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Abstract
DIHARD III was the third in a series of speaker diarization
challenges intended to improve the robustness of diarization
systems to variability in recording equipment, noise conditions,
and conversational domain. Speaker diarization was evaluated
under two speech activity conditions (diarization from a refer-
ence speech activity vs. diarization from scratch) and 11 diverse
domains. The domains span a range of recording conditions and
interaction types, including read audio-books, meeting speech,
clinical interviews, web videos, and, for the first time, conversa-
tional telephone speech. A total of 30 organizations (forming 21
teams) from industry and academia submitted 499 valid system
outputs. The evaluation results indicate that speaker diarization
has improved markedly since DIHARD I, particularly for two-
party interactions, but that for many domains (e.g., web video)
the problem remains far from solved.
Index Terms: speaker diarization, speaker recognition, robust
ASR, noise, conversational speech, DIHARD challenge

1. Introduction
Speaker diarization, often referred to as “who spoke when”, is
the task of determining the number of speakers present in a con-
versation and their respective regions of activity in the given
recording. In addition to being an interesting technical chal-
lenge, it forms an important part of the pre-processing pipeline
for speech-to-text [1] and is essential for making objective mea-
surements of turn-taking behavior. Early work in this area was
driven by the NIST Rich Transcription (RT) evaluations [2],
which ran from 2002 to 2009. In addition to driving substantial
performance improvements, especially for meeting speech, the
RT evaluations introduced diarization error rate (DER), which
remains the principal evaluation metric in this area.

After the RT evaluation series ended in 2009, diarization
systems continued to improve (e.g., i-vectors, x-vectors, PLDA
scoring), though until quite recently there was no common
benchmark for diarization, resulting in a fragmented research
landscape where individual groups focused on different datasets
or domains (e.g., conversational telephone speech [3, 4, 5, 6, 7],
broadcast news [8, 9], or meeting [10, 11]), often with slightly
differing evaluation methodologies. At best, this has made per-
formance comparisons difficult, while at worst it may have en-
gendered over-fitting to individual domains/datasets, resulting
in systems that do not generalize.

Recently, there has been renewed interest in a common di-
arization task to facilitate systematic bench marking. Whereas
from 2009-2017 there were no major evaluations with a di-
arization component, there now is an annual diarization specific

evaluation – DIHARD – as well as numerous other challenges
that include a diarization component; among others, the Fear-
less Steps series [12, 13], the Iberspeech-RTVE challenge [14],
CHiME-6 [1], and VoxSRC-20 [15]..

The first DIHARD challenge (DIHARD I) [16] ran in the
spring of 2018 and evaluated diarization of single channel wide-
band recordings drawn from a diverse range of domains. As
expected, state-of-the-art systems performed poorly, with error
rates of the best systems [17, 18] more than double the state-
of-the-art for CALLHOME [19] at the time [5, 6]. This was
followed by DIHARD II [20, 21] in 2019, which was even
more successful, attracting 50 teams from 17 countries and 4
continents. While DIHARD II continued the single channel di-
arization tracks from DIHARD I, it also collaborated with the
CHiME challenge series with the addition of two new tracks fo-
cusing on conversational speech from multiple far-field micro-
phone arrays during a dinner party scenario. All tracks contin-
ued to be challenging for participants, with the most challenge
tracks being the ones without reference speech segmentation
and dinner party data. In the case of the latter, the CHiME-6
data, DER of the best performing system was over 45% when
provided with an oracle speech segmentation and over 58%
when required to produce its own segmentation.

The current challenge (DIHARD III)1 [22], which builds
upon DIHARD I and II, addresses the problem of robust di-
arization which is resilient to variation in, among others, con-
versational domain, recording equipment, recording environ-
ment, reverberation, ambient noise, number of speakers, and
speaker demographics. Like its predecessors, performance is
evaluated under two SAD conditions: diarization from oracle
reference SAD and diarization from scratch. There are no con-
straints on training data, with participants allowed to use any
combination of open source noise sources, number of speakers,
speaker demographics, and proprietary data for system develop-
ment. Recordings are sampled from 11 diverse domains rang-
ing from clean, near-field recordings of read audio-books to ex-
tremely noisy, highly interactive, far-field recordings of speech
in restaurants to clinical interviews with children. Unlike DI-
HARD II, diarization from multi-channel audio is not evalu-
ated; parties interested in this condition should instead consult
the results from track 2 of CHiME-6 [1], which is essentially a
rerun of the DIHARD II multichannel condition. A total of 30
organizations (forming 21 teams) from industry and academia
submitted 499 valid system outputs (352 to track 1 and 147 to
track 2).

In the remainder of this paper, we introduce the task, met-
rics, and data, as well as the baseline SAD and diarization sys-

1https://dihardchallenge.github.io/dihard3/
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Table 1: Overview of DIHARD III datasets. The Part. col-
umn indicates the partition (core or full), while the % speech
and % overlap columns indicate, respectively, the percentage
of speech/overlapped speech in the partition.

Set Part. # rec # hours % speech % overlap

Dev Core 181 23.94 78.43 10.04
Full 254 34.15 79.81 10.70

Eval Core 184 22.73 77.35 8.75
Full 259 33.01 79.11 9.35

tems. Results of the evaluation for both tracks are are reported
in Section 5.2.

2. Task
The goal of the challenge is to automatically detect and label
all speaker segments for each recording; that is: i) determine
how many speakers are present; ii) for each speaker identify all
corresponding speech segments. Because system performance
is strongly influenced by the quality of the speech segmentation
used, two different tracks are covered:

• Track 1 – Diarization from reference SAD. Systems are
provided with a reference speech segmentation that is
generated by merging speaker turns in the reference di-
arization.

• Track 2 – Diarization from scratch. Systems are pro-
vided with just the raw audio input for each record-
ing session and are responsible for producing their own
speech segmentation.

3. Performance Metrics
As in DIHARD I and II, the primary metric is DER [2], which is
the sum of missed speech, false alarm speech, and speaker mis-
classification error rates. Because systems are provided with
the reference speech segmentation for track 1, for this track
DER exclusively measures speaker misclassification error. This
is the metric used to rank systems on the leaderboards. For
each system, we also compute a secondary metric, Jaccard er-
ror rate (JER), originally introduced for DIHARD II [22]. JER
is based on the Jaccard similarity index [23, 24], a metric com-
monly used to evaluate the output of image segmentation sys-
tems, which is defined as the ratio between the sizes of the inter-
sections and unions of two sets of segments. An optimal map-
ping between speakers in the reference diarization and speakers
in the system diarization is determined and for each pair the Jac-
card index of their segmentations is computed. JER is defined
as 1 minus the average of these scores, expressed as a percent-
age.

All metrics are computed using version 1.0.1 of the dscore
tool2 without the use of forgiveness collars and with scoring of
overlapped speech. For further details, please consult Section 4
of the DIHARD III evaluation plan [22] and the dscore repo.

4. Datasets
4.1. Overview

The development (DEV) and evaluation (EVAL) sets consist
of selections of 5-10 minute duration samples drawn from
11 domains exhibiting wide variation in recording equipment,

2https://github.com/nryant/dscore

recording environment, ambient noise, number of speakers, and
speaker demographics. These domains range in difficulty from
the trivial, read audio-books recorded under clean conditions
by a single speaker, to the extremely challenging, conversa-
tions between up to 6 diners recorded by a binaural microphone
in restaurants with varying room acoustics and noise levels.
Both adult and child speech (e.g., clinical interviews) are repre-
sented, as is speech from multiple languages (English and Chi-
nese). For the first time, narrow-band recordings are included
as well as wide-band recordings; in the narrow-band case, all
recordings are drawn from the unreleased Phase II calls from
the Fisher English collection conducted as part of the DARPA
EARS project. All the audio recordings are distributed via LDC
as 16 kHz, mono-channel files.

The datasets are summarized in Table 1. For additional de-
tails about the domains, the reader is encouraged to consult the
DIHARD III evaluation plan [22].

4.2. Scoring partitions

For DIHARD III, we define two partitions of the evaluation
data:

• core evaluation set – a “balanced” evaluation set in
which the total duration of each domain is approximately
equal

• full evaluation set – a larger evaluation set that uses all
available selections for each domain; it is a proper super-
set of the core evaluation set

The core evaluation set strives for balance across domains so
that the evaluation metrics are not dominated by any single do-
main. It mimics the evaluation set composition from DIHARD I
and II. The full evaluation set includes additional material from
two domains (clinical interview and CTS), potentially resulting
in more stable metrics at the expense of being unbalanced. All
system submissions to all tracks are scored against both sets and
the results reported on the leaderboards.

4.3. Annotation

Reference diarization was produced by segmenting the record-
ings into labeled speaker turns according to the following guide-
lines:

• split on pauses > 200 ms, where a pause by speaker “S”
is defined as any segment of time during which “S” is not
producing a vocalization of any kind3

• attempt to place boundaries within 10 ms of the true
boundary, taking care not to truncate edges of words
(e.g., utterance-final fricatives or utterance initial stops)

• where close-talking microphones exist for each speaker,
perform the segmentation separately for each speaker us-
ing their individual microphone.

Reference SAD was then derived from these segmentations by
merging overlapping speech segments and removing speaker
identification.

During DIHARD II, it was found that manual annotation
for these specifications needed highly skilled and experienced
annotators using multiple spectrogram displays, making the an-
notation extremely slow and expensive. Many annotators were
incapable of performing the task even after extensive training
and the remainder found it extremely laborious with real time

3Vocalization is defined as any noise produced by the speaker by
means of the vocal apparatus; e.g., speech (including yelled and whis-
pered speech), backchannels, filled pauses, singing, speech errors and
disfluencies, laughter, coughs, breaths, lipsmacks, and humming.
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rates typically greater than 15X and sometimes exceeding 30X.
Consequently, for DIHARD III we abandoned a commitment to
entirely manual segmentation. Where a manual segmentation
to these specs already existed (i.e., files annotated for DIHARD
II), we used it. For all other data we instead produced a care-
ful turn-level transcription, then established boundaries using a
Kaldi-based forced aligner.

5. Baseline system
5.1. Speech activity detection

The baseline for track 2 uses a TDNN SAD model based on
the Kaldi Aspire recipe (“egs/aspire/s5”). 40-D mel frequency
cepstral coefficients (MFCCs) extracted every 30 ms using a
25 ms window are fed into a neural network consisting of 5
TDNN layers [25] followed by 2 statistics pooling layers [26].
The network context is set to approximately 1 second (left con-
text: 0.8 sec; right context: 0.2 sec). The DNN was trained
with two classes – speech and non-speech – on the DIHARD
III DEV set. Training utilized the entire DEV set and was con-
tinued for 40 epochs. During inference, the posteriors of the
model were converted to pseudo-likelihoods using the empirical
speech/non-speech priors for the DEV set and Viterbi decoding
was performed using an HMM with the following constraints:
minimum speech duration: 240 ms, minimum non-speech du-
ration: 30 ms. Miss rate, false alarm rate, and overall error
(i.e., the actual frame-wise error rate) for the SAD system on
the DEV and EVAL sets are depicted in Table 2.

5.2. Diarization

The diarization baseline is based on LEAP Lab’s submission to
DIHARD II [27]. The system performs diarization by divid-
ing each recording into short overlapping segments, extracting
x-vectors [28, 29], scoring with probabilistic linear discrimi-
nant analysis (PLDA) [30], and clustering using agglomerative
hierarchical clustering (AHC) [31]. The AHC ouput is then
refined using variational Bayes hidden Markov model (VB-
HMM) [32, 33] with posterior scaling [27]. The trained models
and recipes for both tracks are distributed through GitHub4.

The x-vector extractor configuration is identical to that of
[17, 29] with two exceptions: i) 30-D MFCCs are used instead
of a mel filterbank; ii) the embedding layer uses 512 dimen-
sions. MFCCs are extracted every 10 ms using a 25 ms window
and mean-normalized using a 3-second sliding window. For
training, we use a combination of VoxCeleb 1 and VoxCeleb
2 [34, 35] augmented with additive noise and reverberation ac-
cording to the recipe from [28]. Segments under 4-second dura-
tion are discarded, resulting in a training set with 7,323 speak-
ers. Reverberation is added by convolution with room responses
from the RIR dataset [36], while additive noises are drawn from
MUSAN [37]. At test time, x-vectors are extracted from 1.5
sec segments with a 0.25 sec shift. X-vectors are centered and
whitened using statistics estimated from the DIHARD III DEV
and EVAL sets, followed by length normalization [38] .

The x-vectors are then clustered using AHC and a similar-
ity matrix produced by scoring with a Gaussian PLDA model
[30]. The PLDA model was trained using centered, whitened,
and length normalized x-vectors extracted from VoxCeleb seg-
ments with duration ≥3 sec. Prior to PLDA scoring, dimension-
ality reduction was performed using conversation-dependent

4https://github.com/dihardchallenge/dihard3_
baseline/

Table 2: Baseline SAD results for the core/full DEV and EVAL
sets. The Part. column indicates whether scoring was per-
formed using the full or core DEV/EVAL set.

Set Part. Miss (%) FA (%) Overall error (%)

Dev Core 1.84 3.98 2.30
Full 1.88 4.55 2.42

Eval Core 4.97 15.07 7.26
Full 4.35 14.65 6.51

Table 3: Baseline track 1 diarization results for the core/full
DEV and EVAL sets with/without VB-HMM resegmentation.

Part. VB-HMM reseg. DER (%) JER (%)
Dev Eval Dev Eval

Core No 21.05 21.66 46.34 48.10
Core Yes 20.25 20.65 46.02 47.74
Full No 20.71 20.75 42.44 43.31
Full Yes 19.41 19.25 41.66 42.45

PCA [4] preserving 30% of the total variability. For each track,
the stopping criteria for AHC was tuned to minimize DER on
the DEV set.

We then refine the AHC output using frame-level VB-
HMM resegmentation as described by [32, 33]. 24-D MFCCs
are extracted every 10 ms using a 15 ms window; neither mean
nor variance normalization are applied, nor do we use delta
coefficients. We use a universal background model (UBM-
GMM) with 1,024 diagonal-covariance components and a to-
tal variability (V) matrix containing 400 eigenvoices. Both the
UBM-GMM and V were trained using the same data as the x-
vector extractor. Following [27], posterior scaling was applied
to discourage frequent speaker transitions by the VB-HMM.
This scaling was accomplished by boosting the zeroth order,
but not first or second order, statistics prior to VB-HMM like-
lihood computation. The VB-HMM is initialized separately for
each recording from the result of AHC and run for one itera-
tion. Parameters were set to the following values by tuning on
the DIHARD III DEV set: scaling factor β = 10, loop proba-
bility Ploop = 0.45, downsampling factor downSamp = 25.

DER and JER of the baseline diarization recipe for tracks
1 and 2 are reported in Tables 3 and 4, respectively. Mirroring
the findings of [18, 39], VB-HMM resegmentation reliably im-
proves DER and JER for both tracks, though the gains are more
pronounced for track 2. Possibly, the effects of VB-HMM re-
segmentation could be enhanced by using a UBM-GMM and
variablity matrix trained on or adapted to domain materials,
though we did not explore this possibility.

Table 4: Baseline track 2 diarization results for the core/full
DEV and EVAL sets with/without VB-HMM resegmentation.

Part. VB-HMM reseg. DER (%) JER (%)
Dev Eval Dev Eval

Core No 24.06 29.51 49.17 53.82
Core Yes 22.28 27.34 47.75 51.91
Full No 24.08 28.00 45.61 49.35
Full Yes 21.71 25.36 43.66 46.95
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Figure 1: Track 1 (red) and track 2 (blue) DER of primary submissions by domain on the core EVAL set.

6. Results and Discussion
Figure 2 presents boxplots of DER and JER on the core/full
EVAL sets for each team’s final submissions. The majority of
submissions outperformed the baseline with the mean improve-
ment in DER for these submissions being nearly 4% absolute
for track 1 and 5% for track 2. Restricting our attention to just
the top submissions, we see that the improvement is even more
extreme with the winning submission [40] outperforming the
baseline by 7% DER absolute on the core EVAL set for track
1 and 8% on track 2. As was the case in previous DIHARD
challenges, track 2 was substantially more difficult than track 1
(on the order of 5% for both DER and JER), indicating SAD re-
mains a challenging problem for some of the covered domains.
Though the full EVAL set was more difficult than the core set,
the same trends and rankings are observed for both partitions;
for sake of exposition, we will report only results on the core
partition throughout the rest of this discussion.

As can be seen from Figure 1, system performance varies
greatly across domains. For track 1, the median DER is be-
low 10% for 6 domains. With the exception of the courtroom
data, these domains all consist of 1 or 2 party interactions, from
which we conclude that systems are able to reliably handle
clean data from a small number of speakers when a high-quality
speech segmentation is available. However, in the absence of an
accurate speech segmentation, for all of these domains save au-
diobooks DER increases substantially for all systems and catas-
trophically for some; particularly, for the sociolinguistic field
recordings. For two of the remaining domains, clinical in-
terviews and conversational telephone speech, DER generally
ranges from 10% to 20% for track 1 and 15% to 25% for track
2, indicating that even in the two-party case there remain sub-
stantial challenges, particularly in the presence of speakers with
unusual characteristics (i.e., children in the clinical interviews).
For the final three domains – meeting speech, web videos, and
restaurant – performance is awful with median track 1 DER
ranging from 35% to 45%.

Compared to DIHARD I and II, there is a notable improve-
ment in performance. Median DER on track 1 has fallen from
over 30% in DIHARD I, to 25% in DIHARD II, to under 20%
in the current iteration. The improvement is even more strik-
ing for track 2, where median DER has fallen from 40% in DI-
HARD I to under 25% in DIHARD III, a 38% relative reduc-
tion. Considering only performance of the best single system in
each evaluation, DER has decreased by 43% for track 1 (from
23.73% to 13.45%) and 46% for track 2 (35.51% to 19.37%).
These improvements are observed across all domain, including
those which have not changed since DIHARD I (e.g., courtoom

and meeting), indicating that these are real improvements and
not an artifact of changes to the composition and annotation of
the evaluation set over time. From a survey of the submitted
system descriptions, these improvements appear to be due to a
combination of improvements in handling of speaker overlap,
use of VB-HMM in place of traditional frame-level clustering
[32, 33], supervised neural speech enhancement models, and
target-speaker based voice activity detection (TS-VAD) [41],
and system combination methods such as DOVER-Lap [42].
While not utilized by the winning submission, end-to-end ap-
proaches [43] were prominent in DIHARD III and exhibited
strong performance on both tracks.

Figure 2: DER and JER of primary submissions for each track
on the core (red) and full (blue) partitions of the EVAL set.

7. Summary
We present a summary of DIHARD III, whose objective was to
evaluate the current state of robust speaker diarization. Results
from this present challenge indicate great progress has been
made since DIHARD I, although performance of even the best
system was poor for half of the domains considered, particu-
larly when a reference SAD was not supplied. While encour-
aging, these results demonstrate that further work is needed to
achieve the desired goal of truly robust diarization that grace-
fully handles the wide variety of interaction types and recording
conditions observed in real world data.
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