to the same speaker.

In this study, we propose an auxiliary speaker recognition
task to force the aggregated speaker vectors to have a strong
ability of speaker classification. The triplet loss function and
cross-entropy loss function are usually used for speaker classi-
fication tasks. We choose the cross-entropy loss function for the
auxiliary speaker classification task because of its convenience
for training. Specifically, a softmax regression classifier is added
on top of the aggregated speaker vector in the training step
to implement the speaker classification task and is removed in
the inference step. The final loss function at the cross-entropy
training stage is described by the following formula:

N T,

ﬁ(easra 957"67 eshare) = Z Z IOg POoer,Osnare (y? ‘lea M)

n=1t=1
N T,

23D 108 D0, 0 (87X, M)
n=1t=1
)

In Eq. (9), the first item is the cross-entropy loss for the speech
recognition task. x}* and y;* indicate the acoustic feature vector
and the triphone state label for frame ¢ in utterance n. 7, is the
number of frames of utterance n, and N is the number of total
utterances in the training set. 0,5, 05 and Ogpq.c denotes the
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model parameters for ASR, speaker classification and shared
parts, respectively. The last item is the cross-entropy loss for
the auxiliary speaker classification task, and s™ represents the
speaker label for utterance n. M means the memory. A is a
hyperparameter to balance these two tasks.

IV. EXPERIMENTS AND RESULT ANALYSIS
A. Experimental Setup

We evaluated the performance of the proposed approach on
both English and Mandarin large vocabulary continuous speech
recognition (LVCSR) tasks; the details of these tasks are illus-
trated in Table L.

The Switchboard (SWB) task [52] is a benchmark for English
LVCSR, so we chose it as the main task. The training data
consist of the 20-hour English CALLHOME training dataset
and 309-hour Switchboard-I training dataset, including a total
of 5110 speakers. In the following experiments, we mainly used
the SWB part of the NIST 2000 Hub5 evaluation set as the
test set, which contains 1831 utterances from 40 speakers. We
also performed an overall evaluation on the CALLHOME part.
The 13-dimensional perceptual linear prediction (PLP) features
and their first- and second-order derivatives were extracted to
train a GMM-HMM ASR system, which was used to obtain
the state-level alignments for training deep neural networks.
These features were preprocessed with speaker-level mean and
variance normalization. The cross-word triphone GMM-HMM
system with 8991 tied states and 360,000 Gaussian components
was trained with the maximum likelihood criterion. A trigram
language model was trained on the 2000 h Fisher-corpus tran-
scripts with a dictionary of approximately 39,000 words for
testing.

We chose the AISHELL-2 task as our Mandarin LVCSR
task. The AISHELL-2 task is an elaborately prepared public
dataset [53]. It consists of 1000 hours of clean audio segments
recorded via an iPhone channel from 1991 speakers. There are
1293 speakers with slight northern accents, 678 speakers with
southern accents and 20 speakers with other accents during the
recording. The development set contains 2500 utterances from
5 speakers, and the test set contains 5000 utterances from 10
speakers. Each speaker has approximately half an hour of audio
segments. To generate the state-level alignments, a GMM-HMM
system with 9004 tied states and 40 Gaussian components per
state was trained using the Mel-frequency cepstral coefficient
(MFCC) features. For the ASR setup, the vocabulary contained
approximately 121,000 words, and the language model was a
3-gram model.

B. Establishment of Baselines

In this subsection, we experimented with a VGG-like
model architecture [54] based on the frame-level cross-entropy
criterion. The details of the model architecture are reported in
Table II. The inputs of the model were the 40-dimensional log
Mel-scale filter-bank features processed with mean and variance
normalization. The speech was analyzed using a 25-ms Ham-
ming window with a 10-ms fixed frame rate. The architecture of
the model consisted of many convolutional layers and pooling
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THE DETAILS OF THE MODEL ARCHITECTURE

TABLE I
THE DETAILS OF THE SPEECH RECOGNITION TASKS
Task name Training set size | # of training speakers | Testing set size | # of testing speakers | # of tied-states | Vocabulary size | Language model
Switchboard 329 hours 5110 1831 utterances 40 8991 39,000 3-gram
AISHELL-2 1000 hours 1991 5000 utterances 10 9004 121,000 3-gram
TABLE I TABLE III

PERFORMANCE OF THE BASELINE MODELS ON THE SWB TASK

¢, h, and w mean the number of channels and the height and width of the feature map,
respectively.

layers. Each convolutional layer was equipped with a standard
ReLU activation function. Because of the pooling in the time
domain, the temporal resolution has been reduced to one quarter.
Accordingly, a deconvolution layer with a stride of four was
used as the output layer to recover the time resolution. We
shuffled the utterances in the training data and grouped them
into minibatches with a limit of 2048 frames per minibatch
to speed up training. Stochastic gradient descent was used as
the optimizer, and the initial learning rate was set to 0.02. At
the beginning of each epoch, the learning rate was halved if the
accuracy of the validation set did not increase, and the training
process was stopped after 12 epochs. All experiments in our
study were performed using the CAFFE toolkit [55] and run on
a server equipped with 4 Tesla P40 GPUs.

As mentioned in the opening chapter, speaker i-vectors or
d-vectors can be taken as additional inputs for a convolutional
neural network acoustic model to perform speaker adaptive
training. To obtain the i-vectors, a UBM with 512 Gaussian
components was trained first using all the training data and
the 39-dimensional PLP features mentioned above. Then, 300-
dimensional i-vectors were extracted and further compressed
to 64 dimensions via LDA followed by length normalization.
Regarding the d-vectors, the network included five convolutional
layers. The utterances belonging to the same speaker were
concatenated and split into audio segments, each of which had
500 frames. 64-dimensional log Mel-scale filter-bank features
were taken as input. The kernel size of each convolutional layer
was setto 3 x 3, and the stride was set to one. Each convolutional
layer was connected to a max pooling layer with a stride of

Stage Output (c,h,w)® Kernel size Method WER(%) WERR
conv( (64,40,T) (3x3) SI baseline 13.8 -
pooling0 (64,40,T/2) (1x2) SD baseline (i-vectors, speaker level) 13.3 3.6%
convl-4 (64,40,T/2) (3x3) SD baseline (d-vectors, speaker level) 13.0 5.8%
pooling1 (64,20, T/4) (2x2) SD baseline (i-vectors, utterance level) 13.7 0.7%
conv5-8 (128,20, T/4) (3x3) SD baseline (d-vectors, utterance level) 13.5 2.2%
pooling2 (128,10,T/4) 2x1)
conv9-12 (256,10,T/4) (3x3) 2 x 2. The cross-entropy loss and triplet loss were employed for
pooling3 (256,5,T/4) 2x1) training. After training, an average pooling was used to obtain
conv13-16 (512.5.T/4) (3x3) the speaker representation vector. The speaker representation
X vectors processed via length normalization were taken as the
pooling4 (512,3,T/4) (2x1) d-vectors.
convi7 (2048,1,T/4) (3x3) The i-vector- and d-vector-based SD models were evaluated
deconv(SWB) (8991,1.T) (x4 at both the speaker and utterance levels. The utterance-level
deconv(AISHELL-2) (9004,1,T) (1x4) i-vectors or d-vectors were extracted from each utterance sepa-

rately during both training and testing steps. The speaker-level i-
vectors or d-vectors were extracted using all the utterances from
the same speaker. Table III reports the word error rate (WER) of
baseline models on the SWB task. The d-vector-based SD model
achieves better results than the i-vector-based model does at both
levels, with a 0.2%—-0.3% absolute gain. The performance at the
utterance level is much worse than that at the speaker level. The
best SD model at the utterance level only achieves a relative
WER reduction (WERR) of 2.2% compared to that of the SI
model. This result is because the utterance-level i-vectors or
d-vectors are not robust due to the random utterance length.

C. Experiments With MANs

In this subsection, we evaluated the performance of MANs
on the SWB task.

1) Memory With r-Vectors: We first evaluated the effective-
ness of the memory with r-vectors based on the MANs frame-
work. For extraction of the r-vectors, we calculated the output
posterior probability of the SI baseline model for each frame and
then obtained the frame-level residual vector. Next, the residual
vector was converted from a state-level to a phone-level vector to
reduce the dimensionality to 45. To enhance the discrimination
of the residual vector and highlight the pronunciation error pairs,
a threshold value 0.2 was used to prune unrepresentative val-
ues. Speaker-level residual vectors were obtained by averaging
over all the frame-level residual vectors belonging to the same
speaker. All 5110 speaker-level residual vectors in the training
set were clustered into 128 classes via the K-means algorithm.

To verify that the r-vectors can be regarded as high-frequency
pronunciation errors corresponding to accents or pronunciation
habits, we show the r-vectors of some speakers in Fig. 2. The
boxes in red represent phonemes for which it is easy to make
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TABLE V
PERFORMANCE OF THE MANS WITH FOFE
Method WER (%) WERR
SI baseline 13.8 -
MANSs (d-vectors, Average pooling) 13.2 4.3%
MANSs (d-vectors, FOFE) 13.1 5.1%
MANS (d-vectors, FOFE+Average pooling) 13.0 5.8%

Fig. 2. Illustration of speaker-level r-vectors. TABLE VI
TABLE IV PERFORMANCE OF THE MANS WITH MULTIPLE GATED CONNECTIONS
PERFORMANCE COMPARISON FOR THE MEMORY WITH R-VECTORS
Method WER(%)| WERR
Method WER (%) WERR SI baseline 13.8 -
SI baseline 13.8 - SD baseline (d-vectors, utterance level) 13.5 2.2%
MAN:S (i-vectors) 13.2 4.3% SD baseline (d-vectors, utterance level, first 134 2.9%
MANS (d-vectors) 132 43% layer of each block, gated)
MANS (r-vectors) 134 2.9% MANSs (d-vectors, first layer, simple) 13.2 4.3%
MANS (i-vectors+d-vectors) 131 5 1% MANS (d-vectors, first layer, gated) 13.1 5.1%
MANS (i-vectors+r-vectors) 130 5.8% MANSs (d-vectors, last layer, gated) 13.3 3.6%
MANS (d-vectors+-vectors) 130 5 3% MANSs (d—vectors,sfiilll‘lsrt)llee;yer of each block, 13.2 4.3%
MANSs (d-vectors, first layer of each block, 13.0 5.8%
mistakes, while the boxes in blue represent the high-frequency gated)
incorrect phonemes. For speaker 2 in Fig. 2, we can observe MANSs (d-vectors, each layer, gated) 13.0 5.8%

that ‘aw’ is often recognized as ‘ow’. This phenomenon often
happens for speakers with Canadian accents when they speak
words such as ‘about’. For speaker 4, ‘ay’ is often recognized
as ‘ah’. This phenomenon represents a pronunciation habit for
some speakers with southern American accents. They often
speak more quickly, so when they say ‘my,” it sounds like ‘mah’.
This result implies that the speaker-level residual vectors can be
taken as a means of representing speaker information.

For comparison, MANSs taking the i-vectors or the d-vectors as
the memory were also trained. The results reported in Table IV
show that MANSs taking the i-vectors as the memory achieve
a relative 4.3% WER reduction over the SI baseline model
and a relative 3.6% WER reduction over the utterance-level
i-vector-based speaker adaptation method. This result proves
the effectiveness of MANs. Though the gap is narrowed when
replacing the i-vectors by the d-vectors, the performance is still
comparable to that of the speaker-level d-vector-based speaker
adaptation method and is better than that of the utterance-level
d-vector-based speaker adaptation method. Compared to the
memory with i-vectors or d-vectors, the memory with r-vectors
has no significant advantage. However, the r-vectors pay more
attention to local information, so the combination of the mem-
ories with d-vectors and r-vectors shows high complementarity.
As listed in Table IV, the combination of the memories with
i-vectors and d-vectors leads to a slight performance increase
compared to that using them individually because they are more
consistent in terms of speaker information, but the combina-
tion of the memories with r-vectors and i-vectors or d-vectors
achieves better performance, with a total absolute gain of 0.2%
compared to that of i-vectors or d-vectors only.

2) FOFE: Inthe information gathering block, FOFE is taken
as a substitute for average pooling to obtain context information.
The main difference between average pooling and FOFE is the

forgetting mechanism. We experimented with a forgetting factor
varying between [0.5, 0.8] because using an excessively large
or small forgetting factor may hurt the performance. The ex-
perimental results have shown that the best choice of forgetting
factor is approximately 0.7, so we set « = 0.7 for the remaining
experiments in this paper.

As shown in Table V, replacing average pooling with FOFE
can lead to outperforming the basic MANs, with an absolute gain
of 0.1%. When we take multihead attention into consideration,
which means that FOFE and average pooling are employed as
different heads, an extra absolute WER reduction of 0.1% is
achieved. The two heads pay attention to different audio seg-
ments: FOFE focuses on local information, and average pooling
focuses on global information. This complementarity is similar
to the combination of the memories with d-vectors and r-vectors
introduced above.

3) Multiple Gated Connections: In the above experiments,
the aggregated speaker vectors were attached to the output of
the first hidden layer simply, which may result in an inflexible
and insufficient implementation of memory. We replaced it by
the multiple-gated-connections strategy to capture more detailed
and important features from the memory. In our experiments, we
mainly investigated two types of multiple connections: connec-
tion to the first layers of each convolutional block and connection
to all convolutional layers.

We first evaluated the effect of the gated connection strategy.
As reported in Table VI, if the aggregated speaker vector is only
connected to the first layer, it is found that the gated connection
mechanism obtains improvement compared with the simple con-
nection. When the memory is connected to the last convolutional
layer instead of the first layer, the performance is much worse.
This resultindicates the importance of determining how to divide
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—O— auxiliary task with 5110 speakers based on r-vectors
—¥— auxiliary task with 5110 speakers based on d-vectors
—+— auxiliary task with 5110 speakers based on d-vectors and r-vectors

3.5

1 2 3 4 5 6 7 8 9 10 11 12
epoch
Fig. 3. Illustration of the losses of different tasks.

the main network. We then evaluated the effect of the multiple-
gated-connections strategy. When we connected the aggregated
speaker vector to the first layers of each convolutional block
(layer conv0, convl, conv5, conv9, convl3) without changing
the connection type, there is no improvement at all. That is, the
aggregated speaker vector does not make any contribution to the
top layers. However, multiple gated connections yield positive
effects, which indicates that the gated connection mechanism
can make better utilization of the aggregated speaker vector,
and accordingly, the multiple-connections strategy is useful.
A total absolute WERR of 0.2% is obtained using the multiple-
gated-connections strategy when the aggregated speaker vector
is connected to the first layer of each block. An absolute WERR
of 0.1% is also obtained when we used the multiple-gated-
connections strategy to the traditional d-vector-based speaker
adaptation recipe, and it further proves the effectiveness of
the multiple-gated-connections strategy. When we attempted to
connect the aggregated speaker vector to all the convolutional
layers of the model (from layer conv0 to layer conv16), no more
improvement was observed, so in the following experiments, we
only connected the aggregated speaker vector to the first layers
of each block.

4) Auxiliary Task: To constrain the attention values among
the utterances belonging to the same speaker, we add an aux-
iliary speaker recognition task with the cross-entropy loss. We
evaluated the performance of the auxiliary task with different
targets and different memories.

The losses of the auxiliary speaker recognition task for MANSs
with different memories are shown in Fig. 3. We found that the
loss can reach a relatively low value when we used r-vectors
and d-vectors together. This result further verified the com-
plementarity between r-vectors and d-vectors. As reported in
Table VII, by using both d-vectors and r-vectors as memories,
the auxiliary speaker recognition task can force the attention
module to capture speaker information more accurately and
achieves an absolute WER reduction of 0.1%, but according to
the “p-value” of 0.104 reported in the Table X, the improvement
is not obvious. Note that we found that a good choice of the
scaling factor of the auxiliary task lies in [0.2, 0.5], so in the
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TABLE VII

PERFORMANCE OF THE MANS WITH THE AUXILIARY TASK

Method WER (%) WERR
SI baseline 13.8 -

MANSs (d-vectors) 13.2 4.3%
MANS (d-vectors, auxiliary task!) 132 4.3%
MANS (d-vectors, auxiliary task?) 13.2 4.3%
MANSs (d-vectors+r-vectors) 13.0 5.8%
MANSs (d-vectors+r-vectors, auxiliary task?) 12.9 6.5%

! Auxiliary task with 128 speaker clusters as targets.
2 Auxiliary task with 5110 speakers as targets.

TABLE VIII
PERFORMANCE OF THE MANS WHEN THE CORRESPONDING SPEAKER IS NOT
CONTAINED IN THE MEMORY

Method WER (%) WERR
SI baseline 13.8 -
MANSs (d-vectors) 13.2 4.3%
MANSs (d-vectors, removed) 13.2 4.3%

TABLE IX
PERFORMANCE OF THE MANS WITH DIFFERENT NORMALIZATION FUNCTIONS
FOR ATTENTION VALUES

Method WER (%) WERR
SI baseline 13.8 -
MANSs (d-vectors, sigmoid) 13.2 4.3%
MANSs (d-vectors, tanh) 13.3 3.6%
MANSs (d-vectors, linear) 13.7 0.7%

following experiments, the factor was set to 0.3. We compared
the performance of auxiliary tasks with the 5110 speakers or
the 128 speaker clusters as the classification target, and there
was no difference, so we chose the former for the following
experiments.

5) Other Experiments: Furthermore, we evaluated the per-
formance when we removed the corresponding cluster center of
current utterance from the memory. The results in Table VIII
showed that there was no performance degradation, which im-
plies that we can generate an accurate speaker embedding even
when the speakers involved in the memory are different from
the speakers involved in the training data of the acoustic model.
Thus, we can perform speaker adaptive training without the
speaker’s identity information of each utterance in the train-
ing data, which is impossible for traditional speaker adaptive
training methods.

We also evaluated the performance of different activation
functions for the attention values. The attention values for all
of the above experiments are normalized through the logistic
sigmoid operation. To relax the restriction on the range of nor-
malized attention values, we change the normalization function
to tanh and linear functions. As shown in Table IX, neither tanh
nor linear functions can achieve further improvements.

6) Significance Tests: The significance test is a two-tailed
test with the null hypothesis that there is no performance dif-
ference between the two systems. The “p-value” is the main
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TABLE X

THE RESULTS OF SIGNIFICANCE TESTS OF OUR METHODS

Method WER(%) p-value
MANSs (d-vectors) 13.2 -

MANSs (d-vectors + r-vectors) 13.0 <0.001
MANSs (d-vectors, FOFE+Average pooling) 13.0 0.002
MANSs (d-vectors, Multiple-gated-connections) 13.0 <0.001
MANS (d-vectors + r-vectors, Auxiliary task) 12.9 0.104!

Compared to MANS (d-vectors + r-vectors).

indicator of significance tests, and reflects the degree of support
for the null hypothesis. The smaller “p-value” is, the bigger
significant differences between two systems are. We adopted
the “Matched Pair Test” method mentioned in [56] to calculate
the “p-value” of each of the above methods. The “p-values”
of different models with the cross-entropy criterion are given
in Table X. The results in Table X imply that there is a high
probability that our methods are able to achieve a different
performance compared to the vanilla MANS.

D. Overall Results

First, we summarized these methods, including the combina-
tion of the r-vectors and the d-vectors, the combination of FOFE
and average pooling, the multiple-gated-connections strategy
and the auxiliary speaker classification task. To make the results
more convincing, we also presented the results on the CALL-
HOME part of the NIST 2000 Hub5 evaluation set. In order
to verify the robustness of our methods, we also reported the
results under the sequence-level discriminative training and the
results on a Bi-directional long short-term memory (BLSTM)
model. The BLSTM model consisted of 3 bidirectional layers
with 2048 cells per layer (1024 per direction). The sequence-
level discriminative training was achieved through the maximum
mutual information (MMI) objective function [57] smoothed by
adding the scaled gradient of the cross-entropy loss [58].

From Table XI, it can be observed that under the cross-entropy
criterion, when tested with all the proposed approaches, the
WER of MANs is 12.5%, representing a relative WER reduction
of 9.4% over the SI model and a relative WER reduction of 5.3%
over MANSs without these methods. The gains of MANS for the
CALLHOME part is slightly smaller than the gains for the SWB
part. The acoustic models trained via the MMI objective function
can achieve a relative WER reduction between 6% and 9% over
the acoustic models trained via the cross-entropy criterion. The
gains of MANSs under the MMI criterion are slightly smaller than
those under the cross-entropy criterion. The gains of MANS on
BLSTMs are comparable to the gains on CNNs.

Second, we evaluated the performance of MANs under noisy
scenarios. Data augmentation was performed using a simulator,
adding different types of noise with an SNR ranging from
5 to 20 dB. The noise sources were obtained from the dataset of
the CHIMEA4 challenge [59], and contained four types of noise:
bus, cafe, pedestrian area and street junction. This doubled the
amount of training data. Each utterance of the test set also added
with random noise at a random SNR. To verify that MANs has
the ability to perform environment adaptation, two memories
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TABLE XI
PERFORMANCE OF THE MANS WITH ALL OF THE PROPOSED IMPROVEMENTS
UNDER DIFFERENT CONFIGURATIONS

SWB CALLHOME
Method
WER(%)| WERR | WER(%)| WERR
SI baseline 13.8 - 233 -
CNN
CE ( dl—\\/f?clt\:)srs) 132 43% 22.4 3.9%
l\fn’:lNh;d(;” 12.5 9.4% 214 8.2%
SI baseline 12.9 - 21.8 -
CNN VAN
S 17 (¥
MMI (dovestors) 12.4 3.9% 21.0 37%
MANS (all . .
methods) 11.8 8.5% 20.1 7.8%
SI baseline 14.1 - 23.5 -
BLSTM ————
S 1% (v
CE (dovoctors) 13.4 5.0% 226 3.8%
MANS (all 12.7 9.9% 217 7%
methods)
SI baseline 13.1 - 22 -
BLSTM |————
S
MMI (d-vectors) 12.5 4.6% 21.1 4.1%
MANS (all 19 | 92% | 204 | 73%
methods)
TABLE XII

PERFORMANCE OF THE MANS UNDER NOISY SCENARIOS

Method SWB RAW SWB NOISY
WER(%)| WERR | WER(%)| WERR
SI baseline 13.2 - 19.2 -
SD baseline (d-vectors, 12.9 23% 192 0.0%
utterance level)
MANSs (one memory) 11.9 9.8% 18.1 5.7%
MANS (two memories) 12.0 9.1% 17.5 8.9%

were used, one from the raw training data and the other from
the noisy training data. It is worth noting that the model of the
d-vectors is not retrained with simulated training data.

The results with the cross-entropy criterion are given in
Table XII. From Table XII, we can see that the performance
has an overall improvement on the raw test set due to data
augmentation. The gain of the traditional d-vector-based speaker
adaptation method decreases significantly on the noisy test set.
This may because that the model of the d-vectors is not retrained
with noisy data. The result is similar for MANs with only one
memory from the raw training data. However, when we added
a new memory from the noisy training data, the loss of gain on
the noisy test set is back with only a slight decrease in gain on
the raw test set. This implies that our methods have the ability
of environment adaptation.

Third, we evaluated the performance of MANs with all the
methods mentioned above on the AISHELL-2 task to ver-
ify the generalization ability. The experimental details of the
AISHELL-2 task were similar to those of the SWB task. The
results with the cross-entropy criterion are given in Table XIII.
As reported in Table XIII, the WER of the MANs with all
of the proposed improvements is 6.6%, representing a relative
WER reduction of 8.3% over the SI model and a relative WER
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TABLE XIII
PERFORMANCE OF MANS ON THE AISHELL-2 DATASET
Method WER (%) WERR
SI baseline 7.2 -
SD baseline (d-vectors, speaker level) 6.9 4.2%
SD baseline (d-vectors, utterance level) 7.1 1.4%
MANSs (d-vectors) 6.9 4.2%
MANSs (all methods) 6.6 8.3%
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Fig. 4. t-SNE of the aggregated speaker vectors in the training set.

reduction of 7.0% over the utterance-level d-vector-based SD
baseline model.

Finally, We calculated the computational complexity of
MANS and found only a 3% increase over the SI model. This
computational complexity does not affect the real-time quality
of our model. We also calculated the computational complexity
of the d-vector-based SD model. It has a 31% increase in
computational complexity compared to that of the ST model and
may lead to an increase in the decoding time.

E. Analysis of the Aggregated Speaker Vector

To verify the effectiveness of the aggregated speaker vec-
tors, we compared them with the utterance-level d-vectors with
t-distributed stochastic neighbor embedding (t-SNE) [60] on
both training data and test data. As one of the dimension
reduction methods for data visualization, t-SNE can provide
better visualization than conventional dimension reduction can
by relieving the so-called crowding problem. We first randomly
picked four speakers from the training set and one speaker from
the test set and then obtained the aggregated speaker vector
for each frame of each utterance of each speaker. We averaged
all the frame-level aggregated speaker vectors in an utterance
together to obtain the utterance-level aggregated speaker vector.
For comparison, traditional utterance-level d-vectors were also
extracted for each utterance of each speaker.

We first showed the cohesiveness of the utterance-level
speaker vectors. Top-10 utterance-level d-vectors and aggre-
gated speaker vectors that were closest to the speaker-level
d-vector were selected. As shown in Fig. 4, the aggregated
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speaker vectors are closer to each other than the utterance-
level d-vectors. In other words, the aggregated speaker vec-
tors are more cohesive than d-vectors. We then demon-
strated the superiority of the aggregated speaker vector. We
randomly picked one speaker from the test set and ran-
domly picked 10 utterances of the speaker. The utterance-level
d-vectors and aggregated speaker vectors of these ten utterances
were obtained. As shown in Fig. 5, the aggregated speaker vector
is closer to the speaker-level d-vector than the utterance-level
d-vector for 90% of utterances. To solidify the conclusion, we
calculated the Euclidean distance between the utterance-level
speaker vector and speaker-level d-vector for all the utterances
and all the speakers in the training and test set and compared the
distance of the utterance-level d-vectors with the distance of the
aggregated speaker vectors for each speaker. The differences
in the distance in the training and test set are illustrated with
histograms respectively. As shown in Fig. 6, for 87% of the
speakers in the training set and 90.3% of the speakers in the test
set, the aggregated speaker vectors are closer to the speaker-level
d-vectors than the utterance-level d-vectors. This again demon-
strates the superiority of the aggregated speaker vector.

V. CONCLUSION

In this paper, we have presented an online speaker adapta-
tion method for speech recognition using memory-aware net-
works. A new form of speaker embeddings called r-vectors
was designed and taken as a memory. Three improvements, the
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multiple-gated-connections strategy, the auxiliary speaker clas-
sification task and the fixed-size ordinally forgetting encoding
method were provided to improve the robustness and effective-
ness of the framework, and a detailed study was performed to
show why our method worked well.

The results on the SWB and AISHELL-2 tasks verified the
effectiveness of our methods. Under the cross-entropy criterion,
our approach achieved relative word error rate reductions of
9.4% and 8.3% compared to those of the SI model on the SWB
and AISHELL-2 tasks, respectively, with only a 3% increase in
the decoding computation complexity. Under the cross-entropy
criterion, our method yielded relative word error rate reductions
of approximately 7.0% compared to that of the utterance-level d-
vector-based speaker adaptation method with a fair comparison
and 4.0% compared to that of the speaker-level d-vector-based
speaker adaptation method, which uses extra adaptation data.

Future work will evaluate the performance when extra adapta-
tion data are available, and we will also evaluate the performance
of language or channel adaptive training with MANs. Experi-
ments on larger tasks will also be considered.
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