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a b s t r a c t 

Chinese characters have a valuable property, this is, numerous Chinese characters are composed of a com- 

pact set of fundamental and structural radicals. This paper introduces a radical analysis network (RAN) 

that makes full use of this valuable property to implement radical-based Chinese character recognition. 

The proposed RAN employs an attention mechanism to extract radicals from Chinese characters and to 

detect spatial structures among the radicals. Then, the decoder in RAN generates a hierarchical composi- 

tion of Chinese characters based on the knowledge of the extracted radicals and their internal structures. 

The method of treating a Chinese character as a composition of radicals rather than as a single character 

category is a human-like method that can reduce the size of the vocabulary, ignore redundant informa- 

tion among similar characters and enable the system to recognize unseen Chinese character categories, 

i.e., zero-shot learning. Through experiments, we assess the practicality of RAN for recognizing Chinese 

characters in natural scenes. Furthermore, a RAN framework can be proposed for scene text recognition 

with the extension of a dense recurrent neural network (denseRNN) encoder, a multihead coverage atten- 

tion model and HSV representations. The proposed approach achieved the best performance in the ICPR 

MTWI 2018 competition. 

© 2020 Elsevier Ltd. All rights reserved. 

1

 

m  

w  

o

 

a  

t  

c  

w  

n  

t  

a  

t  

c  

n  

a

 

t  

a  

l

s  

c  

a  

b  

s  

h  

f  

i

 

c  

r  

h  

b  

n  

c  

f  

d  

a

 

p  

a  

h

0

. Introduction 

Automatic recognition of Chinese text has considerable com-

ercial value and social benefits, as Chinese is one of the most

idely adopted reading systems in the world: nearly one-quarter

f the world’s population reads and writes in Chinese scripts. 

However, the recognition of Chinese characters or texts is

mong the most challenging topics in pattern recognition [1] . Al-

hough recent deep-learning-based approaches [2] , such as the

onvolutional neural network (CNN) [3,4] and recurrent neural net-

ork (RNN) [5,6] , have achieved considerable success in the recog-

ition of approximately 4,0 0 0 commonly used Chinese charac-

ers [7,8] , there are many uncommonly used Chinese characters in

ddition to these 4,0 0 0 common characters. The numerous charac-

er categories (more than 25,0 0 0), complex internal structures and

onfusion among similar characters result in difficulties for recog-

izing both commonly used and uncommonly used Chinese char-

cters. 

Additionally, recognition of rarely used Chinese characters is

ypically a few-shot learning problem since samples of such char-

cter categories are difficult to collect. Moreover, recognition of
∗ Corresponding author. 

E-mail addresses: xysszjs@mail.ustc.edu.cn (J. Zhang), jundu@ustc.edu.cn (J. Du), 
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ome novel Chinese characters (e.g., the character “Duang”, newly

reated by Jackie Chan, see Fig. 9 ) is a zero-shot learning problem,

s these characters are newly created and have never been seen

efore. Few-/zero-shot learning has attracted the interest of re-

earchers [9,10] . This type of learning is a challenging problem but

as enormous potential value, as the ability to learn and generalize

rom a few examples is a hallmark of human intelligence [11] that

s difficult to achieve with deep learning methods. 

In this paper, we propose a novel deep-learning-based model,

alled the radical analysis network (RAN), for Chinese character

ecognition. The proposed RAN makes full use of the intensely

ierarchical nature of Chinese characters. Unlike English or Ara-

ic characters, Chinese characters are composed of basic compo-

ents [12] (called radicals in this paper). A small number of radi-

als can be used to construct many Chinese characters [13] . There-

ore, an intuitive method for Chinese character recognition is to

ecompose Chinese characters into radicals and analyze the hier-

rchical structures among the radicals. 

In RAN, we employ an attention mechanism [14] to implicitly

erform radical extraction and structure analysis. By utilizing an

ttention model, RAN can focus on certain components of a Chi-

ese character and choose the most relevant component to de-

cribe a radical. Meanwhile, we prove that the attention model

an also detect the relative spatial relationships among radicals.

ased on the knowledge of detected radicals and spatial relation-

https://doi.org/10.1016/j.patcog.2020.107305
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patcog
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ships, RAN employs a decoder to analyze the internal hierarchical

radical structures of Chinese characters. Finally, we can map these

hierarchical radical structures to their corresponding character cat-

egories for recognition. Compared with traditional character-based

methods, RAN has two distinct properties: (i) the size of the radi-

cal vocabulary is largely reduced compared to that of the character

vocabulary; and (ii) RAN is a novel zero-shot learning technique

for Chinese character recognition. Unseen Chinese characters can

be recognized because the necessary radicals and structures have

been learned from characters observed during training. 

In addition to the Chinese character recognition task, this paper

investigates the application of RAN in Chinese text line recognition.

An advantage of RAN is that can be extended from recognizing iso-

lated characters to recognizing text lines, as the embedded atten-

tion mechanism, which was originally devised to extract radicals,

is also able to detect Chinese characters in text lines. 

To adapt RAN to the text line problem and to capture the doc-

ument’s temporal layout, we incorporate a new source encoder

layer in the form of a multirow bidirectional RNN combined with

gated recurrent units (GRUs) [6] before the application of atten-

tion, and the GRU layers are improved by employing rectified lin-

ear unit (ReLU) activation and batch normalization layers [15] . We

also improve our attention model from single-head coverage atten-

tion to multihead coverage attention, where each head can gener-

ate a different attention distribution, to improve performance. This

improvement enables the decoder to simultaneously focus on con-

text radicals and structures in each decoding step. Furthermore,

we combine HSV channels with RGB channels to strengthen RAN’s

robustness [16] on text line images containing complex and diffi-

cult noisy backgrounds. Evaluated on the MTWI-18 [17] and RCTW-

17 [18] text line benchmarks, which are both dominated by Chi-

nese characters, with many low-frequency or even unseen Chinese

characters, the proposed RAN has fully leveraged its ability of few-

shot or even zero-shot learning and shown its distinct advantages. 

The main contributions of this study are as follows: 

• We propose RAN, a novel radical-based Chinese character pro-

cessing method with few-/zero-shot learning ability. 
• We describe the hierarchical radical structure of 27,533 Chi-

nese characters (all the Chinese characters in the GB18030 stan-

dard [19] ) and release the results to benefit related research. 
• We demonstrate the performance of RAN on an unseen Chinese

character recognition task and compare RAN with character-

based methods on a seen Chinese character recognition task. 
• We introduce a RAN extension for text line recognition and ex-

perimentally demonstrate its performance. 

This paper is an extension of our previous conference pa-

per [20] in five ways: 1) We exploit densely connected convolu-

tional networks (DenseNet) [21] in RAN; 2) We modify the com-

position of Chinese characters in ideographic description sequence

(IDS) format; 3) We evaluate RAN on a natural scene database and

prove its practical value in the real world; 4) We compare RAN

with character-based methods and provide a detailed experimen-

tal analysis; and 5) We extend RAN for text line recognition and

analyze its performance in detail. Moreover, we have also eval-

uated RAN on handwritten Chinese character recognition prob-

lems [22,23] , but we did not investigate its application on text line

recognition. The convincing results on handwritten Chinese char-

acter recognition further proved the practical value and generaliz-

ability of RAN. 

The rest of this paper is organized as follows: Section 3 in-

troduces the hierarchical radical structure of Chinese charac-

ters. Section 4 describes the proposed framework of RAN.

Section 5 presents the architecture of the extension of RAN for Chi-

nese text line recognition. Section 6 introduces the implementation

of the training and testing procedures. Section 7 reports the ex-
erimental results on Chinese character recognition. Section 8 re-

orts the experimental results on Chinese text line recognition, and

ection 9 presents concluding remarks. 

. Related work 

.1. Character-based Chinese character recognition 

Traditional character-based methods treat Chinese character

ecognition problems as classification problems. For example, in of-

ine Chinese character recognition, offline characters are naturally

epresented as scanned images; therefore, the CNN is a natural and

ffective method for offline Chinese character recognition [24–26] ,

s the strong a priori knowledge of convolution makes the CNN

 powerful model for image classification. With respect to online

ecognition, pen movements (xy-coordinates) are stored as sequen-

ial data, which can be naturally processed by using the RNN [27] .

oreover, the CNN can be applied to online characters by first

ransforming the online handwriting trajectory into image-like rep-

esentations such as AMAP [28] , path signature maps [29] and di-

ectional feature maps [30] . 

.2. Radical-based Chinese character recognition 

The use of radicals for Chinese character recognition has been

esearched for decades, and radical-based Chinese character recog-

ition can be considered to consist of two major problems, namely,

adical extraction [31,32] and structure analysis [33,34] . The two

roblems can be solved sequentially or globally. 

.2.1. Sequential methods 

Most conventional radical-based approaches are sequential ap-

roaches in which radical extraction is the first stage of a two-

tage Chinese character recognition process. The second stage re-

uires analysis of the structures of the radicals to identify the opti-

al radical combination. For example, [35] first implemented rad-

cal extraction based on a nonlinear active shape modeling (ARM)

ethod. During the structural analysis, a dynamic tunneling al-

orithm was used to search for the optimal shape parameters

n terms of chamfer distance minimization. Finally, the complete

haracters can be recognized via the Viterbi algorithm. Addition-

lly, in [36] , a recursive hierarchical scheme is developed to first

erform radical extraction. Character features and radical features

re then extracted for matching. Finally, in the structure analysis

tage, a hierarchical radical matching scheme is devised to identify

he radicals embedded in an input Chinese character and to recog-

ize the input character. 

.2.2. Global methods 

Different from conventional sequential methods, the RAN pro-

osed in this study is a global method. RAN aims to address the

ollowing limitations of sequential methods: (i) radical extraction

s a difficult problem; and (ii) structure analysis is complex, and

n effective strategy [37] must be applied during radical combi-

ation. Other radical-based Chinese character recognition methods

re also performed in a global manner. A multilabel learning with

 residual network architecture was proposed in [38] . The method

rst predefined twenty types of radical structures and then marked

very radical with a specific position. The Chinese characters are

ecognized when the labeled position-dependent radicals are pre-

icted successfully. [39] proposed oversegmentation of the Chi-

ese character graph into candidate radicals to avoid radical ex-

raction. The optimal radical segmentation is searched in a lexicon-

riven manner using a beam search strategy. However, the pro-

osed method can address only the left-right structure, which is

he simplest structure of Chinese characters. 
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Fig. 1. (a) Hierarchical radical structure of an example Chinese character. The radi- 

cals are on the leaf nodes, and the structures are at the parent nodes. (b) Graphical 

representation of 10 common radical structures. 
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1 https://github.com/cjkvi/cjkvi-ids . 
2 https://github.com/JianshuZhang . 
.3. Character-based Chinese text recognition 

Both handwritten Chinese text recognition and scene text

ecognition are active research problems. For handwritten text

ecognition, [40] proposed a hybrid method using the hidden

arkov model (HMM) to avoid segmentation problems. [41] pro-

osed a multi-spatial-context fully convolutional neural network

ollowed by a residual recurrent network to avoid segmentation

roblems. The path signature representation was exploited, and

n implicit language model was developed to complete sequence

rediction. For scene text recognition, there are few benchmarks

pecifically for Chinese text line recognition. However, the ap-

roaches proposed for English text recognition [42–46] are popular

n Chinese text recognition. Both [42] and [43] proposed end-to-

nd trainable systems by employing connectionist temporal classi-

cation (CTC) for decoding, while [42] proposed the convolutional

ecurrent neural network (CRNN) architecture for encoding the se-

uential layout, and [43] proposed a sliding convolution character

odel. Both [44] and [45] employed the encoder-decoder frame-

ork for end-to-end training, while [44] combined a rectification

etwork to effectively deal with irregular text lines, and [45] pro-

osed a focusing attention (FA) model to help improve the align-

ent of attention. [46] proposed a method named aggregation

ross-entropy (ACE) for accelerating the training of sequence recog-

ition. 

The above methods focused on character-based text recognition.

owever, in this paper, we investigated a valuable ability of the

roposed RAN that has not been investigated in previous radical-

ased Chinese character recognition methods: radical-based Chi-

ese text recognition. 

. Radical analysis 

Unlike English or Arabic characters, many Chinese characters

an be decomposed into a limited number of radicals. These rad-

cals are viewed as semantic parts shared by different characters

hat appear in specific positions. 

.1. Radical structures 

Some radical structures can be derived based on position-

ependent radicals. For example, a left-hand radical and a right-

and radical constitute a left-to-right structure (LR structure in

ig. 1 (b)). Ten different Chinese radical structures are predefined

Chapter 12 in [3] ), and we list them in Fig. 1 (b): (1) left-to-right

tructure (LR), (2) above-to-below structure (AB), (3) full-surround
tructure (S), (4) surround-from-above structure (SA), (5) surround-

rom-below structure (SB), (6) surround-from-left structure (SL),

7) surround-from-upper-left structure (SUL), (8) surround-from- 

pper-right structure (SUR), (9) surround-from-lower-left structure 

SLL), and (10) overlaid structure (O). 

.2. Hierarchical radical structures 

The internal radical structures of Chinese characters are in-

ensely hierarchical: each Chinese character is first composed of a

ain structure; then, the main structure will be decomposed into

everal substructures until the final structures cannot be further

ecomposed. We illustrate the hierarchical radical structure of a

hinese character as a tree in Fig. 1 (a). The Chinese character in-

tance is above the top of the tree, and different radicals are de-

oted with different colors. The following tree structure describes

he hierarchical radical structure: symbols on the parent nodes de-

ote radical structures, while symbols on the leaf nodes denote

adicals. The main structure of the instance character is the left-to-

ight structure (top of the tree). The left part of the tree indicates a

urround-from-upper-left structure, and the right part of the tree

ndicates an above-to-below structure. Finally, an above-to-below

tructure is presented at the bottom-right part of the surround-

rom-upper-left structure. As for those Chinese characters which

re also radicals, they have no further internal structures, therefore

heir hierarchical radical structures are just themselves. 

.3. Ideographic description sequence (IDS) 

The bottom of Fig. 1 (a) shows the IDS sequence of the exam-

le Chinese character, which is converted from the hierarchical tree

tructure by following a depth-first traversal order. We decompose

hinese characters into IDS sequences using the strategy in cjkvi-

ds 1 . All 27,533 Chinese characters in the GB18030 standard can

e decomposed into 485 radicals and 10 radical structures in IDS

ormat, which is a more compact and more reasonable represen-

ation than the one introduced in our previous paper [20] as we

mit many strange radical structures. Fig. 2 shows the statistical

nformation about the decomposition of the 27,533 Chinese charac-

ers, and Fig. 2 (a) illustrates how many Chinese characters are re-

ated to each radical structure. The left-to-right structure (LR) and

bove-to-below structure (AB) dominate the Chinese character set,

s they are basic and common structures. Fig. 2 (b) illustrates how

any Chinese characters are related to each radical. For brevity,

e show only the 8 most common radicals on the left. Some low-

requency radicals are included in the complete set, which intro-

uces difficulties for RAN. We present 5 examples that appear only

nce in the radical set on the right. These low-frequency radicals

re usually related to rarely used Chinese characters. Our generated

DS sequence of the 27,533 Chinese characters is publicly avail-

ble 2 . 

. Radical analysis network 

As illustrated in Fig. 3 , by considering Chinese characters as

inearized hierarchical radical structures (IDS sequences), the pro-

osed RAN can successfully recognize a Chinese character by first

redicting its IDS sequence and then selecting the output charac-

er category by searching in the predefined IDS dictionary to find

he character category whose IDS sequence is most like the pre-

icted IDS sequence. The IDS dictionary links the 27,533 Chinese

haracters with specific IDS sequences. If the input image belongs

https://github.com/cjkvi/cjkvi-ids
https://github.com/JianshuZhang
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Fig. 2. (a) Number of Chinese characters with a specific structure; (b) Number of 

Chinese characters with a specific radical. 

Fig. 3. Overall architecture of RAN: 1. The input character image is first fed into 

a CNN encoder to be transformed into visual features; 2. An RNN equipped with 

an attention model is employed as a decoder, the attention model lets the decoder 

focus on useful parts of the visual features; 3. An IDS sequence is then predicted 

by the decoder symbol by symbol; 4. RAN finally outputs a character category by 

searching in the IDS dictionary to find a character category whose IDS sequence is 

most like the predicted IDS sequence. 
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to a character category that is not observed during training but is

included in the IDS dictionary, RAN recognizes it in the same man-

ner as that for observed character categories. If the input image is

a newly created character category that is not included in the cur-

rent IDS dictionary, RAN can still predict the IDS sequence. All we
eed to do is update the IDS dictionary; there is no need to collect

raining samples of that category or retrain the models. 

Regarding the network architecture, RAN is an improved ver-

ion of the attention-based encoder-decoder framework. [47] re-

ently showed that a caption sequence can be generated from

n image with an attention-based encoder-decoder framework.

he attention-based encoder-decoder framework was first pro-

osed in [48] for machine translation. This framework has been

xtensively applied to many other applications, including speech

ecognition [49,50] , image captioning [51,52] and formula recogni-

ion [53–55] . 

.1. Dense encoder 

As shown in Fig. 3 , RAN consists of an encoder and a decoder.

epending on the a priori knowledge of convolution, the CNN has

roven to be a powerful model for image processing. Therefore, we

rst employ a CNN as the encoder to convert input character im-

ges to high-level visual features. Moreover, the convolutional lay-

rs in the CNN encoder are configured as densely connected layers

n DenseNet [21] . 

The main idea of DenseNet is to use the concatenation of the

utput feature maps of the preceding layers as the input of the

ucceeding layers. As DenseNet is composed of many convolutional

ayers, let H l ( · ) denote the convolution function of the l th layer;

hen, the output of layer l is represented as: 

 l = H l ([ a 0 ; a 1 ; . . . ; a l−1 ]) (1)

here a 0 , a 1 , . . . , and a l denote the output features produced in

ayers 0 , 1 , . . . , and l , and “; ” denotes the concatenation opera-

ion of feature maps, the number of output channels of each con-

olutional layer H l is called growth rate k . This iterative connec-

ion enables the network to learn shorter interactions across dif-

erent layers and reuse features computed in the preceding layers.

n this manner, DenseNet strengthens feature extraction and facili-

ates gradient propagation. 

An essential component of convolutional networks is the pool-

ng layers, which can increase the receptive field and improve in-

ariance. However, the pooling layers disenable the concatenation

peration as the size of the feature maps changes. Additionally,

enseNet is inherently memory demanding because the number

f interlayer connections increases quadratically with depth. Con-

equently, DenseNet is divided into multiple densely connected

locks, and we employ compression layers between two contigu-

us dense blocks to reduce memory consumption. We illustrate the

etailed architecture of the proposed dense encoder in Fig. 6 in

ection 6.1 . Rather than extracting features after a fully connected

ayer, the dense encoder contains only convolutional, pooling and

ctivation layers, acting as a fully convolutional neural network,

hich enables the subsequent decoder to selectively focus on cer-

ain pixels of an image by choosing specific portions from the ex-

racted visual features. 

We introduce the high-level visual features extracted by the

ense encoder as A , which is a three-dimensional array of size

 × W × C , where H denotes the height, W denotes the width

nd C denotes the output channels. Therefore, the features A can

e seen as a grid of H × W elements, where each element is a C -

imensional vector corresponding to a local region of the image:

 = { a 1 , . . . , a H×W 

} , a i ∈ R 

C . 

.2. Decoder with attention 

After extracting the visual features from the input images, the

ecoder of RAN begins to generate the IDS sequence. The IDS

equence is denoted as Y = { y 1 , . . . , y T } , y i ∈ R 

K , where K is the

umber of symbols in the radical vocabulary, which includes 485
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asic radicals and 10 spatial structures, and T is the length of the

DS sequence. Note that the length of the IDS sequence is variable;

e have to predict the output sequence one symbol at a time. 

Intuitively, the entire input image is not required to predict

ach radical or structure; only related pixels need to contribute.

herefore, we employ an attention mechanism to address the prob-

em of alignment and to let the decoder know which part of the

nput image is suitable for generating the next predicted radical or

tructure. For example, in Fig. 3 , the purple, blue and green rect-

ngles denote three symbols, with the red color representing the

ttention probabilities of each radical or structure (a darker red

olor denotes a higher probability). When predicting the above-to-

elow structure (green rectangle), the attention model can auto-

atically focus on the area between two vertical radicals, indicat-

ng an above-to-below direction, and the alignment of the radicals

orresponds to human intuition. 

.2.1. Gated recurrent units (GRUs) 

We employ a GRU [56] , an improved version of the simple RNN

hat can alleviate the vanishing and exploding gradient problems,

s the decoder. The GRU decoder is also implemented with the

atch normalization function. Given the input x t , the GRU output

 t is computed by: 

 t = GRU ( x t , h t−1 ) (2) 

nd the GRU function can be expanded as follows: 

 t = σ ( W xz BN ( x t ) + U hz h t−1 ) (3)

 t = σ ( W xr BN ( x t ) + U hr h t−1 ) (4)

˜ 
 t = ReLU ( W xh BN ( x t ) + U rh ( r t � h t−1 )) (5)

 t = (1 − z t ) � h t−1 + z t � ˜ h t (6) 

here σ is the sigmoid function, BN is the batch normalization

unction and � is an elementwise multiplication operator. z t , r t 
nd 

˜ h t are the update gate, reset gate and candidate activation, re-

pectively. For brevity, we use GRU to represent the GRU layer in

q. (2) and do not expand it. 

.2.2. First GRU layer 

The attention-based decoder adopts two unidirectional GRU lay-

rs and an attention model to learn an alignment between the out-

ut symbol y t and the input image X in each decoding time step

 . Since we have converted the input image into high-level visual

eatures through a dense encoder, the attention model is employed

o learn the alignment between the output symbol y t and the fea-

ures A . Let s t denote the output state of the decoder at time step

 . Since we do not have y t when we want to compute the attention

robabilities between y t and A , standard attention mechanisms re-

lace y t with the previous decoder state s t−1 to compute the at-

ention probabilities. By contrast, in this paper, we utilize ˆ s t rather

han s t−1 to compute the attention probabilities because we be-

ieve that s t−1 , the decoder state of the previous step, is an inaccu-

ate representation of the current alignment information. We call

  t the prediction of the current GRU hidden state, which is com- 

uted by the previous ground-truth symbol y t−1 and the previous

ecoder state s t−1 : 
  t = GRU ( y t−1 , s t−1 ) (7) m
.2.3. Coverage-based attention 

Before utilizing ˆ s t and A to compute the attention probabilities,

e must introduce a coverage vector F , which is computed based

n the summation of all past attention probabilities. The vector is

omputed by feeding the past attention probabilities into a convo-

utional layer: 

 = Q ∗
t−1 ∑ 

j=1 

α j (8) 

ere, Q denotes a convolution layer, and αj denotes the attention

robabilities at decoding step j . The coverage vector F is employed

o address the difficulty of the standard attention mechanisms,

amely, the lack of coverage [57] , which usually leads to problems

ith over-parsing (some radicals are decoded more than once) and

nder-parsing (some radicals are never decoded). The past align-

ent information contained in F helps the attention model know

hich part of the input image has been attended and ensures that

ach part is attended once and only once. We initialize F as a zero

ector. Then, we compute the energy coefficients between ˆ s t and

 given F using the following multilayer perceptron: 

 ti = νT 
att tanh ( W att ̂  s t + U att a i + U f f i ) (9) 

ere, e ti denotes the energy of feature vector a i (elements of A )

n decoding step t , and f i denotes the elements of F . Let n and n ′ 
enote the dimensions of GRU decoder and attention, q denotes

he number of output channels of convolution layer Q , νatt ∈ R 

n ′ ,
 att ∈ R 

n ′ ×n , U att ∈ R 

n ′ ×C , U f ∈ R 

n ′ ×q . We can obtain the attention

oefficients αti by feeding e ti into a softmax function. A context

ector c t is computed by the weighted summation of all feature

ectors. We call c t the context vector since it contains the overall

nformation of the input image. However, as the weights αti denote

he alignment probabilities, c t includes the information of only the

seful part of the image rather than the entire image: 

ti = 

exp ( e ti ) ∑ H×W 

k =1 exp ( e tk ) 
c t = 

H×W ∑ 

i =1 

αti a i (10) 

.2.4. Second GRU layer 

We finally utilize the second GRU layer to calculate the current

utput state of decoder s t given c t and ˆ s t : 

 t = GRU 

(
c t , ̂  s t 

)
(11) 

The probability of each predicted symbol is computed by the

ontext vector c t , the current GRU hidden state s t and the one-hot

ector of the previous ground-truth symbol y t−1 using the follow-

ng equation: 

 ( y t | y t−1 , X ) = g ( W o h ( E y t−1 + W s s t + W c c t ) ) (12)

here g denotes a softmax activation function over all the symbols

n the vocabulary, and h denotes a maxout activation function. Let

 

′ denote the dimension of embedding, W o ∈ R 

K× m ′ 
2 , W s ∈ R 

m 

′ ×n ,

 c ∈ R 

m 

′ ×C , and E denotes the embedding matrix. 

. Network architecture for radical-based Chinese text 

ecognition 

As introduced previously, RAN can be easily extended from rec-

gnizing single characters to recognizing text lines. As illustrated

n Fig. 4 , by inserting an end-of-character (eoc) sentinel between

very two Chinese character IDS sequences, RAN can predict the

DS sequence of the whole text line. We then transfer each IDS

equence, divided by eoc sentinels, into its Chinese character cat-

gory using the IDS dictionary. To achieve better performance for

obust text line recognition, we improve the encoder by employ-

ng a denseRNN encoder with HSV representations and exploit a

ultihead coverage-based attention mechanism. 
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Fig. 4. Illustration of the extension of RAN for text line recognition. The method 

includes a denseRNN encoder and a GRU decoder equipped with multihead cover- 

age attention (MHCA). An end-of-character (eoc) flag is added between every two 

adjacent IDS sequences for separation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5. Illustration of the benefits of HSV channels. Two text line images are difficult 

to recognize via RGB representations, but the representation can be improved by 

using HSV channels. The red “H” denotes that the image is the visualization of the 

H channel, while the red “S” denotes the S channel. The groundtruth, recognition 

results without HSV channels and recognition results with HSV channels are shown 

right behind “Label”, “RGB” and “HSV”. 

Fig. 6. Detailed architecture of the dense encoder, which we call the DenseNet135 

encoder since it includes a total of 135 convolutional layers. 

t  

t  

w  

T  

i  

f  

I  

t  

t  

t  

r  

i  

h

F  

e  

α  

H  

fi  
5.1. DenseRNN encoder with HSV representations 

5.1.1. DenseRNN encoder 

The features extracted from the CNN are directly used for char-

acter recognition, whereas a stack of RNNs, called the denseRNN

architecture, is built on top of the convolutional layers to capture

the context information in the text line for text line recognition.

As shown in Eq. (2) , a GRU is a parameterized RNN function that

recursively maps an input vector and a hidden state to a new hid-

den state; hence, the GRU can capture the historical context. Ac-

cordingly, we pass the CNN features through GRU layers and use

the output of the GRU layers as the new features A . 

The extracted CNN features form a grid V of size H × W × C ,

where H denotes the number of rows, W denotes the number

of columns and C denotes the number of feature maps. We first

split grid V into H rows V = [ V 1 , . . . , V H ] 
T , where each V h is a se-

quence of length W , V h = [ v h 1 , . . . , v hW 

] , v hw 

∈ R 

C . The new fea-

ture grid A = [ A 1 , . . . , A H ] 
T is created from V by running the GRU

function across each row. Recursively for all A h = [ a h 1 , . . . , a hW 

] ,

a hw 

= GRU 

(
v hw 

, a h (w −1) 

)
. Nevertheless, a unidirectional GRU can-

not utilize the future context. To implement a bidirectional GRU,

we pass the input vectors through two GRU layers running in op-

posite directions and concatenate their hidden state vectors so that

the new features A can capture both historical and future informa-

tion. Features that can capture context information are crucial for

the good performance of RAN in text line recognition, as some am-

biguous characters are easier to distinguish when observing their

contexts. The denseRNN can be jointly trained in a unified network

and can operate on text line images of arbitrary size by traversing

from start to end. 

5.1.2. HSV representation 

For Chinese character recognition in web images, the back-

ground is sometimes excessively noisy, and the input text line is

difficult to recognize in RGB representations, even for human eyes,

as shown in the examples in Fig. 5 . Therefore, in addition to RGB

representations, we use HSV representations to improve the vis-

ibility of text in web images. HSV representations include three

channels, hue (H), saturation (S) and value (V), which are designed

to more closely align with the way that humans perceive color-

making attributes. As illustrated in Fig. 5 , when RGB channels pro-

vide an ambiguous representation, HSV channels can give a much

clearer visual image, leading to much better recognition results. 

5.2. Multihead coverage-based attention (MHCA) 

Multihead attention was first explored in [58] for machine

translation, and we extend it to improve our RAN’s performance on
ext line recognition tasks. Specifically, MHCA extends the conven-

ional coverage-based attention mechanism to have multiple heads,

here each head can generate a different attention distribution.

his process enables each head to play a different role in attend-

ng to the encoder output, which we hypothesize makes it easier

or the decoder to learn to retrieve information from the encoder.

n the conventional, single-head architecture, the model relies on

he encoder to provide clear signals about the sentences so that

he decoder can obtain information via attention. We hypothesize

hat MHCA reduces the burden on the encoder and can distinguish

adicals from noisy backgrounds when the encoded representation

s less than ideal. The MHCA employs M independent attention

eads, each of which computes a context vector c m 

t , 1 ≤ m ≤ M: 

 = Q ∗
∑ t−1 

l=1 
αl (13)

 

m 

ti = νm 

att 
T 

tanh ( W 

m 

att ̂  s t + U 

m 

att a i + U 

m 

f f i ) (14)

m 

ti = 

exp ( e m 

ti 
) 

∑ H×W 

k =1 exp ( e m 

tk 
) 

c m 

t = 

H×W ∑ 

i =1 

αm 

ti Z 

m a i (15)

ere, αl is the attention map of size H × W × M ; the convolution

lter Q has M input channels and q output channels. n and n ′ de-
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Fig. 7. Recognition performance of RAN for 17,533 unseen Chinese character cate- 

gories with respect to the number of Chinese characters in the training samples. 
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5  
ote the dimensions of the GRU decoder and original single-head

ttention. Let C 
′ 

denote the dimensions of the new feature vec-

ors A ; then, νm 

att ∈ R 

n ′ 
M , W 

m 

att ∈ R 

n ′ 
M 

×n , U 

m 

att ∈ R 

n ′ 
M 

×C 
′ 
, U 

m 

f 
∈ R 

n ′ 
M 

×q ,

 

m is the projection matrix of each head, Z 

m ∈ R 

C 
′ 

M 
×C 

′ 
. The fi-

al context vector is computed by concatenating the individual

ummaries: c t = [ c 1 t ; c 2 t ; · · · ; c M 

t ] . In our experiments, we propose

 heads ( M = 4 ). 

. Training and testing procedures 

.1. Training 

During the training procedure, RAN aims to maximize each pre-

icted symbol probability by utilizing cross-entropy as the ob-

ective function, O = − ∑ T 
t=1 log p( w t | y t−1 , X ) , where w t represents

he ground-truth symbol at time step t , y t−1 denotes the one-hot

ector of the previous ground-truth symbol, X denotes the input

haracter image, and T denotes the length of the output sequence. 

The details of our dense encoder are presented in Fig. 6 . The

eft part of Fig. 6 shows that we employ three dense blocks in the

ain branch. Before entering the first dense block, a 7 × 7 con-

olution (stride is 2 × 2) with 48 output channels is performed

n the input expression images, followed by a 2 × 2 max pooling

ayer. We use 1 × 1 convolution followed by 2 × 2 average pool-

ng as compression layers to reduce the feature maps by half. The

ight part of Fig. 6 shows the details of each dense block. Each

ense block is labeled “DenseB” because we use bottleneck lay-

rs to improve the computational efficiency, i.e., a 1 × 1 convo-

ution is introduced before each 3 × 3 convolution to reduce the

nput to 4 k feature maps. The input of each bottleneck convolu-

ion is the concatenation of all previous 3 × 3 convolution output

eature maps. The growth rate k = 24 and the depth (number of

onvolution layers) of each block D = 44 , which means each block

as 22 1 × 1 convolution layers and 22 3 × 3 convolution lay-

rs. A batch normalization layer and a ReLU activation layer are

laced consecutively after each convolution layer. We call the en-

oder DenseNet135 since a total of 135 convolution layers are in-

luded in the framework. For the denseRNN encoder architecture,

he CNN part of denseRNN has the same architecture as that of

enseNet135, the RNN part employs a stack of two bidirectional

RU layers, with each layer containing 256 forward GRU units and

56 backward GRU units ( C 
′ = 512 ). 

The decoder adopts 2 unidirectional GRU layers, and each layer

as 256 forward GRU units. The embedding dimension m 

′ and GRU

ecoder dimension n are set to 256. The attention dimension n ′ 
nd the output channels of coverage convolution q for the single-

ead coverage attention model are set to 512. In the multihead

overage attention model, since we employ 4 heads, the attention

imension for each head is 128. We employ the adadelta algo-

ithm [59] for optimization. The adadelta hyperparameters are set

o ρ = 0 . 95 and ε = 10 −6 . 

.2. Testing 

During testing, RAN aims to generate the most likely IDS se-

uence given the input image: 

ˆ  = arg max 
y 

log P ( y | x ) (16) 

nlike for the training procedure, we do not have the ground

ruth of the previous predicted symbol when predicting the IDS se-

uence. To alleviate the problem of mismatch between the training

nd predicting procedures, a simple left-to-right beam search algo-

ithm [60] is employed to implement the prediction procedure. In

ach time step, we maintain a set of 5 partial hypotheses. Each
artial hypothesis in the beam is expanded with every possible

ymbol, and only the 5 most likely beams are kept. The predic-

ion procedure for each hypothesis ends when the output symbol

eaches the end of the sequence. After successfully predicting the

DS sequence, we recognize the input Chinese character by search-

ng the predefined IDS dictionary to find the character category

hose IDS sequence is most like the predicted IDS sequence. We

efine the similarity between two IDS sequences using the mini-

um edit distance. 

The adoption of an ensemble beam search procedure [61] is

ntuitive for improving performance. We first train N 

e RAN mod-

ls on the same training set with different initialized parameters.

hen, we average their prediction probabilities to predict the cur-

ent output symbol. 

. Experiments on Chinese character recognition 

.1. Experiments on unseen character recognition 

In this section, we first demonstrate the effectiveness of RAN

or recognizing unseen Chinese character categories. The GB18030

tandard includes 27,533 Chinese characters that are composed of

nly 485 radicals. We choose 10,0 0 0 character categories as the

raining set and use the other 17,533 character categories as the

esting set. Clearly, the Chinese character categories in the testing

et have not been seen during training. Both the training and test-

ng inputs use Chinese character images in Song font style. The in-

ut images have the size of 32 × 32. Each Chinese character cate-

ory only has one sample. 

.1.1. Accuracy versus character categories 

Note that traditional character-based methods fail to recognize

nseen Chinese characters, which means that their accuracies are

% in this experiment. However, RAN can recognize the unseen

haracters by predicting their IDS sequences and searching for the

orrect character categories in the IDS dictionary. We increase the

raining set from 1,0 0 0 to 10,0 0 0 Chinese characters to see how

any Chinese characters are sufficient for training RAN to rec-

gnize the remaining unseen 17,533 characters. We illustrate the

erformance in Fig. 7 . RAN (using DenseNet135 encoder) trained

n 2,0 0 0 Chinese characters successfully recognizes 59.2% of the

7,533 unseen Chinese characters, and RAN trained on 10,0 0 0

hinese characters achieves an accuracy of 91.5%, which means

hat 10,0 0 0 Chinese characters can help RAN recognize more than

6,0 0 0 of the unseen Chinese character categories. Approximately

00 Chinese characters can be used to sufficiently cover the 485
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Fig. 8. Attention probabilities are shown in red: a darker red denotes a higher 

probability and a lighter red denotes a lower probability. (a) Attention visualiza- 

tion for recognizing 10 common radical structures; symbols below the images are 

the predicted radical structures. (b) Attention visualization for recognizing a Chi- 

nese character instance; symbols below the images are the predicted radicals or 

structures. 

Fig. 9. (a) Recognition of newly created Chinese characters from the internet; (b) 

Recognition of rarely used ancient Chinese characters. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 10. (a) Radical-level error rate; each point describes the rate of all radicals 

within a specific range of appearance frequency that are substituted or deleted in 

the output IDS sequences. The range on the horizontal axis denotes the number 

of times that these radicals appear in the Chinese character training set. Approxi- 

mately 100 radical categories are included in each range. (b) Character-level accu- 

racy with respect to the length of the IDS sequences. Approximately 3,0 0 0 character 

categories are included in each range. 
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Chinese radicals and 10 spatial structures. However, our experi-

ments start with 1,0 0 0 training characters because RAN has dif-

ficulty converging when the training set is too small. 

By comparing the results of RAN using the proposed

DenseNet135 encoder and RAN using the proposed VGG encoder

in [20] , we clearly see better visual features extracted from Chinese

character images can help improve the zero-shot learning ability of

RAN. 

7.1.2. Attention visualization 

Unlike conventional radical-based Chinese character recognition

methods, RAN employs an attention model to segment radicals

and identify the structures among the segmented radicals. Here,

we prove that the attention model can achieve human-like radical

alignment and structure detection through attention visualization.

In Fig. 8 (a), we present 10 examples of how RAN identifies struc-

tures for every pair of radicals. The red color in the attention maps

represents the spatial attention probability, where a darker red in-

dicates a higher attention probability and a lighter red indicates a

lower attention probability. Taking the left-to-right structure as an

example, the attention model focuses on the space between the

two horizontal radicals, which implicitly indicates a left-right di-
ection. When identifying the above-to-below structure, the atten-

ion model focuses on the space between the two vertical radicals,

hich implicitly indicates an above-to-below direction. The focus

f attention corresponds well to human intuition when identify-

ng other radical structures. More specifically, in Fig. 8 (b), we show

he step-by-step process of RAN learning to recognize an unseen

hinese character in an IDS sequence. When encountering basic

adicals, the attention model generates an alignment that strongly

orresponds to human intuition and successfully predicts the rad-

cal structures “LR” and “AB” when a left-to-right direction and an

bove-to-below direction are detected, respectively. 

.1.3. Examples of zero-shot learning 

Fig. 9 illustrates how RAN can be used to recognize newly cre-

ted Chinese characters and rarely used Chinese characters through

ero-shot learning. For example, Fig. 9 (a) shows two novel Internet

hinese characters: “Duang”, which was created by Jackie Chan,

eaning many special effects in film, and “Qiong”, meaning being

oor due to too many expenses. The generated hierarchical radical

tructures correspond well to human intuition. Fig. 9 (b) shows two

arely used ancient characters. Although these Chinese characters

ave not been previously observed, RAN can successfully recognize

hem by adding the new correspondence between IDS sequences

nd related characters into the new IDS dictionary. 

.1.4. Error analysis 

Note that nearly 1,490 Chinese characters are still misrecog-

ized when RAN is trained on 10,0 0 0 Chinese characters. In Fig. 10 ,

e analyze the cause of incorrect recognition. We first analyze the

requency of the radicals that fail to be recognized (including sub-

titution errors and deletion errors). As introduced in Section 3 ,

lthough RAN helps alleviate the problem of recognizing low-

requency Chinese characters, some low-frequency radicals still

ause difficulties for few-shot learning. Fig. 10 (a) shows that rad-

cals that appear fewer than 10 times are highly likely to be in-

orrectly recognized due to lack of learning. By contrast, for high-

requency radicals, the error rate is approximately 2% because they

re shared by different Chinese characters in the training sam-

les and have been learned sufficiently during training. Another

nteresting result is the distribution of accuracy with respect to

he length of the IDS sequences. We expect the model to perform

oorly on Chinese characters with longer IDS sequences since the

haracters that need to be decomposed into longer IDS sequences

re usually related to more complicated structures and composed

f more radicals, hence increasing the difficulty of structure detec-

ion and radical alignment. Fig. 10 (b) illustrates this behavior. 
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Table 1 

Comparison of the performance of powerful image classifiers and 

RAN on the CTW test database. We divide the Chinese character 

categories into 4 subsets based on the appearance frequency in the 

training set. OOV represents out-of-vocabulary, i.e., character cate- 

gories that are not included in the training set; < 20 indicates 

character categories that appear fewer than 20 times; < 100 in- 

dicates character categories that appear fewer than 100 times; HF 

stands for high frequency and includes character categories that ap- 

pear more than 100 times; and ALL includes all character categories 

in the testing set. 

Frequency OOV < 20 < 100 HF ALL 

Categories 70 328 573 1044 2015 

Samples 182 946 2892 48745 52765 

AlexNet 0% 24.4% 47.3% 77.1% 74.3% 

ResNet50 0% 24.4% 53.5% 81.3% 78.5% 

ResNet152 0% 22.2% 55.5% 81.6% 78.8% 

DenseNet135 0% 25.3% 55.8% 82.9% 80.1% 

RAN 19.6% 35.2% 59.2% 84.3% 81.8% 
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Fig. 11. (a) Failed examples of zero-shot learning for RAN in the CTW testing set; 

(b) Visualization of 6 difficult attributes in the CTW database; each attribute shows 

2 examples. 

Table 2 

Comparison of the recognition performance of the DenseNet im- 

age classifier and RAN on the CTW test database with respect to 

7 attributes: clean, occluded, complex background, distorted, 3D 

raised, wordart characters and handwritten characters. 

Attributes Training samples DenseNet135 RAN 

Clean 273831 86.5% 87.2% 

Occluded 101393 67.6% 70.7% 

Background 218560 76.4% 78.7% 

Distorted 192481 76.3% 77.7% 

3D raised 199066 77.6% 80.6% 

Wordart 65983 68.9% 72.7% 

Handwritten 6661 59.4% 68.2% 
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.2. Experiments on low-frequency character recognition 

In this section, we do experiments to illustrate the effective-

ess of RAN for recognizing low-frequency Chinese characters and

ompare RAN with powerful image classifiers. To explore the prac-

ical value of RAN, we investigate the performance on a task on

he recognition of Chinese character in the wild. 

.2.1. CTW database 

Our experiments are performed on the CTW dataset [62] , which

ontains Chinese character images collected from street views. The

ataset is challenging due to its diversity and complexity. It con-

ains planar text, raised text, text in cities, text in rural areas, text

nder poor illumination, distant text, partially occluded text, etc.

oreover, many low-frequency Chinese character categories are in-

luded. Because the official testing set is not released, we use the

fficial validation set as our testing set for analysis. 

The CTW database contains 3,580 Chinese character categories

ith 760,107 instances for training and 2,015 Chinese character

ategories with 52,765 instances for testing. All input images have

he size of 32 × 32. Table 1 presents a detailed comparison of RAN

nd other character-based methods on the CTW database. We di-

ide all testing character categories into 4 subsets based on the

ppearance frequency in the CTW training set to clearly demon-

trate the effectiveness of RAN for few-shot learning. A total of 70

haracter categories are not observed in the training set, and 328

haracter categories have fewer than 20 training samples. There-

ore, the recognition of these Chinese characters is a few-/zero-shot

earning problem, which is difficult due to the limited number of

raining samples. 

.2.2. Comparison to character-based classifiers 

We tested several state-of-the-art character-based classifiers,

amely, AlexNet [63] , ResNet50 [64] , and ResNet152, using Pytorch.

o ensure a fair comparison, we also train a DenseNet classifier,

amed DenseNet135, with the same CNN architecture as that of

he dense encoder of RAN. Compared with the 0% OOV recognition

f DenseNet135, the 19.6% recognition rate of RAN proves that RAN

aintains the zero-shot learning ability in natural scenes. More-

ver, RAN improves low-frequency character recognition ( < 20)

y nearly 10% and improves the recognition of characters that ap-

ear fewer than 100 times in the training set ( < 100) by nearly

%. The recognition of RAN for unseen Chinese characters (OOV)

nd low-frequency Chinese characters ( < 20) in natural scenes

s not as good as that for printed Chinese characters. We show

everal failed instances of zero-shot learning in Fig. 11 (a); these
nstances are incorrectly recognized because they are challenging

ven for humans. 

RAN can also improve the recognition rate of high-frequency

hinese characters by approximately 1.4%. We believe that the im-

rovement is due to the following: (i) RAN decreases the size

f the output dictionary, reduces the redundancy among similar

hinese characters and makes the model easier to train properly;

nd (ii) RAN increases the robustness of the recognition model to

oisy and complex images in natural scenes because radicals can

e shared by many Chinese characters. More variation and trans-

ormation information can be learned if the training objective in-

tances are radicals rather than characters. 

.2.3. Analysis of robustness 

To demonstrate the robustness of RAN in natural scenes, Table 2

ompares the performance of DenseNet135 and RAN with respect

o 7 attributes, where clean means that there is no noise in the im-

ge and that the character in the image has no transformation. We

isualize the occluded, complex background, distorted, 3D raised,

ordart and handwritten attributes in Fig. 11 (b). The handwritten

hinese characters are the most difficult to recognize because they

re more likely to ignore the internal structures of Chinese charac-

ers. The recognition results of DenseNet135 and RAN shows that

AN achieves only a 0.7% improvement on the clean attribute since

he clean character images are not challenging and the number of

ow-frequency Chinese characters is small. However, RAN achieves

onsiderable improvement compared with DenseNet135 on the dif-
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Table 3 

Detailed analysis of the Chinese character distribution in the ICPR MTWI 

2018 database. We divide the testing set into 4 subsets based on the fre- 

quency of appearance of the Chinese characters in the text lines in the 

training set. We report the number of text lines, the number of Chinese 

character instances and the number of Chinese character categories in 

each subset. 

Set Line samples Char samples Char categories 

Train 76130 298550 4010 

Test OOV 120 134 76 

< 20 921 1180 597 

< 100 2346 3469 732 

HF 5801 19256 683 

ALL 6129 24039 2088 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4 

Detailed comparison of the text line recognition performance of CTC, 

character-based encoder-decoder and RAN. We divide the MTWI test- 

ing set into 4 subsets: out-of-vocabulary (OOV), < 20, < 100 and 

high frequency (HF). CER is the character error rate; SACC is the whole 

sentence accuracy. 

System CRNN SCCM Encoder-Decoder RAN 

CER OOV 100% 100% 100% 80.6% 

< 20 69.2% 67.6% 65.5% 44.9% 

< 100 32.7% 33.5% 31.4% 21.3% 

HF 12.2% 12.9% 10.2% 9.5% 

ALL 18.5% 19.0% 16.5% 13.3% 

SACC OOV 0% 0% 0% 5% 

< 20 24.7% 25.1% 26.9% 39.4% 

< 100 41.9% 40.2% 45.8% 57.1% 

HF 64.2% 62.9% 66.9% 68.2% 

ALL 58.8% 57.9% 61.8% 67.3% 
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ficult attributes, especially wordart and handwritten. We believe

that the improvement is because the wordart and handwritten

training samples are insufficient for training a character-based clas-

sifier, whereas for RAN, a radical can be shared by several Chinese

characters. Hence, radicals are several times more frequent than

characters in the training instances of wordart and handwritten,

leading to improvements of 3.8% on wordart and 8.8% on hand-

written. 

Among these attributes, handwritten is a special one. More

specifically, in [22,23] , we have a detailed discussion about how

well RAN performs on handwritten Chinese character recognition.

Since different people have different writing styles and writing

habits, handwriting input brings much ambiguities and usually

loses radicals. In experiments, RAN performs bad on recognizing

unseen handwritten Chinese characters because it cannot detect

radicals when radicals are missing in handwriting input. While for

recognizing seen handwritten Chinese characters, the missing rad-

icals will not have much influence as RAN can rely on language

model to predict the missing radical. 

8. Experiments on Chinese text line recognition 

8.1. Text dataset 

8.1.1. ICPR MTWI-18 

The ICPR MTWI-18 text line recognition challenge is one of the

largest published databases for Chinese text line recognition. The

database of the ICPR MTWI challenge is collected from web im-

ages and includes various font styles and complex backgrounds.

Although the database includes English characters, Chinese char-

acters are dominant. The official training set contains 128,210 text

lines, with Chinese characters included in 76,130 text lines. A to-

tal of 4,010 Chinese character categories with 298,550 character

instances are contained in the training set. As the official testing

set is not released, we use the official validation set as our testing

set, which includes 2,088 Chinese character categories with 24,039

character instances. Similar to the analysis of the CTW database,

we present a detailed illustration of OOV and low-frequency Chi-

nese characters in the MTWI database in Table 3 . We resize all

text line images by turning the shorter length of images into 32

and keeping the ration between height and width unchanged. 

As shown in Table 3 , 76 OOV Chinese character categories with

134 Chinese character instances are included in 120 text lines. Ad-

ditionally, 597 Chinese character categories appear fewer than 20

times in the training set, with 1,180 character instances in 921 text

lines. Therefore, the most challenging part of this task is that it

requires a system with zero-/few-shot learning ability since nearly

11% of the testing text lines contain low-frequency Chinese charac-

ters. Most participants in this competition utilize character-based

text line recognition methods, and their deep learning models fail

to recognize these low-frequency Chinese characters if they use
nly the official training database. As a result, RAN’s zero-/few-shot

earning ability showed great power on this challenge and helped

s win first place in the ICPR MTWI 2018 challenge. 

.1.2. RCTW-17 

RCTW-17 is a challenge that involves reading Chinese text found

n the real world [18] . There are 44,009 text line images in the

raining set. The images are collected from street views, posters,

enus, indoor scenes and screenshots. Because the testing set is

ot released by the official organization team and there is no of-

cial validation set, we cannot analyze the frequency of Chinese

haracter categories. However, an overall recognition performance

s obtained to help us further prove the superiority of the proposed

AN. In addition, RCTW-17 is an end-to-end text line recognition

roblem, which means that we need to detect text lines from large

mages before recognizing text lines. 

.2. Evaluation of RAN on ICPR MTWI-18 

.2.1. Metric 

In Table 4 , we compare RAN with other character-based text

ine recognition methods on CER and SACC. Here, CER and SACC

ount only the performance of Chinese characters, regardless of

nglish or other characters. 

CER is the character error rate. As we count the errors of spe-

ific characters, there are no insertion errors, and only substitution

nd deletion errors are included. For example, CER-OOV denotes

he results of the character error rate for recognizing OOV Chinese

haracters. 

SACC is the sentence accuracy rate. We count only correct sen-

ences containing specific characters. For example, SACC-OOV de-

otes the accuracy rate of whole text lines containing OOV Chinese

haracters. 

.2.2. Systems 

We compare RAN with the SCCM-CTC (sliding convolution char-

cter model), CRNN-CTC model and encoder-decoder (character-

ased encoder-decoder model). The SCCM model exploits the ar-

hitecture of [43] and the CRNN model exploits the architecture

f [42] , but we improve the model by increasing the number

f feature maps. We implement another 3-gram language model

rained on the official text database for SCCM and CRNN. The

ncoder-decoder model exploits the same architecture as RAN but

s modeled on the character level. Therefore, comparison of RAN

ith encoder-decoder provides an improved understanding of the

dvantage of RAN, as these methods are comparable. 

.2.3. Performance 

The character-based approaches fail to recognize text lines con-

aining OOV Chinese characters, leading to 0% SACC and 100% CER.
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Fig. 12. Two examples of text lines containing low-frequency Chinese characters 

(underlined and shown in red). The recognition results predicted by the proposed 

RAN and the character-based encoder-decoder are shown below the text line im- 

ages. 
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Table 5 

Comparison of average edit distance (AED) on 

the RCTW-17 testing set. Synthetic Data denotes 

whether the system used extra synthetic data 

for training. 

System( ∗) Synthetic data AED 

NLPR-PAL � 20.2 

SCUT-DLVC � 28.3 

CCFLAB × 32.1 

Baseline � 25.6 

SCCM × 26.5 

CRNN × 25.3 

Encoder-Decoder × 24.8 

RAN × 22.8 

Table 6 

Comparison of CER and SACC for both Chinese 

and other characters/texts (in %) and the time 

efficiency (in ms) on the MTWI testing set when 

appending the denseRNN encoder, MHCA and 

HSV channels to the proposed RAN system. ∗ in- 

dicates an ensemble model. 

System( ∗) CER SACC Time 

RAN 14.8% 63.1% 10.4 ms 

+ denseRNN 12.5% 66.6% 11.3 ms 

+ MHCA 11.7% 68.1% 11.6 ms 

+ HSV 11.1% 68.6% 11.6 ms 

N  

n  

e  

o  

s

8

8

 

M  

o  

t

 

e  

t  

c  

o  

e  

f

 

s  

i  

m  

w

 

a  

1  

o  

b  

a  

r

8

 

b  
y contrast, RAN can recognize unseen Chinese characters if the

adicals have already been seen, resulting in an improvement of

9.4% on CER and an improvement of 5% on SACC. By comparing

he CER of the encoder-decoder and RAN on high-frequency Chi-

ese characters, we can see that the proposed RAN still achieves

emarkable improvement since RAN is more robust to complex

ackgrounds and character variation than the character-based ap-

roaches. RAN’s advantage of recognizing low-frequency Chinese

haracters is clearly observed by comparing the results of RAN and

he character-based encoder-decoder model on the < 20 and

 100 subsets. 

.2.4. Efficiency 

It is necessary to compare the recognition speed between RAN

nd Encoder-Decoder as we can see whether RAN will largely in-

rease the decoding time since it enlarges the length of decoding

teps. The efficiency of RAN and Encoder-Decoder are totally com-

arable because they have the same architecture and are imple-

ented using the same tool. RAN and Encoder-Decoder are imple-

ented with Theano 0.10.0 and an NVIDIA Tesla M40 24G GPU,

hile CRNN and SCCM are implemented with Pytorch. Here, we in-

roduce the average time cost of RAN and Encoder-Decoder for rec-

gnizing each character on all 15,288 text lines with a testing batch

ize of 1. Using the same denseRNN encoder, RAN needs 11.33 ms

n average and Encoder-Decoder needs 11.37ms on average, we can

ee RAN is even slightly faster than Encoder-Decoder. It is because

lthough RAN enlarges the length of decoding steps, at each step,

AN needs less computation cost when performing softmax op-

ration than Encoder-Decoder since the number of output classes

educes from 4,010 to 495. 

.2.5. Examples of few-shot learning 

Fig. 12 shows two examples of text lines containing low-

requency Chinese characters. The two characters in red are low-

requency characters that appear only a few times in the training

atabase. These characters belong to complex traditional Chinese

haracter categories that are rarely used in common scenes and

herefore unlikely to be in the training set. The character-based

ncoder-decoder approach fails to recognize these characters but

AN successfully recognizes them, as they are composed of basic

tructures whose essential radicals have already been learned. 

.3. Evaluation of RAN on RCTW-17 

Table 5 shows the experimental results on the RCTW-17

atabase. System NLPR-PAL, SCUT-DLVC, and CCFLAB are the top-

 systems in the challenge. Since their text detectors are different,

heir text recognition systems are not totally comparable. However,

e can see that using an extra synthetic dataset has a great effect

n the recognition performance because the training set is small

nd there are many unseen and low-frequency Chinese characters

n the testing set. 

For comparability, system SCCM, CRNN, encoder-decoder and

AN employed the same text detector, i.e., TextMountain [65] ,

hose detection performance is similar to the one used in the
LPR-PAL system. Because we did not use synthetic data, the cog-

ition performance of RAN is worse than that of NLPR-PAL. How-

ver, we can still see that RAN is the best method when using

nly official training data, indicating its superiority on zero/few-

hot learning tasks. 

.4. Evaluation of the proposed denseRNN, MHCA and HSV 

.4.1. Performance 

Table 6 shows the improvements via the denseRNN encoder,

HCA and HSV representations by appending each to the previ-

us system. We present the results of the ensemble models, and

he number of combined models N 

e is set to 5. 

First, the system “+ denseRNN” adds a new bidirectional GRU

ncoder immediately after the DenseNet encoder not only to ex-

ract high-level visual features from the input images but also to

apture the context information in the text lines. The input image

f the denseRNN encoder can be an arbitrary size. The denseRNN

ncoder decreases CER from 14.8% to 12.5% and improves SACC

rom 63.1% to 66.6%. 

Second, CER is further decreased from 12.5% to 11.7% after the

ingle-head coverage attention is replaced by MHCA, and SACC is

ncreased by 1.5%, which indicates that the attention model with

ultiple heads generates a better attention distribution than that

ith a single head. 

Finally, consideration of the HSV information of the color im-

ges embedded in the input channels decreases CER from 11.7% to

1.1%, which plays an important role in strengthening the ability

f RAN for distinguishing Chinese characters against very complex

ackgrounds. Also, comparing the recognition results of RAN with

nd without HSV information in Fig. 5 , it is clear to see that the

ecognition results are improved by using HSV channels. 

.4.2. Efficiency 

We also compare the computational costs of the above systems

y investigating their speeds. We present the average time cost
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for recognizing each character on all 15,288 text lines with a test-

ing batch size of 1. Appending the new bidirectional GRU encoder

after the DenseNet encoder slows the average test speed for one

text line by 5 ms despite the considerable improvement in recog-

nition performance. The MHCA and HSV representations have a

minimal effect on the test speed because the total number of pa-

rameters in the attention model does not change when switching

from a single head to multiple heads, and the computational cost

of adding 3 input channels to the first convolutional layer can be

ignored. 

9. Conclusion and future work 

In this study, we introduce a novel radical analysis network

for radical-based Chinese character and Chinese text line recog-

nition. The proposed model imitates the technique used by Chi-

nese learners to recognize Chinese characters. We demonstrate

through visualization and experimental results that RAN has the

ability to use few-/zero-shot learning to learn Chinese charac-

ters. Additionally, we present detailed comparisons to demon-

strate RAN’s advantages in the recognition of low-frequency char-

acter categories in both single-character recognition and text

line recognition. We also verify the practical value of RAN in

natural scenes. The released IDS dictionary will benefit related

studies. 

In future work, we plan to identify a better method for

the decomposition of Chinese characters, and we will improve

the attention model to increase the few-/zero-shot learning abil-

ity of RAN for recognizing low-quality Chinese character images.

We hope that by proposing a novel radical-based recognition

model, people will be encouraged to create more interesting and

personal Chinese characters, as novel characters can be easily

recognized. 
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