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Abstract
We design a novel speaker diarization system for the first DI-
HARD challenge by integrating several important modules of
speech denoising, speech activity detection (SAD), i-vector de-
sign, and scoring strategy. One main contribution is the pro-
posed long short-term memory (LSTM) based speech denois-
ing model. By fully utilizing the diversified simulated train-
ing data and advanced network architecture using progressive
multitask learning with dense structure, the denoising model
demonstrates the strong generalization capability to realistic
noisy environments. The enhanced speech can boost the per-
formance for the subsequent SAD, segmentation and cluster-
ing. To the best of our knowledge, this is the first time we show
significant improvements of deep learning based single-channel
speech enhancement over state-of-the-art diarization systems in
highly mismatch conditions. For the design of i-vector extrac-
tion, we adopt a residual convolutional neural network trained
on large dataset including more than 30,000 people. Finally, by
score fusion of different i-vectors based on all these techniques,
our systems yield diarization error rates (DERs) of 24.56% and
36.05% on the evaluation sets of Track1 and Track2, which are
both in the second place among 14 and 11 participating teams,
respectively.
Index Terms: speaker diarization, speech denoising, speech ac-
tivity detection, i-vector, DIHARD challenge

1. Introduction
Speaker diarization is a task to segment an audio recording into
speaker homogeneous regions without any prior information in-
cluding the number of speakers [1], the dialog styles, environ-
mental scenes and so on. Good speaker diarization results can
be very beneficial to several speech areas, such as transcription
of dialogues, dominant speaker detection, speech indexing, and
meeting summary [2]. All these domains are extremely sig-
nificant to promote and popularize the practical use of speech
technology in daily life.

A conventional speaker diarization algorithm can be
roughly divided into two main components: speaker segmen-
tation and clustering. Depending on the difference of sequential
order between these two components, most of state-of-the-art
speaker diarization systems fall into two categories: the bottom-
up and the top-down approaches [3]. The bottom-up method,
also known as agglomerative hierarchical clustering (AHC) [4],
first cuts the whole speech recording into smaller segments
where each segment ideally comes from only one speaker. The
closet segments selected by some distance metrics like Bayesian
information criterion (BIC) [5], are merged iteratively until a
certain stopping criterion is satisfied. On the contrary, the top-
down approach will successively split speech segments to new

clusters until reaching the number the speakers. In general,
bottom-up approaches are far more popular than top-down ones.
Recently, i-vector has shown great effectiveness in the field of
speaker recognition [6, 7]. It is natural to introduce i-vector
to speaker diarization as a more powerful feature to enhance
speaker specific information. Moreover, a probabilistic linear
discriminant analysis (PLDA) scoring fuction [8, 9] is learned
to discriminate whether two i-vectors are from the same person.

Apart from the abovementioned diarization process, a prac-
tical speaker diarization system should also include the pre-
processing stage [3], which involves speech denoising, multi-
channel acoustic beamforming and speech activity detection.
The background noises, reverberations and other interferences
in real scenes, can greatly hurt the overall diarization perfor-
mance. Thus the accumulated error during the whole pro-
cess becomes uncontrolled and untraceable. Especially in the
single-channel case with limited spatial information, an effec-
tive speech denoising algorithm plays an important role as the
front-end preprocessor. In [10], we have shown that deep learn-
ing based denoising method has stronger potentials in coping
with realistic noisy environments than traditional approaches.
The complicated acoustic environments also affect speech ac-
tivity detection which is quite important for diarization. With
a good front-end prepocessing, better speech quality and more
accurate speech boundary location can ensure a higher upper
bound for the performance of speaker diarization.

While state-of-the-art diarization systems perform remark-
ably well for some domains (e.g., conversational telephone
speech such as CallHome), as was discovered at the 2017
JSALT Summer Workshop at CMU [11], this success can not
transfer to more challenging corpora such as child language
recordings, clinical interviews, speech in reverberant environ-
ments, web video, and speech in the wild. To explore the
benchmark of current state-of-the-art systems, the first DI-
HARD speech diarization challenge [12] was proposed where
the datasets are drawn from a diverse set of challenging do-
mains. The challenge has two tracks, namely Track1 and
Track2. Track1 uses gold speech segmentation while Track2
does diarization from scratch.

In this study, we present a novel integrated diarization sys-
tem for DIHARD challenge, consisting of speech denoising,
speech activity detection, the design of i-vector extraction and
scoring strategy. We build the deep denoising model using the
advanced LSTM architecture with the novel design of hidden
layers via densely connected progressive learning and output
layer via multiple-target learning [10]. Much larger amounts of
training data are used to guarantee better generalization ability.
A deep neural network (DNN) based speech activity detection
model is trained on realistic collected data. Then we construct
an i-vector extraction system for speaker representation, com-
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Figure 1: Complete speaker diarization system diagram in both Track1 and Track2.

bined with a PLDA scoring model. Furthermore, we propose a
residual convolutional neural network (CNN) based i-vector ex-
tractor and make a fusion with traditional PLDA score. Finally,
we evaluate the performance on both Track1 and Track2.

2. Database
A complete diarization system contains multiple sub-modules,
as illustrated in Figure 1. In the section, we introduce all
datasets which are used for constructing each part of those sub-
modules. First for the speech enhancement, we have already
explored its validity for realistic environments in [10]. Un-
like only using English speech corpus WSJ0 [13] there, in this
work we add a 50-hour Chinese speech corpus from 863 Pro-
gram to increase the diversity of clean speech data. 115 noise
types of audios are adopt to simulate noisy utterances with clean
speech. To improve the stability and generalization ability, we
use 400-hour simulated clean/noisy pairs of speech data instead
of 36-hour in [10]. As discussed before in [10], the enhance-
ment model often crushed when it needs to cope with any un-
seen speech which belongs to teenagers and babies. At that
time, we ascribed the performance degradation into the vacancy
of child speech data in training set. Surprisingly, in this study
those problems seem partially solved with the increase of train-
ing data size, although we still do not use any child speech data.
More discussion will be stated in Section 3.1.

Speaking of i-vector extractor, we choose the increasingly
popular VoxCeleb corpus [14] to train the i-vector extractor
based on universal background model (UBM). It is a large scale
speaker identification dataset derived from YouTube, contain-
ing over 100,000 utterances for 1,251 celebrities. Moreover, we
use another home-made corpus in iFlytek. It is collected in daily
scenario, including more than 30,000 persons. It is expected to
enhance the performance of our residual CNN-based i-vector
extractor.

For SAD training, 600-hour home-made realistic speech
data in iFlytek was used. The speech quality is not very stable
due to the complicated acoustic environments. Human annota-
tions on each speech segment are set as the learning target.

The details of development set and evaluation set in DI-
HARD challenge can refer to [12, 15, 16].

3. System Description
The generic speaker diarization system often contains several
main components: speech denoising, acoustic feature extrac-
tion, speech activity detection, speaker representation, speaker
segmentation, speaker clustering and re-segmentation. In this
section, we introduce each part in our system.

3.1. Speech denoising

Inevitably, a practical diarization system should address the
environmental robustness problem in real applications. For
speaker diarization, a good preprocessor should obey two rules.
On one hand, it should be able to remove background noises as
much as possible. On the other hand, speaker specific informa-
tion should not be lost. Therefore the trade-off between noise
suppression and speaker information preservation is crucial for
speech enhancement in speaker diarization system. Moreover,
the adverse acoustic environments require the preprocessor to
have excellent stability and generalization ability. Traditional
enhancement methods like Wiener filtering [3], LogMMSE
[17], there are many limitations in real applications, e.g., the
weakness of tracking non-stationary noises, due to the model
assumptions made during the inference. Furthermore, the an-
noying artifact generated in denoised speech can degrade the
performance of speaker diarization system.

In recent years, the emergence of deep learning tech-
niques in speech enhancement has partly solved the problem
[18, 19, 20], such as decreasing the artifact. However, the gen-
eralization ability in mismatched conditions is the main prob-
lem of deep learning based method. Inspired by our previous
work [21, 22], we adopt an advanced LSTM architecture with
the novel design of hidden layers via densely connected pro-
gressive learning and output layer via multiple-target learning.
The overall LSTM architecture aims to predict the clean LPS
features given the input noisy log-power spectra (LPS) features
with acoustic context. All the target layers are designed to learn
intermediate speech with higher SNRs or clean speech. For the
input and multiple targets, LSTM layers are used to link be-
tween each other. This stacking style network can learn multiple
targets progressively and efficiently. In order to make full use
of the rich set of information from the multiple learning targets,
we update the progressive learning in [22] with dense structures
[23] in which the input and the estimations of intermediate tar-
get are spliced together to learn next target. Then, a weighted
MMSE criterion in terms of multitask learning (MTL) is de-
signed to optimize all network parameters randomly initialized
with K target layers as follows:
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where Ek is mean square error (MSE) corresponding to kth

target layer while EIRM is MSE for MTL with ideal ratio
masks (IRM) in the final output layer. x̂k

n and xk
n are the

nth D-dimensional vectors of estimated and reference target
LPS feature vectors for kth target layer, respectively (k > 0),
with N representing the mini-batch size. x̂0

n denotes the
nth vector of input noisy LPS features with acoustic context.
Fk(x̂

0
n, x̂

1
n, ..., x̂

k−1
n ,Λk) is the neural network function for

kth target with the dense structure using the previously learned
intermediate targets from x̂0

n to x̂k−1
n , and Λk represents the

parameter set of the weight matrices and bias vectors before
kth target layer, which are optimized in the manner of back
propagation through time (BPTT) with gradient descent. xIRM

n ,
FIRM(x̂

0
n, x̂

1
n, ..., x̂

K−1
n ,ΛIRM), and ΛIRM are corresponding

versions to IRM targets. αk is the weighting factor for kth target
layer. More details of the architecture can be found in [10].

(a) Original speech

(b) Enhanced speech using 36h model  

(c) Enhanced speech using 400h model  

Figure 2: A comparison of spectrograms for the proposed en-
hancement models with different training data setups.

We have shown that, only replacing noisy waveforms with
denoised waveforms can yield significant reductions of DERs
on several challenging datasets [10]. In this study, with the same
network architecture, the larger amount of training data setup
brings better generalization ability not only to adult speech, but
also to unseen child speech. Figure 2 is one segment example
derived from DIHARD development set, where child speech ex-
ists. The result from current 400-hour model achieve better in-
tegrity comparing to former 36-hour model used in [10], even
the test speech data is still unseen in training set.

3.2. Speech activity detection

Recently, several studies adopted DNNs for SAD [24, 25, 26].
Here we train a framewise binary classification DNN of speech
and non-speech. The features we use are 39-dimensional per-
ceptual linear prediction (PLP) features (13-dimensional static
PLP features with ∆ and ∆∆) and include an input context
of 5 neighbouring frames (±2), yielding a final dimensionality
of 195 (39 × 5). Considering utility efficiency, the DNN model
adopts a small and compact structure using 2 hidden layers with
256 and 128 hidden units in each layer and a final dual output
layer, i.e. an architecture of 195-256-128-2. All training data is
from realistic collected corpus.

3.3. Speaker segmentation and clustering

To fully utilize the effective information embedded in every
stage, we propose a two-pass short-long term diarization sys-
tem in this section.

3.3.1. Short-term diarization

Generally, speaker changes, also known as speaker turns, may
appear everywhere in conversations, within or without overlaps.
Especially in scenes like meetings, debates, parties, the conver-
sions of speakers are frequently. Given the valid speech seg-
ments from SAD, it is important to split them into speaker ho-
mogeneous segments. It is also pivotal to prevent error accumu-
lating in the very beginning. We use the Bayesian information
criterion (BIC) [5] as the hypothesis testing metric.

Then a global agglomerative hierarchical clustering (AHC)
algorithm [4] is performed on all segments. At this step, ev-
ery single segment is relatively short. The process is conducted
iteratively, until a certain criterion is reached, upon which one
separate cluster should arrive an upper limit or the number of
clusters reaches a default maximum speaker number.

3.3.2. Long-term diarization

When the duration of each segment is relatively long, the i-
vector can be a more powerful representative feature. We use an
i-vector extraction system trained on the VoxCeleb corpus. Our
UBM includes 1024 Gaussians and the total variability (TV)
matrix reduces the dimension to 400. The i-vectors are denoted
as UBM i-vectors and also length-normalized. In clustering, we
repeatedly merge the closest two i-vectors based on a certain
scoring metric. We train a PLDA scoring model to measure the
similarity between the i-vectors. Moreover, we retrain the UBM
i-vector/PLDA model using the denoising data.

3.3.3. Residual CNN-based i-vector extractor

Although i-vector extracted from a UBM works well in some
scenes like telephone data, the modeling capability of UBM
is relatively limited [27]. Inspired by the residual network in
image recognition [28], an end-to-end residual CNN-based i-
vector extractor was proposed in the field of speaker recogni-
tion [29]. Due to the powerful modeling ability of deep net-
works, we can achieve promising embedding performance as
long as there is adequate training data. Thus we train a resid-
ual CNN network for i-vector which is shown in Figure 3. For
the input layer, 512 frames of 64 dimensional filterbank fea-
tures which belong to the same person are grouped together as
a feature map. At output layer, a 512 dimensional vector is gen-
erated as the identity vector of the specific person. During the
first stage in training, we pre-train the network by predicting
the speaker identity using softmax loss. Then triplet loss [30] is
used as the second stage training criterion. Similarities between
different CNN i-vectors are measured by cosine score.

3.3.4. Realignment

At the end, a realignment over frames is performed via Viterbi
decoding on the GMM of each speaker. To make it more stable,
we also use some smoothing strategy to prevent erroneously de-
tected speaker turns [31].
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Figure 3: The architecture of the residual CNN i-vector model.

Table 1: DER comparison of different speech inputs for UBM
i-vector based diarization system on development set.

DER(%) Track1
Speech Miss FA SpkrErr Overall
Original 8.50 0 11.76 20.26
Denoised 8.50 0 11.18 19.68
Retrained 8.50 0 11.01 19.51
DER(%) Track2
Speech Miss FA SpkrErr Overall
Original 18.60 6.10 8.50 33.20
Denoised 16.50 6.00 7.90 30.40
Retrained 16.50 6.00 7.60 30.10

4. Experiments
4.1. Evaluation metric

We measure the performance of the diarization system by DER,
which is defined by the evaluation campaigns organized by
NIST. It compares the differences between the ground-truth ref-
erence segmentation and the generated diarization output. The
final DER result is the sum of three types of errors: EMiss, EFA

and ESpkr, where each represents the percent of missed speech,
false alarm error speech, and speaker misclassification error
speech, respectively. Lower DER indicates better diarization
performance. Note that, for DIHARD challenge, non-scoring
collar is not permitted which means collar is set to zero in scor-
ing script. Moreover, multiple speakers in overlap speech seg-
ments are counted.

4.2. Results

First, we build a baseline speaker diarization system based
on UBM i-vector extractor and PLDA model, which are both
trained upon original VoxCeleb data. In Track1, we only use
the gold speech segmentation, while Track2 uses the outputs
of DNN-based SAD. As shown in Table 1, the DER on de-
velopment set can benefit directly from denoised speech from
20.26% to 19.68% in Track1. Note that, our system does not

Table 2: DER comparison of different scoring strategies on de-
velopment set.

DER(%) Track1
Scoring Miss FA SpkrErr Overall
PLDA 8.50 0 11.01 19.51

PLDA+Cosine 8.50 0 8.90 17.40
DER(%) Track2
Scoring Miss FA SpkrErr Overall
PLDA 16.50 6.00 7.60 30.10

PLDA+Cosine 16.50 6.00 6.90 29.40

Table 3: DER comparison of overall top-3 teams on evaluation
set.

DER (in %) USTC-iFlytek (Ours) Team1 Team2
Track1 24.56 23.73 25.07
Track2 36.05 37.19 35.51

tackle with overlap speech segments. That is to say, all overlap
segments will be distributed to only one speaker, which gener-
ates inevitable missed error in both Tracks. Specifically, Miss
is 8.5% in Track1 while FA is 0 with gold segmentation. In
Track2, denoised speech can significantly reduce the percentage
of Miss and FA, due to the removal of environmental interfer-
ences. Moreover, the valid speech segments can be less confus-
ing, in terms of the reduction of SpkrErr. Furthermore, by re-
training the i-vector extractor and PLDA model using denoised
training data, additional improvements could be observed for
both Track1 and Track2 as shown in the third row of each track.

System fusion [32, 33] is an effective strategy to im-
prove the performance of speaker diarization system, includ-
ing feature-level fusion [34], system output-level fusion [35],
and multi-model fusion like audio-visual fusion [36]. To fully
utilize the complementarity between UBM i-vector and CNN
i-vector, in our fusion system we directly conduct a scoring fu-
sion between PLDA score of UBM i-vector and cosine score of
CNN i-vector. Comparing to single PLDA scoring, the fusion
method obtains relative SpkrErr reductions of 19.2% in Track1
and 9.2% in Track2, respectively. Using this fusion system, we
achieve both the second place on the evaluation set of DIHARD
challenge among 14 teams of Track1 and 11 teams of Track2,
as illustrated in Table 3.

5. Summary and future work
First, a well-designed speech enhancement algorithm can help
both detection and diarization of valid speech segments. Sec-
ond, different designs of i-vector extractor could be strongly
complementary. In the future, we aim to improve the diarization
performance by investigating the overlap detection and separa-
tion in realistic scenes.
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