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Abstract
In this paper, we propose a novel approach for sentence-level
lip-reading by using hidden Markov model (HMM) framework.
To calculate the posterior probability of HMM states, the ar-
chitecture of convolutional neural network based visual mod-
ule followed by multi-headed self-attention Transformers is de-
signed. Recently, 3D convolution for visual module to ex-
tract temporal features is popular for lip-reading tasks, which
can achieve a higher accuracy at the cost of more computa-
tions compared with 2D convolution. This motivates us to in-
vent plug-and-play compact 3D convolution unit called “Stingy
Residual 3D” (StiRes3D). We use heterogeneous convolution
kernels for different input channels, and apply channel-wise
convolutions and point-wise convolutions to make the block
compact. Evaluated on Lip Reading Sentence2 (LRS2-BBC)
dataset, we first demonstrate that our HMM-based approach
outperforms connectionist temporal classification (CTC) based
approach with the same visual module and Transformer archi-
tecture, yielding a word error rate reduction of 1.9%. Then we
empirically show that the proposed approach with StiRes3D
based visual module can achieve obvious improvements in
terms of both recognition accuracy and model efficiency, over
the Pseudo 3D network with a compact 3D convolution design.
Index Terms: lip-reading, visual speech recognition, compact
3D convolution, hidden Markov model, transformer

1. Introduction
Lip-reading is the task to recognize what people are saying from
image alone without audio information. Lip-reading is thought
as a challenging task due to the ambiguity introduced by the fact
that a visime [1] can be mapped to many different phonemes [2].
Despite the difficulty, a strong lip-reading system can be pretty
useful: helping to understand what is being said in a noisy en-
vironment [3, 4]; recognizing wake-up word from multi-talker
simultaneous speech; and improving mobile interaction with
silent command [5].

Conventional approaches usually consist of a spatial fea-
ture extractor and followed by a sequential model. More de-
tails about these approaches are in [6]. As for deep learning
method, a number of works use convolutional neural network
(CNN) to predict phonemes [7] or visemes [8] from still images.
Long-short term memory recurrent neural networks (LSTMs)
with handcrafted features are frequently used to recognise full
words and short phrases due to the lack of training data [9, 10].
[11] first proposes a residual network with 3D convolutions to
extract more powerful representations. The standard ResNet ar-
chitecture is modified by changing the first convolutional and
pooling blocks from 2D to 3D, and this architecture is widely
used in lip-reading tasks [12]. As for the sentence-level lip-
reading, [13] designs a lip-reading pipeline that uses a network
to output phoneme probabilities. And then convert the phoneme

distributions into word sequences with finite state transducers.
[3] adopt a network to output character probabilities which is
trained with connectionist temporal classification (CTC) [14]
loss or sequence-to-sequence (seq2seq) [15] model. Although
3D convolution improves the performance of the network, it
brings about huge computational complexity. Simply adding
3D convolutions will make the network too tedious for applica-
tion, meanwhile it will easily cause overfitting due to the com-
plex structure.

Many researchers work on compressing 2D convolutional
block, like Heterogeneous Convolutions(HetConv) [16], Parsi-
monious Convolutions(ParConv) [17] and Depth-wise Separa-
ble Convolutions(DSConv) [18, 19, 20] which propose different
compact architectures of convolutional block. As for compres-
sive 3D convolutions, the research efforts are mainly focusing
on separating the spatial and temporal convolutions [21, 22, 23].
These methods are useful but restricted. They divide 3D con-
volutions into spatial and temporal convolutions, so the com-
pression rate is fixed. However in actual applications, we might
need to make a trade-off between compression rate and the per-
formance. Another type of compression for convolutional neu-
ral networks is pruning, including the work for 2D convolution
[24, 25, 26] and 3D convolution [27].

In this work, we focus on the sentence-level lip-reading and
conduct experiments on Lip Reading Sentence2 BBC (LRS2-
BBC) dataset. We introduce a new pipeline for lip-reading.
First we use a CNN to extract the visual features of the input
video. Then we predict the posteriori probabilities of hidden
states by 6-layer multi-head self-attention Transformer together
with a fully connected layer. We use hidden-Markov-model
(HMM) [28] and an external language model to get the sen-
tence with highest probability. Using this pipeline, we compare
how different types of CNN influence the performance and size
of the networks. We use the CNN consisting of a 3D convolu-
tional layer followed by a 18-layer residual network(ResNet-18)
as the baseline which is also the baseline of many proposed ar-
chitectures for lip-reading [29, 30]. This pipeline outperforms
CTC-Transformer approach [3] which has the same visual mod-
ule and Transformer as ours. In order to get better performance
and smaller model, we introduce a novel compact 3D convo-
lution architecture called Sti3D which is the main contribution
of this work. We first use channel-shuffle [31] to let the in-
formation flow in different channels and sent half of the input
channels to the lower half to go through point-wise convolution.
The other half is sent to a point-wise convolution with ω×more
feature maps before sent to channel-wise convolution [32, 33]
followed by a point-wise convolution, so that it provides control
over the complexity of the model. We also make innovations on
adding a residual shortcut (StiRes3D) within the convolutional
block to make up for the information loss when we use separa-
ble convolutions to approximate the standard 3D convolutions
to get better performance. We further demonstrate the merits of



the proposed StiRes3D by comparing the performance of differ-
ent visual module based on whole 3D CNN (All3D) and pseudo
3D CNN (P3D).

2. Our Proposed Approach

The pipeline we proposed for sentence-level lip-reading task
uses the visual component as the input and the audio component
to create the transcript. We adopt the transcript, the utterance of
the audio stream, a dictionary, and the acoustic model to trans-
form the words to triphones. More specifically, there are 6831
triphones with each modeling by a 3-state HMM. We adopt the
triphone states via a neural network as shown in Figure 1 and
the state alignments to calculate the cross-entropy (CE) loss for
training. In the decoding state, we output the final prediction of
the sentence with an external language model and lip-reading
HMMs. The best performing model using this pipeline achieve
a WER of 46.8% on LRS2-BBC.
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Figure 1: Proposed network architecture.

As shown in Figure 1, our proposed network architecture
for HMM-based lip-reading can be divided into two main parts.
The visual module takes image sequence around the mouth area
X ∈ RT×H×W as input to extract features F ∈ RT×512 where
T denotes the number of frames of the input sequence, and H ,
W denote the height and width of the input images, respec-
tively. The essential part which is highlighted with yellow color
is used to replace the standard ResNet18 to get better perfor-
mance and smaller model. In the second part we use 6 multi-
head self-attention Transformer layers where the features we
extract by visual module serve as key, query, and value [35].
The Transformer takes the feature to generate the state poste-
rior probabilities with a fully connected layer and HMMs. We
get P = {p(st|xt)} where P denotes the probabilities of hid-
den states for each frame. Finally, we adopt an external 4-gram
language model together with cascading 3-states HMMs each
representing a triphone to compute the sentence Ŵ with highest
probability, which can be formulated as the Bayesian decision
problem:

Ŵ = argmax
W

p(W|X)

= argmax
W

p(X|W)p(W)
(1)

where Ŵ denotes the sentence we recognize from the T-frames
input image sequence X = {x1, x2, ..., xT }, each xt ∈ RH×W

is an image, and W = {W1,W2, ...,Wn} is the possible word
sequence. We can represent the formula in Eq 1 with the math-

ematical principle of HMM:

p(X|W)p(W) =
∑
S

[
T∏

t=2

ast−1st

T∏
t=1

p(xt|st)

]
n∏

i=1

p(Wi|Wi−1,Wi−2, ...,W1)
(2)

p(xt|st) =
p(st|xt)p(xt)

p(st)
(3)

where S = {s1, ..., sT } denotes the hidden states sequence cor-
responding to the given W. p(s1) is the initial state probability,
ast−1st is the state transition probability from state at frame
t − 1 to state at frame t estimated, p(st|xt) is the posteriori
probability which is also the output of the network, p(st) is the
prior probability of st estimated from the training set, and p(xt)
is independent of the given sentence W.

2.1. Stingy 3D Convolution

The detailed architecture of a Stingy 3D convolution block is
shown in Figure 2(b). 3D convolution can be decomposed to
spatial convolution and temporal convolution [21, 22]. In addi-
tion, the coupling between channel and spatial can be decoupled
[19, 20]. We apply this principle to the three dimensions. As
shown in Figure 2(c), the idea of different types of 3D convolu-
tions can be presented as matrix multiplication where elements
in the matrix are 3D arrays and the operations between elements
are convolution instead of multiplication. In three dimensions,
the channel-wise convolution can compress more because of the
temporal dimension, we will further explain it later. Since not
all the channels’ information is needed in convolution, we can
divide the input channels into two parts. Half of those will go
through the channel-wise convolution block, and other half will
go through point-wise convolution. In other words, we use het-
erogeneous convolution kernels, which overcomes the limita-
tion of the existing approaches that are based on efficient ar-
chitecture search and model compression [16]. Also, from the
point of view that letting the information adequately flow within
all the channels, we add channel-shuffle to the input. Moreover,
in order to provide control over the complexity of the convo-
lution block, we add a point-wise convolution with ω× feature
maps. [36] states that the set of layer activations forms a “mani-
fold of interest” from the input set, and the information encoded
in all individual channels actually lie in some manifolds. Only
parts of the channels to go through channel-wise convolution
would result in information loss in some channels, so we make
it up by adding a residual short cut to the Sti3D block. The
modified block is called StiRes3D.

Now we compare the theoretical compression rate between
our StiRes3D with a strong compression method P3D [22].
Assume that the input size to the 3D convolutional block is
T ×D ×D × Cin, D is the size of the image, T is the number
of frames, and Cin is the number of input channels. The kernel
size of the 3D convolutional block is Tk×K×K×Cin, and the
number of such kernels is Cout. The computational complexity
for 3D convolutional block, it is

FL3D = TTkD
2K2CinCout (4)

For P3D convolutional block, it is

FLP3D = TD2K2CinCout + TTkD
2C2

out (5)
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Figure 2: Detailed Structure

For StiRes3D convolutional block, it is

FLStiRes3D = TD2Cin(
3 + ω

2
Cout +

w

4
Cin +

w

2
TkK

2) (6)

In most situation, we can make a reasonable assumption
that Cin = Cout and Cout � ω. Then we can have the compres-
sion rate comparing to the standard 3D convolutions of different
compact 3D convolutions in Table 1. We observe that StiRes3D
has two main merits comparing with P3D. First, StiRes3D can
have better compression rate. Second, StiRes3D’s compression
rate can be controlled by adjusting ω.

Table 1: Compression rate of different compact 3D convolutions

Type Compression Rate

P3D 1/Tk + 1/K2

StiRes3D (6 + 3ω)/(4TkK
2)

3. Experiments
In this section, we compare the performance of our proposed
HMM-based lip-reading approach with other approach and
StiRes3D based with other types of CNNs within HMM frame-
work. First we describe the training strategy. Our implemen-
tation is based on the Pytorch library [37] and experiments are

conducted on two TeslaV100 GPUs with 16GB memory. The
network is trained using the ADAM optimiser [38] with ini-
tial learning rate of 10−4, and weight decay of 10−4. We keep
training until the CE loss stops decreasing on the validation set,
and we keep training for 6 epochs with learning rate reduced
by a factor of 2 for each epoch. Decoding is performed with
the method we introduced in Section 2. We conduct the exper-
iments on a large-scale English dataset, LRS2-BBC, generated
and presented in [3]. It contains hundreds of hours of video
with talking faces in the middle together with the transcript of
the sentences being said. The videos are from a variety of BBC
programs. Each video corresponds to a sentence or a phrase
which varies in length. The dataset includes nearly 200 hours
of videos, and we use the same division of training, validation
and test sets as described in [3].

For all the experiments, we adopt the word error rate(WER)
as the criterion to evaluate the performance. WER is defined as
WER = (S + D + I)/N, where S, D and I are the number of
substitutions, deletions, and insertions we get from the refer-
ence to the hypothesis, and N is the numebr of all words in the
reference. Since we use the same Transformer [35] for all the
proposed visual module, we only compare the complexity of the
visual modules i.e. the convolutional neural networks. We em-
ploy two measures to evaluate the complexity of the network.
One measure is floating-point operations (FLOPs) to evaluate
the computational complexity of the CNN. As the input size is
the same for all the variants, the total FLOPs of the convolu-



tional visual module can represent the computational complex-
ity of the CNN. Another measure is memory used for storage
of the visual module to evaluate the space complexity of the
network. The CNN’s structure is based on [11]. It applies 3D
convolutions on the input image with a filter width of 5 frames,
followed by a standard ResNet-18 to decrease the spatial di-
mensions. The detailed architecture is shown in Figure 2(a).
The All3D denotes the 3D CNN that replaces all the [3× 3] 2D
kernel with [3× 3× 3] 3D kernels. P3D and StiRes3D denote
CNN that replaces the [3× 3× 3] 3D convolution with P3D-A
[22] and StiRes3D, respectively.

Table 2: Comparison among different networks

Network name WER Memory(MB) FLOPs (∗108)

ResNet18 51.8% 56.60 2.7049
All3D 49.7% 155.88 6.6091
P3D 48.5% 88.07 3.4205
StiRes3D(ω = 2) 46.8% 44.48 2.2286

3.1. Analysis on the performance

The results of different networks are listed in Table 2. The
ResNet18 based visual module achieves a WER of 51.8%, and
outperforms CTC based approach with the same visual mod-
ule and Transformer architecture [3], yielding a WER reduc-
tion of 1.9%. The results also demonstrates that in lip-reading
tasks applying more 3D convolutional block yields an abso-
lute improvement of 2.1% (ResNet18 vs All3D). Since the lip
movements and the words in a sentence are temporally rele-
vant, the results are quite reasonable. However, replacing the
2D convolutional blocks with 3D convolutional blocks promi-
nently increases the computational and space complexity of the
network. All3D has 2.4× more FLOPs and nearly 3× larger
comparing to ResNet18. The huge memory cost and FLOPs
make it unacceptable for many applications. Moreover, from
Table 3 we observe that All3D’s structure is too complicated
and easy to overfit. It has a better training loss but worse valida-
tion loss and WER comparing to StiRes3D. The results imply
StiRes3D helps to prevent overfitting, because the decomposi-
tion of StiRes3D brings about more batch normalization layers.

Table 3: Comparison between All3D and StiRes3D

Network Training Loss Validation Loss

All3D 3.064 3.695
StiRes3D 3.238 3.594

The experiments also show that StiRes3D is fully superi-
orto P3D and All3D in terms of lower WER, less storage, and
smaller FLOPs. Comparing to All3D, StiRes3D has about 3.5×
and 3.0× compression rate on memory and FLOPs, repectively.
StiRes3D achieves great improvement over P3D with 1.8× and
1.9× on memory and FLOPs. Meanwhile StiRes3D has an ab-
solute reduction of 1.7% over P3D on WER. It also surpasses
the previous state-of-the-art [3] on LRS2-BBC by a WER re-
duction of 1.5%

3.2. Analysis on the Sti3D

To further illustrate the merits of the proposed StiRes3D con-
volutional block, we did some more experiments to verify the
effectiveness. First we compare the performance between stan-
dard Sti3D and the StiRes3D, as shown in Table 4. We keep
the value of ω = 2 in both architectures. It is observed that the
residual shortcut will add little burden to the network, specif-
ically 4.79MB and 0.2169 × 108 for space and computation,
respectively. However, it can prominently improve the perfor-
mance on WER by 1.5%.

Table 4: Comparison between Sti3D and StiRes3D

Network name WER Memory(MB) FLOPs (∗108)

Sti3D(ω = 2) 48.3% 39.69 2.0117
StiRes3D(ω = 2) 46.8% 44.48 2.2286

The complexity and performance of StiRes3D can be con-
trolled by the parameter ω which makes the network flexible to
adapt to different application environments. We change the ω of
StiRes3D from 2 to 0.5 and compare the performance. In Fig-
ure 3. It is clear that we can get better recognition performance
by increasing ω, and get smaller networks by decreasing ω.

Figure 3: Performance of StiRes3D with different ω.

4. Conclusions
In this paper, we introduce a novel HMM pipeline and a new
compact 3D convolutional block, Stingy Residual 3D Convolu-
tion, and show that our pipeline performs well on lip-reading
task. We also verify that adding 3D convolutions to the visual
module effectively benefit the performance of the model. Then
we use different CNNs on lip-reading tasks to show that our
StiRes3D improves the performance with less parameters and
FLOPs, meanwhile it is more flexible to adapt to different ap-
plications.
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