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Abstract. The dominant instance segmentation methods first detect
the object with an axis-aligned box, then predict the foreground mask
on each proposal. While in aerial images, methods detecting objects with
axis-aligned boxes are unsuitable, since the orientation of objects is arbi-
trary. What’s more, the RoI pooling step existed in these systems results
in the loss of spatial details due to the feature warping and resizing,
which will degrade the segmentation quality, especially for large elon-
gated objects. In this paper, we propose a novel accurate oriented in-
stance segmentation method, named Rotated Blend Mask R-CNN. We
perform mask prediction in oriented bounding boxes and predict the
final mask by combining instance-level information with lower-level fine-
granularity information. The proposed method is evaluated on the iSAID
dataset, and competitive outcomes show that our model achieves state-
of-the-art. Code will be made available at https://github.com/ZZR8066/
RotatedBlendMaskRCNN

Keywords: Aerial Images · Oriented Instance Segmentation.

1 Introduction

Instance segmentation in aerial images is important as it can be applied in
many areas, such as precision agriculture, security, military reconnaissance, etc.
Instance segmentation aims at predicting category labels of all objects of inter-
est and localizing them in pixel-level masks. Recently, many powerful instance
segmentation systems [1] [2] [3] have been proposed, but most of them are re-
searched on natural scene datasets, such as MSCOCO [4], PASCAL-VOC [5],
Cityscapes [6] etc. Compared with the above datasets, objects in aerial images
occur in high density, arbitrary orientation, large ratios, and huge scale variation.
Most of the recent aerial images datasets focus on object detection [7] [8], few
datasets [9] provide annotations for instance segmentation and typically focus
on a single object category annotation. A large-scale Instance Segmentation in
Aerial Images Dataset (iSAID) [10], which is far more comprehensive and suit-
able for real-world applications in aerial scenes, was proposed just recently. Due
to the above reasons, instance segmentation in aerial images has not been well
researched.
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Fig. 1. The comparison between axis-aligned and oriented instance segmentation.

In this study, we take a full consideration on the aforementioned situation
and propose a novel accurate oriented instance segmentation method, named
Rotated Blend Mask R-CNN, which is based on the representative two-stage
instance segmentation method Mask R-CNN [1]. Our method mainly consists of
two parts, a detection network and a segmentation network. Specifically, in order
to eliminate the ambiguity of axis-aligned boxes in densely packed objects, we
achieve oriented bounding box regression in the detection network, which will
generate more accurate mask prediction as shown in Fig.1(b). As for the seg-
mentation network, similar to [11], we improved mask prediction by effectively
combining instance-level information with lower-level fine-granularity informa-
tion, and we find that it can well process the situation for large elongate objects
which are densely surrounded by objects of other categories.

The main contributions of our work are summarized as follows:

– We present a novel oriented instance segmentation method which predicts
accurate instance masks based on oriented bounding boxes.

– Furthermore, we merge top-level coarse instance information with lower-
level fine-granularity for describing the instance information within their
best capacities.

2 Relate Work

2.1 Object Detection

The R-CNN [12] is a milestone for object detection method, many following
methods [13] [14] [15] are based on it. SPPnet [13] removes crop/warp and other
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operations on the original image and replaces it with a spatial pyramid pooling
(SPP) layer on the convolutional features, which eliminates the requirement of a
fixed-size input image and makes the system more robust to object deformations.
Fast R-CNN [14] improves [12] training and testing speed by first processing the
whole image with several convolutional and max pooling layers to produce a
convolutional feature map and then extracting a fixed-length feature vector by
a region of interest (RoI) pooling layer of each proposal. Faster R-CNN [15] in-
troduces a Region Proposal Network (RPN) that shares full-image convolutional
features with the detection network, thus enabling nearly cost-free region pro-
posals. R-FCN [16] presents a position-sensitive RoI pooling to learn the location
information of objects. Cascade R-CNN [17] increases the number of R-CNN to
gradually generate better boxes.

The above detection methods are designed for the regression of axis-aligned
bounding boxes, which are widely used in natural images. However, aerial images
are taken from bird’s-eye view, which implies that the orientation of objects
is always arbitrary. Recently, many oriented bounding box regression methods
have been proposed. Zhu et al. proposed Rotated Cascade R-CNN [18], which
estimates the outline of the object in the first stage and regresses four vertices in
the second stage. [19] proposed Adaptive Period Embedding (APE) to address
the angular periodicity. Jian et al. proposed the RoI Transformer [20], which
learns the spatial transformation parameters from the feature maps of axis-align
RoIs and decodes them to generate oriented RoIs.

2.2 Instance Segmentation

He et al. proposed Mask R-CNN [1] which extends Faster R-CNN by adding a
Fully Convolutional Network (FCN) [21] for predicting an object mask in paral-
lel with the existing branch for bounding box recognition. The path aggregation
network (PANet) [2], which won the COCO 2017 Challenge Instance Segmen-
tation task, improves Mask R-CNN by bottom-up path augmentation, adaptive
feature pooling and fully connected fusion. In order to calibrate the misalignment
between the mask quality and the predicted score, the Mask Scoring R-CNN [3]
proposed network block takes the instance feature and the corresponding pre-
dicted mask together to regress the mask IoU.

However, an underlying drawback in the above methods is that the RoI pool-
ing step loses spatial details due to feature warping and resizing. Such distortion
and fixed-size representation degrades the segmentation accuracy, especially for
large objects. To address this issue, YOLACT [22] and YOLACT++ [23] accom-
plish this by breaking instance segmentation into two parallel subtasks, generat-
ing a set of prototype masks and predicting per-instance mask coefficient respec-
tively, and producing instance masks by linearly combining the prototypes with
the mask coefficients. Different from YOLACT, BlendMask [11], which outper-
forms Mask R-CNN in both mask AP and inference efficiency, merges top-level
coarse instance information with lower-level fine-granularity to generate the final
mask prediction.
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Fig. 2. The Rotated Blend Mask R-CNN architecture.

3 Method

In this section, we will present details of our proposed method, Rotated Blend
Mask R-CNN, which is based on Mask R-CNN [1]. As shown in Fig.2, the back-
bone is first applied to the input image to extract features that are used for
the following detection and segmentation network. The detection network gen-
erates the oriented proposals, and the segmentation network will do the mask
prediction of each proposal. Next we will elaborate on the above two networks
respectively.

3.1 Detection Network

We detect objects in oriented boxes instead of axis-aligned boxes due to the
orientation of densely packed objects as shown in Fig.1. The detection network
is illustrated in Fig.3. We first obtain axis-aligned proposals from RPN [15],
then for each proposal the RoIAlign [1] extracts a fixed-length feature vector
from the feature map. Each feature vector is fed into a sequence of fully con-
nected (FC) layers and outputs a five-dimensional vector t for each proposal.
More specifically [20], each vector t consists of (tx, ty, tw, th, tθ) which are pa-
rameters of spatial transformation from axis-aligned boxes to oriented boxes and
corresponding regression targets are:

t∗x = 1
wr

(
(x∗ − xr) cos θr + (y∗ − yr) sin θr

)
,

t∗y = 1
hr

(
(y∗ − yr) cos θr − (x∗ − xr) sin θr

)
,

t∗w = log w∗

wr
, t∗h = log h∗

hr
,

t∗θ = 1
2π

(
(θ∗ − θr) mod 2π

)
,

(1)

where (xr, yr, wr, hr, θr) is a stacked vector for representing location, width,
height and orientation of an oriented proposal and (x∗, y∗, w∗, h∗, θ∗) is the
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Fig. 3. The detection network.

ground truth parameters of an oriented bounding box. The corresponding ori-
ented proposals can be obtained by decoding the vector t. The Rotated RoIAlign
(RRoIAlign) [18] is used to extract a fixed-length feature vector of each corre-
sponding oriented proposal to maintain the rotation invariance. The final R-CNN
stage fine-tunes oriented proposals and outputs D detection results P. The re-
gression targets of R-CNN are the same as Eq. (1). We use the Smooth L1
loss [12] function for the regression loss.

3.2 Segmentation Network

As shown in Fig.2, the segmentation network is composed of three parts, a
bottom module, an attention module and a blender. The bottom module aims at
predicting the score maps containing semantic information with lower-level fine-
granularity. The attention module predicts the attention maps in the instance-
level of each oriented proposal. The blender module is used to merge the scores
with attentions to generate the final mask predictions.



6 ZhenRong Zhang and Jun Du

Fig. 4. The bottom module. Each conv is the convolution stage, and 2Ö is the upsam-
pling stage.

Bottom Module Fig.4 illustrates our bottom module in detail. We first ob-
tain multi-level features {P2, P3, P4, P5} from the backbone, then perform
upsampling stages for each level to yield the feature map at 1/4 scale. Each
upsampling stage [24] consists of 3× 3 convolution, group norm, ReLU, and 2×
bilinear upsampling. The element-wise summation is applied to fused multi-level
features. The final four convolution stages and the 1 × 1 convolution layer are
used to generate score maps which are called bases [11], B. B has a shape of
N ×K × H

s ×
W
s , where N is the batch size, K is the number of bases, H ×W

is the input size and s is the output stride of score map, here s is 4.

Attention Module After obtaining the oriented proposals from detection net-
work, we use RRoIAlign to extract a fixed-size feature map of each oriented
proposal, then predict attention maps A using an FCN [1] [21]. Specifically,
FCN has a shape of KM2 dimensional output for each proposal, which encodes
instance-level information into K maps with a resolution of M ×M .

Blender The inputs of the blender module [11] contain bases B, attention maps
A and oriented proposals P from the detection network. We first use RRoIAlign
to extract a fixed-size R×R feature map rd for each proposal pd from bases B.

rd = RRoIAlignR×R(B,pd), ∀d ∈ {1 . . . D}. (2)

Then we use the bilinear interpolation to resize attention maps ad from M ×M
to R×R to ensure the sizes of ad and rd are the same.

a′d = interpolateM×M→R×R(ad), ∀d ∈ {1 . . . D}. (3)

a′d is first normalized with softmax function along the K dimension to make it
a set of score maps sd.

sd = softmax(a′d), ∀d ∈ {1 . . . D}. (4)
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Then we apply element-wise product between each rd, sd, and sum along the K
dimension to get the mask logit md:

md =

K∑
k=1

skd ◦ rkd, ∀d ∈ {1 . . . D} (5)

where k is the index of the bases.

4 EXPERIMENTS

4.1 Datasets

iSAID [10] is a large-scale dataset for instance segmentation in aerial images,
which contains 2806 aerial images from different sensors and platforms and com-
prises 655,451 annotated instances of 15 categories. Images with large resolutions
(e.g. 4000 pixels in width) are commonly present in iSAID, it is necessary to
crop the image and detect the objects in the cropped images. There are densely
packed oriented objects such as large vehicles, small vehicles, and large elongated
objects like harbors, which make segment objects in aerial images challenging.

It is worth to note that the detection network of our system performs oriented
boxes regression, however, iSAID dataset does not provide the ground truth
parameters of the oriented box (x∗, y∗, w∗, h∗, θ∗). Here, we use the smallest
oriented bounding box of the instance mask as the regression target.

4.2 Implementation Details

The backbone of our detector is ResNet-50 [25] pre-trained on ImageNet [26].
The number of FPN channels is set to 256. Our network is trained with SGD,
where the batchsize is 2 and the initial learning rate is set to 0.00125, which is
then divided by 10 at 2

3 and 8
9 of the entire training. Due to the limited memory,

we crop images to 800 × 800 with the stride of 200 for training and testing.
The model is trained and tested at a single scale. By default, we train our
model with training set and evaluate it on validation and testing set. Since our
detection boxes are oriented, quadrilateral non-maximum suppression with the
threshold of 0.3 is used during evaluation. As some configurable parameters of
our segmentation network have been comprehensively researched in [11], unless
otherwise stated, we take K = 4, M = 28, R = 56 as default.

4.3 Ablation Study

To have a fair comparison, we conduct ablation experiments based on mmdetec-
tion [27] framework to evaluate the effect of each component on the validation
set of iSAID. The model is not modified except the component being tested.
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Detection Segmentation
mAP

ADN Ours FCN Ours

! ! 33.5

! ! 34.0

! ! 33.9

! ! 34.4

Table 1. Instance segmentation results using mask mAP on iSAID validation set. Note
that ADN means the axis-aligned detection network.

(a) ADN (b) Ours

Fig. 5. The detection network comparison between ADN and ours. Both are using
FCN as segmentation network.

The Effect of Detection Network When detecting densely packed oriented
objects in aerial images, axis-aligned proposals often contain other instances,
which will finally affect the instance segmentation results as shown in Fig.1.
Moreover, the oriented boxes generally contain much less background than the
axis-aligned boxes as shown in Fig.5, which makes the given resolution will be
used much more efficiently. To evaluate whether the proposed detection network
can handle well the above situation, we conduct ablation experiments as shown
in Table 1. No matter what segmentation network is used, when the oriented
detection network is used instead of the axis-aligned detection network, the per-
formance will be improved to a certain extent. We also show the comparison in
Fig.5, where in ADN the mask prediction (red part) is not only on the target
object, but also on another instance area in the detection result (green box). The
background and other objects can be well removed when applying our proposed
detection network, which will improve the accuracy of instance segmentation.
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Method Mask R-CNN [10] PANet [10] Ours

Plane 37.7 39.2 40.0

BD 42.5 45.5 51.6

Bridge 13.0 15.1 17.3

GTF 23.6 29.3 27.7

SV 6.9 15.0 13.1

LV 7.4 28.8 29.6

Ship 26.6 45.9 44.5

TC 54.9 74.1 74.8

BC 34.6 47.4 48.7

ST 28.0 29.6 34.3

SBF 20.8 33.9 33.7

RA 35.9 36.9 41.2

Harbor 22.5 26.3 30.4

SP 25.1 36.1 13.1

HC 5.3 9.5 14.9

mAP 25.7 34.2 35.8

Table 2. Class-wise instance segmentation results on iSAID test set. Note that
short names are used to define categories: BD-Baseball diamond, GTF-Ground field
track, SV-Small vehicle, LV-Large vehicle TC-Tennis court, BC-Basketball court, SC-
Storage tank, SBF-Soccer-ball field, RA-Roundabout, SP-Swimming pool, and HC-
Helicopter.

The Effect of Segmentation Network To evaluate the performance of our
segmentation network, we conduct ablation experiments with the same axis-
aligned boxes regression method [15] as the detection network. The comparison
results are shown in Table 1 and visualized in Fig.6, from which we can see FCN
can hardly provide a convincing mask prediction of large elongated objects (e.g.
harbor), especially when they are surrounded by many other category objects
(e.g. ship). This is because the features of the harbor and ships are confused in
the top-level feature map, which eventually leads to poor prediction results (red
part) as shown in Fig.6(a). However, we use the bottom module to generate score
maps, then merge scores with top-levels feature to supplement fine-granularity
information about the harbor, accordingly our model can obtain a more accurate
result as shown in Fig.6(b).
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4.4 Comparison with State-of-the-art Methods

We compare our method with other state-of-the-art methods. In order to form
a fair comparison, we use a heavier backbone (ResNet-101-FPN) which is the
same as original Mask R-CNN [1] and PANet [2]. The comparison experiments
are based on mmdetection framework [27]. Compared with other instance seg-
mentation methods in aerial images, our model can well process objects in ar-
bitrary orientation (e.g. large vehicle) and large elongated objects (e.g. harbor)
as shown in Table 2.

(a) FCN (b) Ours

Fig. 6. The segmentation network comparison between FCN and ours. Both are using
ADN as detection network.

5 CONCLUSION

Instance segmentation in aerial images is a challenging task. In this study, we
take a full consideration on the arbitrariness of the orientation. A novel method
named Rotated Blend Mask R-CNN is proposed which can well segment in-
stances in aerial images. Compared with methods using axis-aligned boxes, ap-
plying oriented bounding boxes can well remove the other instances and back-
ground. Besides, we improve the segmentation network by merging top-level
coarse instance information with lower-level fine-granularity. Our ablation study
proves the effectiveness of each module. The proposed method outperform Mask
R-CNN and PANet to a certain extent. In the future, we will explore a more
efficient and accurate method for segmenting objects in aerial images.
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