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A Speaker-Dependent Approach to Separation of
Far-Field Multi-Talker Microphone Array Speech for

Front-End Processing in the CHiME-5 Challenge
Lei Sun , Jun Du , Tian Gao , Yi Fang, Feng Ma, and Chin-Hui Lee, Fellow, IEEE

Abstract—We propose a novel speaker-dependent speech sep-
aration framework for the challenging CHiME-5 acoustic envi-
ronments, exploiting advantages of both deep learning based and
conventional preprocessing techniques to prepare data effectively
for separating target speech from multi-talker mixed speech col-
lected with multiple microphone arrays. First, a series of multi-
channel operations is conducted to reduce existing reverberation
and noise, and a single-channel deep learning based speech en-
hancement model is used to predict speech presence probabilities.
Next, a two-stage supervised speech separation approach, using or-
acle speaker diarization information from CHiME-5, is proposed
to separate speech of a target speaker from interference speakers
in mixed speech. Given a set of three estimated masks of the back-
ground noise, the target speaker and the interference speakers from
single-channel speech enhancement and separation models, a com-
plex Gaussian mixture model based generalized eigenvalue beam-
former is then used for enhancing the signal at the reference array
while avoiding the speaker permutation issue. Furthermore, the
proposed front-end can generate a large variety of processed data
for an ensemble of speech recognition results. Experiments on the
development set have shown that the proposed two-stage approach
can yield significant improvements of recognition performance over
the official baseline system and achieved top accuracies in all four
competing evaluation categories among all systems submitted to
the CHiME-5 Challenge.

Index Terms—The CHiME-5 challenge, speech enhancement,
speech separation, mask estimation, robust speech recognition.

I. INTRODUCTION

IN RECENT decades, automatic speech recognition (ASR)
has greatly developed [1] in terms of both tasks and tech-

nologies. Various limited tasks were investigated during the 70s
and 80s, such as the recognition of connected digit sequences
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using the TIdigits corpus [2]. A widely used corpus, TIMIT
[3] has provided data for acoustic-phonetic studies since the
90s. The emergence of the Wall Street Journal (WSJ) corpus
[4] and LibriSpeech [5] corpus have been used for the research
of large vocabulary speech recognition. To improve ASR ro-
bustness, people have studied the recognition under noisy or
reverberant conditions. The AMI corpus [6] was proposed to
explore both close-talking and far-field speech recognition un-
der realistic meeting conditions. In addition, several academic
challenges have been held to find solutions to different problems.
For example, the REVERB challenge [7] provided an opportu-
nity to study reverberant speech, while the CHiME (1-4) [8]–
[10] series investigated the effects of background noise. Apart
from those environmental interferences, overlapping speech and
quick speaker transitions also greatly degrade recognition accu-
racy in real situations. The 2006 Speech Separation Challenge
(SSC) [11] aimed to explore source separation methods, which
was helpful to solve speech recognition tasks with two simulta-
neous speakers. From the perspectives of both academic speech
corpora and earlier research challenges, robust ASR research
has undergone the following process: from single-channel to
multi-channel, from single-array to multi-array, and from simu-
lated data to real-recorded data. These endeavors have been ded-
icated to promoting the development of more advanced speech
recognition systems.

Meanwhile, the front-end and back-end processing methods
have also made great progress. Specifically, the goal of a front-
end system is to remove or suppress interference factors such
as noise and reverberation while maintaining the integrity and
intelligibility of the original speech. It can be divided into subdo-
mains with different research priorities, such as speech enhance-
ment, speech separation, speech dereverberation, etc. The most
direct and intuitive way to evaluate a front-end processing sys-
tem is to observe the performance changes of the back-end per-
formance, which is devoted to acoustic modeling and language
modeling. Depending on the microphone settings, the front-end
approaches can be categorised into single-channel based meth-
ods and multi-channel based methods.

Single-channel speech processing is widely needed in many
situations where only one microphone is available to capture the
signal, such as voice communication systems, personal smart as-
sistants, etc. Traditional single-channel speech enhancement al-
gorithms include spectral subtraction [12], Wiener filtering [13]
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and the minimum mean square error (MMSE) based spectral am-
plitude estimator [14]. These unsupervised methods are based
on many mathematical assumptions about speech and noise, and
often introduce artifacts (e.g., musical noise). With the develop-
ment of machine learning techniques, supervised approaches
have shown great abilities to improve the quality of enhanced
speech due to large amounts of training data. Nonnegative ma-
trix factorization (NMF) [15] is one typical method where speech
and noise bases are obtained separately from training data. How-
ever, the relationship between these two classes cannot be effec-
tively learned. Recently, deep neural networks (DNNs) have also
demonstrated powerful modeling capability and achieved bet-
ter performance than traditional methods in the field of speech
enhancement [16]–[19]. However, the background noise is not
always the exclusive interference factor in some multi-talker sit-
uations, where one person is saying when others are speaking
at the same time. Such kind of issues were associated with the
term “cocktail-party problem” in [20]. Many studies have ex-
plored single-channel speech separation methods to segregate
the voices of different speakers. For example, deep clustering
(DC) [21] and the attractor network (DANet) [22] focused on
finding a substantial embedding space of mixture signals, assum-
ing that time-frequency (t-f) units belong to the same speaker can
form a cluster. The permutation problem [23], also referred to as
the label ambiguity problem in [21], [24], is a difficult problem
especially for speaker-independent multi-talker speech separa-
tion. Accordingly, permutation invariant training (PIT)-based
methods [23], [25] were proposed to address such problems by
ignoring the order of mixing sources during the optimization
process.

Unlike single-channel data, multi-channel data are acquired
by several microphones which are spatially distributed in the
physical space. Multi-channel speech processing was initially
used to perform sound localization and speech enhancement in
chaotic environments [26]. With the emergence of independent
component analysis (ICA) [27], which established an instanta-
neous linear mixing model, blind source separation (BSS) has
been proposed to extract individual signals from observed mixed
signals [28]. Typical algorithms consist of multi-channel Wiener
filtering [29], blind source separation methods [27], [30]–[32],
and beamforming methods [33]–[36]. It has been proved that
beamforming based methods can both effectively improve the
output signal-to-noise ratio (SNR) [37] and enhance the speech
recognition performance [38], [39]. Furthermore, some studies
have focused on fully utilizing the advantages of deep learn-
ing methods and conventional multi-channel methods. In [40],
bidirectional long short-term memory (BLSTM) was adopted
to estimate signal statistics to steer the beamformer for multi-
channel speech enhancement. In [41], a beamforming approach
via an iterative mask estimation (IME) that combined CGMM
[36] and a deep learning model demonstrated an extremely low
word error rate (WER) on CHiME-4 data.

Recently, the latest CHiME-5 challenge provides the first
large-scale corpus of real multi-talker conversational speech
recorded via commercially available microphone arrays in mul-
tiple realistic homes [42]. This corpus essentially congregates a
large number of acoustic problems that may exist in real life,

which poses a great challenge to existing ASR systems, es-
pecially for the front-end processing in the case of noise, re-
verberation, overlapping speech. New technologies or solutions
are needed to simultaneously address these interference factors
that were not considered or handled well by previous methods.
The WERs of the binaural microphone data and the single-array
data in the official baseline report are 47.9% and 81.3% respec-
tively, which fully illustrate the difficulty of the CHiME-5 ASR
task.

In this study, we propose a novel speaker-dependent speech
separation framework for the challenging CHiME-5 acoustic en-
vironments, exploiting advantages of both deep learning based
methods and conventional preprocessing techniques to prepare
data effectively for separating target speech from multi-talker
mixed speech collected with multiple microphone arrays. The
contributions are summarized as follows. First, we carefully an-
alyze the CHiME-5 data and find the reason for the poor per-
formance of ASR is that the realistic multi-talker conversations
introduce rapid role conversion and overlapping speech. Sec-
ond, we design a two-stage speaker-dependent speech separa-
tion approach to extract the speech of the target speaker in each
recording, especially for overlapping data. The method takes the
privilege of utilizing oracle speaker diarization information, al-
lowed by the challenge rules. With different learning targets,
the sequential two separation stages can overcome the low-
resource problem of CHiME-5 data and yield better localization
ability of the target speaker. Similarly, a speech enhancement
model is used to estimate the speech or noise existing probabil-
ities. Third, given the information derived from deep models, a
CGMM based generalized eigenvalue (GEV) beamformer [37]
is then used for enhancing the signal at the reference array while
avoiding the speaker permutation problem. Finally, the extracted
speech of only the target speaker is directly fed into the back-
end recognition system. Different front-end models generated
with various configurations provide multiple data streams for
the ensemble ASR system to improve and stabilize the overall
performance.

The remainder of this paper is organized as follows. Section II
presents the background information and data analysis of the
CHiME-5 challenge. In Section III, we describe the design of our
proposed front-end system, including multi-channel speech pre-
processing, single-channel speech enhancement, single-channel
speaker-dependent speech separation and multi-channel beam-
forming. Section IV lists the experimental setups. Section V
shows the comprehensive results and analyses about how each
technique affects the final performance according to ASR re-
sults. Section VI discusses the gap between a practical ASR
system and the proposed system in the CHiME-5 challenge.
In Section VII, we summarize our findings and plan the future
work.

II. ANALYSIS OF THE CHIME-5 DINNER PARTY SCENARIO

We initially perform comprehensive analyses of the dinner
party scenario in the CHiME-5 challenge. Also, studying the
limitations of existing technologies is of great significance to
guide our front-end design.
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TABLE I
OVERVIEW OF CHIME-5 CORPUS

∗Note that each 4-speaker group participated in 2 sessions in the training set.
There were no duplicated speakers between sessions from both development
and evaluation sets.

A. Background

Speech data in the CHiME-5 were made under a 4-person
dinner party scenario and recorded by 6 distant Kinect micro-
phone arrays and 4 binaural microphone pairs in 20 homes [42].
The detailed transcriptions of each speaker were obtained by
the annotator through listening to the corresponding binaural
recordings, including not only the word sequences but also time
stamps of every speaker, which can be seen as the oracle speaker
diarization information. There were no restrictions on the con-
tent or speaking style for all participants. Each party was held
for a minimum of 2 hours and composed of three phases repre-
senting different locations, namely ‘kitchen’, ‘dining room’ and
‘living room’. The binaural data were provided in addition to
the far-field array data for both training and development sets.
Ultimately, the 20 home sessions were divided into training, de-
velopment and evaluation sets. According to the challenge rules,
we summarize the necessary information in Table I. Specifically,
using oracle speaker diarization information was allowed in all
sets, though it’s not available in a practical speech recognition
system.

B. Data Analysis

Through deep analysis of the CHiME-5 speech, the biggest
difficulties can be summarized into two aspects. The first one is
far-field speech recognition, which is largely affected by back-
ground noise, reverberation and distant moving speakers. Un-
like the fixed noise categories used in CHiME-3 and CHiME-4,
CHiME-5 data contains more noise types that may exist in real
life, such as stationary noises from air conditioning, and non-
stationary noises from cooking, human movements, etc. In addi-
tion, the reverberation also varies among different sessions with
changing rooms, speaker locations, and array positions. More-
over, people were allowed to move naturally in these places. The
above set of issues posed a big challenge for research into far-
field speech processing. The second aspect, which is the most
challenging part of CHiME-5, is about the dialogue style. Unlike
read speech, the complexity of conversational and spontaneous
speech greatly increases the difficulty of a speech recognition
system. For instance, casual pronunciation and frequent over-
lapping speech seriously decrease the discriminating ability of
acoustic models. In order to prove the summary of these two
aspects, a direct proof is that the WER of relatively clean speech
taken from the binaural microphones is already as low as 47.9%

Fig. 1. An illustration of speech samples from one session. Speaker A is set
to be the target speaker, while the others are the interference speakers. Those
samples are excised from the whole session recording according to human tran-
scriptions. As seen here, other interference speakers appear in a random manner.

in a baseline recognition system [10]. It’s largely due to the
conversational style. Then, the WER drastically increases up
to 81.3% for far-field ASR with single-array data, that can be
attributed to the distance between the source and the micro-
phones where noise and reverberation are introduced. In sum-
mary, the challenge of CHiME-5 can be simplified to the problem
of conversational speech recognition in far-field, multi-talker
conditions.

To investigate the speech overlapping problem, we excluded
non-speech regions and aligned the time stamps of all speak-
ers to locate the overlapped speech regions. It was observed
that approximately 97.3% of the sentences from the develop-
ment set contained overlapping speech. Since human labeling
is inherently not entirely accurate, the speech segments of the
target speaker often contain interference from other speakers.
As shown in Fig. 1, we present some examples of how target
speaker’s speech interacts with the other speakers’. Specifically,
Sample 1 is truly a single-talker segment, while the other sam-
ples are with multiple talkers. In Samples 2-4, we can observe in-
serted speech and even overlapped speech. In such cases, speech
introduced from the interference speakers can greatly hurt the
recognition performance of the target speaker.

C. Speaker-Dependent Separation Scheme

A straightforward way for the front-end processing is to re-
move the interfering speech before performing speech recogni-
tion, which falls into the field of speech separation, especially for
deep learning based single-channel approaches [18], [21], [25],
[43], [44]. However, these supervised and data-driven methods
require pure source data for data simulation in the training stage,
that is, speech without interference speakers. The data distri-
butions of non-overlapping speech are listed in Table II. After
eliminating regions of overlapping speech, the remaining data
for each speaker are extremely limited. Therefore, the speech
separation scheme under such low resource condition is another
challenging problem.

To solve these problems, we propose a two-stage speaker-
dependent speech separation approach for the CHiME-5 chal-
lenge, as described in Section III-C. Before simulating paired
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Fig. 2. The overall diagram of our proposed front-end processing system for the CHiME-5 challenge.

TABLE II
DETAILS OF SPEAKER INFORMATION ABOUT THE CHIME-5 DEVELOPMENT

SET, ACCORDING TO ORACLE HUMAN TRANSCRIPTIONS

speech mixtures, oracle speaker diarization information is
needed to select the non-overlapping data of each speaker as the
source materials, while excluding data from other interference
speakers. To the best of our knowledge, it is the first time that
a supervised speech separation approach is capable of handling
such challenging realistic data.

III. SYSTEM OVERVIEW

To fully utilize all information of each speaker, our proposed
front-end system is conducted session by session in the testing
stage, as illustrated in Fig. 2. It is designed as a tandem sys-
tem via the integration of single-channel deep learning based
and conventional multi-channel techniques to prepare data for
effective speech separation (SS). In particular, to extract speech
of the target speaker, we propose a two-stage speaker-dependent
(SD) model, including SS1 and SS2 to estimate the probability
masks of the target speaker at all time-frequency bins. To im-
prove the SD masks, we further use a CGMM to model the
spatial information. Finally, a GEV beamformer with single-
channel post-filtering is used to generate the front-end output.
Detailed descriptions of processing at each stage are given in
the following.

A. Multi-Channel Preprocessing

A series of multi-channel operations is first conducted as
shown in Fig. 3. At the beginning, we use a generalized weighted
prediction error (GWPE) [45] algorithm on the multi-channel
signals of the reference array, which is commonly used as a
dereverberation preprocessor.

To better estimate and suppress the noise, we design the
following two steps. First, we adopt the independent vector
analysis (IVA) based blind source separation method [30] to
generate independent signals from all channels. Here, the num-
ber N of channels and the number M of speakers are both set
to 4 when using a single reference array. An auxiliary function
[30], [46] is also used for more effective optimization and faster
convergence of the IVA method. After estimating the frequency-
domain demixing matrix, a back-projection technique [47],
[48] is applied to the estimated signals to restore their observed
amplitudes. More operational details can be seen in [49].

Second, in the multi-channel post-filtering module, we per-
form noise suppression on each channel from the IVA output
data, and mix all channels together. To start, a minima controlled
recursive averaging (MCRA) [50] noise estimator is used to es-
timate the stationary noise on each channel. For non-stationary
noise estimation of a reference channel, the other three channels
are averaged after subtracting their own stationary noise. Given
both stationary noise and non-stationary noise, the so-called de-
cision directed approach [14] is used to calculate the a priori and
a posteriori SNRs, which are used to perform Wiener filtering.
Ultimately, four processed channels are mixed together by linear
addition to get a single channel signal.

Thus far, we have initially preprocessed the array data,
removing the reverberation and improving the signal-to-noise
ratio (SNR). Signals with a higher SNR are considered as a
prerequisite for the following single-channel supervised learn-
ing methods, where large quantities of training data need to be
simulated from “theoretically clean data”. In simple terms, this
section serves as a preprocessing module to relax restrictions,
such as no reverberation and no noise. The pipeline of these
operations is briefly presented in the time-frequency domain as
follows:

P (t, f) = [G1, G2...GN (t, f)]W IV A_BP (f)XWPE(t, f)
(1)

where XWPE represents the multi-channel outputs of GWPE
dereverberation, W IV A_BP represents the time-invariant coef-
ficients achieved by IVA and back-projection, GN is the weight
of each channel in multi-channel noise reduction for which N
is known as 4 in advance, and P (t, f) is the final single-channel
output of the multi-channel preprocessing stage.
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Fig. 3. An illustration of our multi-channel preprocessing procedure to output
the single channel enhanced speech.

Fig. 4. The flow diagram of building the speech enhancement (SE) model in
the training set.

B. Single-Channel Speech Enhancement

Next, we use a deep learning based speech enhancement (SE)
model that is robust to the space geometry of the microphone
array and non-stationary noise. A strong complementarity was
demonstrated between CGMM-based and DNN-based mask es-
timation for speech enhancement in the best CHiME-4 system
[41]. Since the binaural data are not provided in the test set,
we decide to consistently use the training data generated by the
multi-channel preprocessing stage as our “clean” data to simu-
late noisy mixtures. A densely connected progressive learning
(PL) architecture for LSTM-based speech enhancement [51] is
adopted here, where the learning target is replaced by ideal ratio
mask (IRM) [52], [53]:

zIRM(t, f) =
S(t, f)

S(t, f) +N(t, f)
(2)

where S(t, f) and N(t, f) represent the power spectra of the
speech and noise signals at the time-frequency unit (t, f ), re-
spectively. The equation indicates the value of IRM is between
0 and 1, and it is robust as a learning target when the source
speech data are not “clean” enough. In the testing phase, the
utterances are processed by the speech enhancement model and
yield the estimated IRM that represents the speech probability
at the time-frequency bin level. When a noise mask needs to be
estimated, its value can be represented as 1− IRM . To better
illustrate the training procedure, we present it in Algorithm 1
and Fig. 4.

C. Single-Channel Speaker-Dependent Speech Separation

As analyzed in Section II-B, how to deal with the overlap-
ping speech is crucial in the CHiME-5 challenge. Previously,
much work [21]–[23] focused on single-channel multi-talker
speech separation. However, as reported in [54], most of those
approaches could not work well on the CHiME-5 data. For exam-
ple, the environment noise and spontaneous speech severely de-
stroy the embedding process adopted in many approaches such
as deep clustering [21] and DANet [22]. Finally, we adopt a
speaker-dependent speech separation scheme to effciently use
the available source data, which can directly avoid the permu-
tation problem discussed in PIT-based separation methods [23],
[25]. Note the proposed method is only conducted within each
testing session.

Algorithm 1: Speech Enhancement Model Training.
Step1:Noise data selection

1) Use oracle human transcriptions of the training set to
select the non-speech segments as noise data from
channel-1.

2) To prevent the existence of potential untranscribed
speech, use the official baseline speech recognition
model to eliminate recognizable segments.

Step2:Simulation data generation for training SE model
1) Generate noisy utterances by mixing selected “noise”

data and “clean” data processed by a multi-channel
preprocessing stage, while retaining the calculated
IRM as the learning target.

Step3:SE model training
1) Train a deep learning model using the log-power

spectral (LPS) features as input features and
corresponding IRMs as the output features under the
MMSE criterion.

1) First-Stage Speech Separation: As shown in Fig. 5, we
first use the non-overlapping part of the multi-channel prepro-
cessed data of each speaker to simulate mixed speech. To build
the training set of data pairs of target and mixed speech, the ut-
terances of the target speaker are mixed with speech from inter-
ference speakers at several SNR levels. Thus, different speakers
can obtain their own training data. In the first-stage, we consider
designing an approach to make an aggressive segregation of the
target speaker, namely, suppressing the interference speech as
much as possible.

Accordingly, we adopt a BLSTM model trained with an inter-
mediate approach named indirect mapping (IM) in [53], which
has also been explored in [55], [56]. This method is designed to
fully utilize the advantage of both mapping-based and masking-
based learning targets [53] of deep models, namely, LPS fea-
tures [19] and IRM [57]. Specifically, the IM-based approach
estimates the IRM by optimizing the BLSTM parameters via
the MMSE between the masked and the reference LPS features
[55], [56]:

EIM =
∑

t,f

(
log ẑIRM(t, f) + xLPS(t, f)− z̄LPS(t, f)

)2
(3)

where ẑIRM(t, f) is the BLSTM estimated IRM that is combined
with the logarithm operation and the input noisy LPS features
xLPS(t, f) to generate the masked LPS features. z̄LPS(t, f) are
the reference clean LPS features at the time-frequency unit (t, f ).
By using EIM , the model can not only suppress the interference
speech as much as possible in the manner of mapping-based
targets but also yield robust and moderate masks in the manner
of masking-based targets. After training, the speaker-dependent
speech separation model of every speaker can be generated,
which are denoted as SD-SS1.

However, useable non-overlapping data of an individual
speaker are insufficient, as shown in Table II, especially for
speakers such as P07, P08, and P26. Hence, we make full use
of the existing SD-SS1 model to expand the useable data size
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Fig. 5. The flow diagram of building the two-stage speaker-dependent speech
separation (SD-SS) models in one test session.

of a specific speaker by suppressing interference speech in all
original data without non-overlapping data selection. As a re-
sult, both non-overlapping speech and overlapping speech can
be seen as containing only target speaker’s speech. The speech
diversity of each speaker has been greatly enhanced. As seen
in Fig. 5, the role of first-stage speech separation is for data
cleaning and augmentation.

2) Second-Stage Speech Separation: In the second stage,
data separated by the SD-SS1 model are used to simulate new
training data with the same number of data pairs as in the first
stage. We use SD-SS2 to denote the separation model of the sec-
ond stage. In the training phase, we select the original IRM as
our training target because it leads to better speech intelligibility
and fewer speech distortions. This approach is more appropriate
and stable according to the final recognition performance. The
optimization function of the SD-SS2 model is defined as:

EIRM =
∑

t,f

(
ẑIRM(t, f)− z̄IRM(t, f)

)2
(4)

where ẑIRM(t, f) and z̄IRM(t, f) are the BLSTM estimated and
the reference IRM, respectively.

In general, the proposed sequential separation stages take full
advantage of both learning targets, where EIM aggressively re-
moves the interference speech and augments the data size of
usable non-overlapping speech, while EIRM is adopted as a bet-
ter choice for preserving the speech integrity and intelligibility
of the target speaker. Given the oracle speaker diarization in-
formation, the proposed speaker-dependent speech separation
approach can be conducted in each session. When in the test
phase, every utterance will be processed by its corresponding
speaker’s SD-SS2 model and yield the estimated IRM of the
target speaker. To better illustrate the procedure, we present the
whole process in Algorithm 2 and Fig. 5.

D. Multi-Channel Beamforming

Beamforming has been the most effective method in multi-
channel speech enhancement [33]–[35] and distant ASR [38],
[39]. In this section, we first briefly introduce our adopted GEV
beamformer which aims to maximize the signal-to-noise power
ratio in the output [37]. Using the information provided by
single-channel deep models, a CGMM is adopted to better esti-
mate the cross-power density matrices in the GEV beamformer,
while avoiding the speaker permutation problem.

Algorithm 2: Two-Stage Speaker-Dependent Speech Sepa-
ration (SD-SS) Model Training.

Step1:Training the first-stage model: SD-SS1
1) Use oracle human transcriptions of each session to

select the non-overlapping segments of every speaker.
2) Generate mixture utterances by mixing selected

segments of the target speaker and interference
speakers.

3) Train the BLSTM model with mixture features and
target speaker features under the loss function of EIM

and obtain the “SD-SS1” model of each speaker in one
session.

Step2:Data cleaning and augmentation
1) Rather than only using the selected non-overlapping

segments, obtain the estimated IRM of all complete
sentences by inferring the corresponding “SD-SS1”
model.

2) Recover the speech signals from the LPS features
masked by the estimated IRM.

Step3:Training the second-stage model: SD-SS2
1) Directly generate mixture utterances by mixing

complete sentences of the target speaker and
interference speakers created from Step2 while
retaining the calculated IRM as the learning target.

2) Train the BLSTM model with the mixture features and
the IRM under the loss function of EIRM and obtain
the “SD-SS2” model of each speaker in one session.

1) GEV Beamformer: In the short-time Fourier transform
(STFT) domain [58], the signal model can be simply expressed
as a vector notation:

y(t, f) = g(f)s(t, f) + n(t, f) = x(t, f) + n(t, f) (5)

where f is the frequency bin index and t is the frame index;
x(t, f) and n(t, f) are D-dimensional complex vectors that
consist of the STFT-domain representations of convolved speech
signals and noises, respectively; y(t, f) is the observed signal
from N microphones of the reference array, s(t, f) is the STFT
of the source speech signal; and g(f) is the signal steering vec-
tor. We assume that the analysis window is longer than all the
channel impulse responses and n(t, f) is relatively stationary.

The goal of a GEV beamformer is to find a linear vector of
filter coefficients W (f) to maximize the signal-to-noise power
ratio in each frequency bin [37]:

WGEV(f) = argmax
W

WH(f)Rxx(f)W (f)

WH(f)Rnn(f)W (f)
(6)

where Rxx(f) and Rnn(f) are the cross-power density matri-
ces of the speech and noise terms, respectively. The above cost
function has the same form as the Rayleigh coefficient. With
EV {} denoting the eigenvector corresponding to the largest
eigenvalue, we can have a closed-form solution:

WGEV(f) = EV {R−1
nn(f)Rxx(f)} (7)
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The cross-power density matrices can be defined as:

Rvv(f) =

T∑

t=1

λv(t, f)y(t, f)y
H(t, f) (8)

where v can represent the speech or noise class, and λv(t, f)
denotes the probabilities of v in the time-frequency bin (t, f).
To reduce the speech distortions introduced by the GEV beam-
former, a single-channel post-filtering is adopted as a blind an-
alytic normalization (BAN):

WBAN(f) =

√
WH

GEV(f)Rnn(f)Rnn(f)WGEV(f)/N

WH
GEV(f)Rnn(f)WGEV(f)

(9)

Finally, the estimate for the source signal is achieved as:

s̃(t, f) = WBAN(f)W
H
GEV(f)y(t, f) (10)

Obviously, the key of the GEV beamformer is the estimation of
time-frequency masks λv(t, f), which are used to calculate the
spatial correlation matrices.

2) CGMM-Based Mask Estimation With Deeply Learned
Masks: For time-frequency mask estimation, an approach us-
ing a speech spectral model based on a CGMM has been proved
to be beneficial to an ASR system in [38]. Under the assump-
tion of the sparseness of the speech in the time-frequency do-
main [36], the observed signals can be clustered into K + 1
classes with each representing a noisy speech signal or only
noise, where K denotes the number of sources (or speakers).
In practice, the number of speakers where overlapping speech
occurs is uncertain in the CHiME-5 data. Since we only need
to focus on the target speaker, in this study, we simply set the
clusters of observed signals as three kinds, corresponding to the
observed target speaker (T ), observed interference speakers (I)
and noises (N ) only. Thus, the generative model of the observed
signal y(t, f) is modeled by a CGMM with mixture weights
αm(f) satisfying

∑
m αm(f) = 1, as follows:

y(t, f) ∼
∑

m

αm(f)Nc

(
0,Θm(t, f),Rm(f)

)
(11)

where symbol m represents different categories, T , I and N ,
while Θm(t, f) and Rm(f) indicate the signal variance and the
covariance matrices of category m, respectively.

Conventionally, the CGMM parameters are estimated iter-
atively by the expectation-maximization (EM) algorithm with
poor initial values, for example, by simply using the covariance
matrix of the observed signals with a short duration or an iden-
tity matrix to initialize the Rm(f). However, the approach leads
to a severe problem that the permutation of the output signals
cannot be determined, especially when the number of speaker
sources is undetermined. To avoid it, we use our single-channel
deep learning based models to control the initialization process
of CGMM parameters. As shown in Fig. 2, speaker-dependent
speech separation models (SS models) yield the time-frequency
masks of the target speaker and interference speakers. An initial-
ization of noise masks is also provided by deep learning based
speech enhancement models (SE models), which can addition-
ally handle non-stationary noises. Thus, the covariance matrices

Algorithm 3: Mask Fusion of Four SD-SS Models in One
Session.

Input: Testing utterance of the target speaker A, and
SD-SS models of all four speakers A, B, C, D

Output: The improved mask estimation of the target
speaker A for CGMM initialization: λT

1: Given an individual testing utterance of speaker A,
define the estimated masks as: λTA, λTB , λTC , and
λTD, where λTN indicates the output of the SD-SS
model from speaker index N .

2: for each time-frequency bin (t, f ) do
3: initialize λT (t, f) with the mask value of the target

speaker λTA(t, f)
4: find the max value max and its corresponding speaker

index M among four λTN values
5: if max < 0.3 then
6: λT (t, f) = 0
7: end if
8: if index M = A and max ≥ 0.5 then
9: λT (t, f) = 1
10: end if
11: if index M �= A and max ≥ 0.8 then
12: λT (t, f) = 0
13: end if
14: end for

of three categories in the CGMM are all initialized from our deep
learning based masks in Sections III-B and III-C.

After the convergence of the EM algorithm, the posterior
probabilities of three classes are merged into two categories
indicating the target speaker speech and other sounds. The
time-frequency masks are denoted as λTc and 1− λTc, where c
indicates the convergence of the CGMM. Finally, the λv in the
GEV beamformer is determined.

3) Mask Fusion: As mentioned above, good parameter ini-
tialization is quite important for the CGMM method. To attain
better estimation, we further utilize a mask fusion approach to
take advantage of the speaker-specific information of all 4 speak-
ers in one session. The details are presented in Algorithm 3. Af-
ter combining all the information from every speaker-dependent
model, the confidence of the probability mask in each time-
frequency bin is much enhanced. This approach is equivalent to
getting global information by combining the knowledge of each
model, and achieves more reliable mask estimation than using
only one model.

4) SD Mask Post-Filtering: Unlike the conventional output
of a GEV beamformer in Eq. (10), we add another operation,
namely SD mask post-filtering, by multiplying the masks of
the target speaker that are attained after the convergence of
the CGMM. The process provides strong nonlinear suppression
ability in the single-channel time-frequency domain. In our ex-
periments, this step was important to improve the final speech
recognition results. The final output is written as:

s̃p(t, f) = WBAN(f)W
H
GEV(f)y(t, f)λTc(t, f) (12)
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IV. EXPERIMENTAL SETUP

The CHiME-5 challenge contains two tracks, a single array
containing only the reference array data and a multiple array
containing data from all six arrays. placed in different positions
of the home. Here, we focus on the single-array track where
only one reference array can be used to recognize a given test
utterance. In this section, we introduce our experimental config-
uration.

A. Official ASR Baseline in CHiME-5

To better illustrate the effectiveness of our proposed front-
end, we used the official time delay neural network (TDNN)
model [59] with lattice-free maximum mutual information (LF-
MMI) training via the KALDI toolkit [60]. Mel-frequency cep-
stral coefficients (MFCCs) and i-vectors were adopted as input
features. The data used in the acoustic model training were only
from the official training set, including both close-talking data
from binaural microphones and far-field data from the reference
microphone array. Three different levels of speed perturbation
were conducted to augment the data size, which are 0.9, 1.0 and
1.1. In the front-end, a weighted delay-and-sum beamformer
[61] was used as the default multi-channel speech enhancement
approach. The baseline WER of 81.3% was officially reported
on the development test set with the officially provided 3-gram
language model. Following the official approach as in [42], our
reproduction of the baseline achieved the WER of 80.6%, which
was slightly better. In the rest of the paper, the results of the base-
line system refer to our reproduced version.

B. Single-Channel Model Training

As illustrated in Fig. 2, multi-channel preprocessing did
not rely on model training, and the generated data remained
unchanged which was approximately 40 hours. While for
single-channel deep learning based speech enhancement and
separation, the necessary training steps were required. How-
ever, there were two big differences between them. First,
the speech enhancement approach was speaker-independent
while the separation approach was speaker-dependent. Second,
the enhancement model was built on the whole training set,
while the separation model was built on each testing session
using the oracle speaker diarization information.

1) Speech Enhancement Model Training: The data multi-
channel preprocessing approach was considered as “clean”
source data. Then, unlabeled segments derived from human tran-
scriptions were extracted from the channel-1 data, as the noise
corpus. Utterances from “clean” speech were corrupted with the
abovementioned noise segments at three SNR levels (−5 dB,
0 dB and 5 dB) to build a 120-hour training set, consisting
of pairs of clean and noisy utterances. For model architecture,
we adopted the densely connected progressive learning based
speech enhancement model in [51]. All signals were sampled at
the 16 kHz rate. The frame length and shift were 512 and 256
samples, respectively. The 257-dimensional feature vector was
used for both LPS and IRM targets. The computational network

toolkit (CNTK) [62] was used for training. More training details
can be found in the best configuration in [51].

When in the testing phase, only channel-1 signals of the refer-
ence array were adopted as the input to the speech enhancement
model to maintain consistency with the noise types in the simu-
lated training mixtures. The generated mask estimations repre-
sented the speech presence probability in each time-frequency
bin.

2) Speech Separation Model Training: As described in
Section III-C, in the first stage, we used selected non-overlapping
segments to simulate 50,000 mixture utterances of the target
speaker, with the corruption from other interference speakers at
five SNR levels (−5 dB, 0 dB, 5 dB, 10 dB and 15 dB), to train
the SD-SS1 model. Then, data cleaning and augmentation were
accomplished after utilizing the estimated IRM taken from the
SD-SS1 model. Next in the second stage, the separated sentences
were used to simulate another 50,000 utterances for training the
SD-SS2 models.

The input features were the same as the speech enhancement
model. However, to better utilize the sequential information, we
used a two-layer BLSTM for both SD-SS1 and SD-SS2 model,
each direction with 512 cells. Additionally, 7-frame expansion
was used for the input. In testing, a given utterance was directly
sent to the corresponding SD-SS2 model. The generated masks
represented the speech presence probability of the target speaker
in each time-frequency bin.

C. Multi-Channel Beamforming

For the GEV beamformer, the multi-channel STFT coeffi-
cients were extracted from the test speech at a 16 kHz sampling
frequency using a Hanning window of length 512 and shift of
128, resulting in 257 frequency bins. Given the estimated time-
frequency masks of the target speaker, interference speakers and
noise, the CGMM-based mask estimator was initialized. After
convergence of the EM algorithm, the GEV beamformer gener-
ated the final speech by using the final time-frequency mask of
the target speaker.

V. RESULTS AND ANALYSIS

Because the oracle text labels of the evaluation set were not
provided, we explored the front-end methods on the develop-
ment set, which contained two separate sessions, namely, Ses-
sion 02 (S02) and Session 09 (S09). Typically, S02 was used for
tuning parameters, and S09 was used for evaluation.

A. Single-Channel Speaker-Dependent Speech Separation

In Table III, WER comparisons are listed at different stages of
our proposed speech separation system on S02 from the devel-
opment set. We fixed the back-end acoustic model and evaluated
different versions of processed data. Moreover, individual results
of all 4 speakers, including P05, P06, P07 and P08, are also
presented to show the effectiveness of the speaker-dependent
strategy.

Several observations could be made. First, our multi-channel
preprocessing approach yielded slightly better results than the
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TABLE III
WER COMPARISON OF THE OFFICIAL BASELINE METHOD USING BEAMFORMIT

AND OUR METHODS IN SESSION 02

official BeamformIt method [61], which was attributed to the
dereverberation using GWPE [45]. Although this gain was not
very significant, multi-channel preprocessing was still needed
for the following speech separations to work well, as it was not
necessary to explicitly consider the effects of strong noise and
reverberation. Next, the separated speech achieved by the SD-
SS1 model reduced the WERs of all speakers except P07. There
were two main problems of the first-stage speech separation.
One problem was that the training target used for SD-SS1 might
lead to large speech distortions. The other problem was that each
target speaker had little usable data quantity. For instance, P07
only had approximately 5.6 minutes of non-overlapping data,
which was insufficient for training a speaker-dependent model.
After data cleaning and augmentation, we attained more and
purer speech for every speaker, which enabled the second stage
to yield better performance. In the last column, SD-SS2 reduced
the average WER to 74.8%, an absolute WER reduction of 6.4%
in comparison to the official baseline method. By comparing the
results of SD-SS1 and SD-SS2, the proposed approach greatly
improved the performance for speakers whose useable data were
limited, such as P07 and P08. These results demonstrated that
the data cleaning and augmentation operations between the two
stages were indeed effective.

To better illustrate the effectiveness of our speech separa-
tion system, an utterance of P05 selected from Session 02 was
presented, as shown in Fig. 6. In the uppermost part, the distri-
bution of speech from different speakers was drawn after man-
ual audiometry, where red bars indicated the target speaker P05
and blue bars denoted the corresponding interference speaker
P06. Compared with the spectrogram after multi-channel pre-
processing, speech processed by SD-SS1 models removed most
of the interference parts both on overlapping regions and non-
overlapping regions. Though it also introduced some speech dis-
tortions to the target speech, the spectrogram indicated that the
SD-SS1 model greatly met our expectation of data cleaning. By
using these different learning targets introduced in Section III-
C, the final processed speech made a trade-off between speech
distortion and speech intelligibility, yielding better recognition
performance. As seen in the bottom of Fig. 6, the power and
strength of interference speech were largely impaired.

The overall results of the development set were listed in Ta-
ble IV. Compared with S02, the performance gains were rel-
atively small in S09. On the one hand, the recording quality
in S09 was worse than that in S02. Speech sounds were often
imperceptible, even by human auditory sensation. On the other
hand, 4 speakers in S09 are all female, which made it quite

Fig. 6. An utterance of speaker P05 from Session 02. In (a), the red bar repre-
sents speech regions of the target speaker P05, while the blue bar represents the
interference speaker P06. (b)-(d) are the spectrograms from multi-channel pre-
processing, SD-SS1 model and SD-SS2 model, respectively. The spectrogram
after our final multi-channel beamforming is listed in (e).

TABLE IV
OVERALL WER COMPARISON ON THE DEVELOPMENT SET

challenging to separate them from each other [63]. Compared
with multi-channel preprocessing, the recognition performance
was progressively improved by two separation stages. Accord-
ing to different scenarios, the results in the living room were
better than those in the dining room and kitchen, partially due to
fewer environmental noises. Overall, compared with the WER
of 81.3% reported in the official baseline [42], our best result for
the single-channel setting yielded an absolute WER reduction
of 5.3%.

Before moving to the next stage of multi-channel beamform-
ing, we further explored the effectiveness of our single-channel
estimated masks in a mismatch manner with official BeamformIt
data. Besides the abovementioned separation masks estimated
by SD-SS2 models, enhancement masks were also generated as
the description in Section IV-B1. Those two kinds of masks were
separately applied to the BeamformIt data, then spectral features
of masked speech data were recognized again by the official
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TABLE V
OVERALL WER COMPARISON ON THE DEVELOPMENT SET TO SHOW THE

EFFECTIVENESS OF ESTIMATED TIME-FREQUENCY MASKS FROM

OUR DEEP LEARNING BASED MODELS

Fig. 7. Illustration of masks from deep learning based models, including the
speech enhancement model and speaker-dependent speech separation model
from every speaker.

back-end model. The detailed WER comparison was presented
in Table V. After masking speaker-dependent speech separation
masks, the overall WER was significantly reduced from 80.6%
to 76.6%. Though one enhancement mask illustrated in Fig. 7
seemed acceptable, our speech enhancement model was of little
help to improve the recognition performance according to the
WERs.

B. Multi-Channel Beamforming With Deeply Learned Masks

1) The CGMM Settings: Unlike former CHiME challenges,
the recognition performance of CHiME-5 is severely degraded,
mainly due to the conversational speaking style. To quantita-
tively explore the difference, we first used a CGMM that only
considered speech and noise, denoted as CGMM1. The num-
ber of categories in CGMM was set to 2, while the deep learn-
ing based speech enhancement model provided the noise masks
for parameter initialization. Second, another 2-class CGMM,
denoted as CGMM2, was adopted with the initialization from
SD-SS models, which aimed to separate only the target speaker
and other interferences. Furthermore, we extended the CGMM
with three classes, consisting of the target speaker, interference

TABLE VI
THE WER COMPARISON ON SESSION 02 FOR MULTI-CHANNEL BEAMFORMING

BASED ON DIFFERENT CGMM SETTINGS

speakers and the noise, namely CGMM3. The comparison of
CGMM settings is summarized as follows:

1) CGMM1: 2 classes, modeling noise and mixture speech,
with the initialization by the SE model

2) CGMM2: 2 classes, modeling the target speaker and other
sounds (including noise and potential interference speak-
ers), with the initialization by SD-SS models

3) CGMM3: 3 classes, modeling the target speaker, interfer-
ence speakers and noise, with the initialization by both
the SE model and SD-SS models

The recognition performance of different CGMM settings
was shown in Table VI. Compared with our baseline system,
CGMM1 yielded a relatively small reduction in average WER in
Session 02, from 81.2% to 78.4%. However, CGMM1 underper-
formed our proposed single-channel speech separation approach
presented in Table III (with a WER of 74.8%), which could be at-
tributed to two possible reasons. One reason was due to the com-
plex environmental factors in CHiME-5, while the other reason
implied that speech separation masks were more effective than
speech enhancement masks in terms of recognition accuracy,
as also stated in Table V. Next, CGMM2 used target speaker
probability masks initialized by our SD-SS models instead of
noise masks in CGMM1. The WER of CGMM2 was signifi-
cantly reduced to 68.1%, indicating that the speaker-dependent
design was quite important for the CHiME-5 challenge. Finally,
CGMM3 modeled all three categories and achieved a better
WER (65.9%) result than both CGMM1 and CGMM2.

As mentioned in Section III-D2, the questions about whether
there were interference speakers and the number of them were
both uncertain. It was worth exploring the relationship between
the number of categories set in the CGMM and the final perfor-
mance on different classes of data. The bottom row in Table VI
presents the average WER results of single-speaker segments
and multi-talker segments, denoted as Single and Multi. These
segments were classified according to official time annotations.
From CGMM2 to CGMM3, where the class number changed
from 2 to 3, the WER of single-speaker segments suffered a
slight increase from 63.5% to 64.7%. However, the WER of
multi-talker part obtained an obvious decline, from 68.2% to
65.9%. In fact, there was a big difference between the amounts
of these two kinds of segments. In S02, the single-speaker part
contained 87 segments, while the multi-talker part had 3735 seg-
ments. Thus, the overall performance largely depended on the
performance of the multi-talker segments, which also made it
reasonable to set the number of CGMM classes to 3.
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TABLE VII
ANALYSIS OF DIFFERENT COMPONENTS IN CGMM2

2) Important Components in Multi-Channel Beamforming:
In order to better evaluate the effectiveness of many compo-
nents of our proposed approach, we exhibited some results of
discarding some steps in CGMM2 in Table VII. The experiments
revolved around the adoption of two components, one was about
the CGMM optimization process for mask refinement, and the
other one was about the SD mask post-filtering proposed in Sec-
tion III-D4. Obviously, Both methods contributed greatly to the
final performance, that made them indispensable in our final
approach as written in Eq. (12).

3) Mask Fusion: In addition to using only the target speaker’s
model, the optional stage named “Mask Fusion” in Fig. 2 could
be activated by using all four SD-SS models in one session.
From the rightmost column in Table VI, remarkable improve-
ments were obtained, especially for P07 and P08 whose usable
non-overlapping data were very limited. It demonstrated that
using the information from speaker-dependent models of other
speakers could help these weakly-trained target speaker models
which were short of source data. Masks generated by deep learn-
ing models were also illustrated in Fig. 7. Speaker-dependent
speech separation models basically captured the corresponding
speaker’s presence, even in the overlapping part between P05
and P06. For those mismatched models, such as P07 and P08,
the false alarm was also acceptable. Only when all separation
models performed their tasks could the mask fusion strategy
maximized its abilities, which was also the reason why the mask
fusion achieved the best performance in Table VI.

C. Effects of Front-End for Back-End Fusion

Up to now, the effectiveness of our proposed speaker-
dependent front-end has been verified, especially regarding
the superiority of the deep learning based two-stage speaker-
dependent approach. One more advantage of the supervised
method was that it can provided multiple separation models
using several different training configurations. For example,
the original non-overlapping segments were mostly too short,
the simulated mixture data could not be effectively utilized
by BLSTM networks to capture long-term sequential infor-
mation. Accordingly, we concatenated short segments to form
long segments and trained a new batch of SD-SS models with
them. To improve the performance stability, different versions
of segregated speech from the short-segment models and long-
segment models were combined via lattice combination with
equal weights, while keeping the back-end system unchanged.
The overall ASR results on the development set were shown in
Table VIII. Compared with the baseline, our proposed front-end
was able to reduce the average WER by absolute 13.0%.

TABLE VIII
OVERALL WER COMPARISON ON THE DEVELOPMENT TEST SET

VI. DISCUSSION

A. System Settings

In this work, the proposed overall system contains a number
of experimental settings or parameters. Those settings can be
roughly divided into two categories. One refers to the most cru-
cial settings related to system design, which were explored by a
series of experiments, including: the design of learning targets
in the two-stage speech separation, the process of data selection,
the CGMM settings, and the final expression of the output sig-
nal. For those settings, we’ve presented comprehensive results
to support the effectiveness of them in Section V.

The other one category consists of parameters which were
not verified as the optimal schemes for our proposed system.
For example, we used a progressively learning based uni-LSTM
network for speech enhancement tasks and a BLSTM network
for speech separation tasks. They were directly used in according
to our experiences of both tasks, no detailed comparison was
conducted about the model architectures. On the base of our
proposed framework, we believe that using more powerful or
well-tuned models is possible to get better results.

B. System Complexity

As seen in Fig. 2, the overall diagram is too complicated for
a practical ASR system, let alone using extra oracle diarization
information. Here we discuss several future directions to sim-
plify the system complexity. First, speaker-independent speech
separation of multi-talker speech under noisy conditions is the
most basic solution to the CHiME-5 challenge.

Second, multi-channel preprocessing was theoretically
needed as it was expected to prepare enhanced speech for the
deep-learning based mask estimation methods. However, it’s un-
able to perfectly remove the existing noise and reverberation, and
the recognition results of it showed little improvements than of
official BeamformIt, as listed in Table IV. We can consider per-
forming both speech separation and speech enhancement train-
ing directly on official BeamformIt data, so the multi-channel
preprocessing and channel-1 data selection can be omitted. It’s
also helpful to evaluate the generalization ability of the proposed
deep-learning based mask estimation methods.

C. Evaluation Metric of Multi-Talker Data

The reported WERs of CHiME-5 data are far above com-
mon human performance level, especially for far-field array data.
Even for binaural data, the official baseline only yields a WER
of 47.9%. We think it’s still an open question about finding a
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good evaluation method of such multi-talker data, such as set-
ting multiple labels of a given overlapping sentence. For over-
lapping data, currently a pure recognition model doesn’t know
how to discriminate different persons. However, it’s also diffi-
cult for humans to recognize every word of each speaker within
one chance. More robust and felexible front-end processing is
needed to separate signals of different talkers.

VII. CONCLUSION

In this study, we have presented a novel speaker-dependent
approach which can effectively handle far-field multi-talker
speech in the CHiME-5 challenge. Unlike previous solutions,
the proposed method jointly addresses multiple environmen-
tal factors and conversational speaking styles in the CHiME-5
data. Specifically, a two-stage single-channel speaker-dependent
speech separation framework is designed to extract speech of
the target speaker in each session, based on the given oracle
speaker diarization information, allowed by the challenge rules.
In addition, the estimated probability masks of the target speaker
finely avoid the permutation problem in the CGMM-based mask
estimator with three classes. Then, a GEV beamformer with
CGMM-based mask estimation and SD mask post-filtering is
adopted for enhancing the signal. Compared with the officially
reported results, our proposed approach achieved a significant
average WER reduction which declined to 67.6% from 81.3%.
Finally, by integrating the proposed front-end, our final system
ranked the first place of all four evaluation categories among
all participating systems in the CHiME-5 challenge. In future
studies, we plan to relax the assumptions involving the ora-
cle speaker diarization information, and simplify our front-end
system.
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