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ABSTRACT

In this paper, we design a novel front-end processing system for
speaker diarization under realistic conditions with challenging back-
ground noises. To cope with diversified environments, we first ex-
tend our perviously proposed progressive learning based speech en-
hancement model by adding multi-task learning in each intermediate
layer. The corresponding progressive multi-target (PMT) in various
layers includes both progressive ratio mask (PRM) and progressively
enhanced log-power spectra (PELPS) with specified signal-to-noise-
ratios (SNRs). Speech distortions are commonly introduced during
the front-end processing, which often deteriorate the back-end per-
formance. However, the proposed speech enhancement model can be
regarded as a bagging of models with multiple learning objectives,
which provides flexibility for selecting the most appropriate output
for robust speaker diarzation. In addition, a global SNR estimation
is performed using the results of deep neural network (DNN) based
speech activity detection (SAD) to decide whether the audio should
be enhanced. We evaluate the speaker diarzation performance on the
second DIHARD dataset which includes several different realistic
conditions. Compared with the original data, experiments demon-
strate that the enhanced data processed by our proposed method can
effectively avoid the performance loss of every single domain, and
achieve consistent improvements in most domains.

Index Terms— Speech enhancement, speaker diarization,
speech activity detection, DIHARD data, SNR estimation

1. INTRODUCTION

Speaker diarization is a task to segment an audio recording into
speaker homogeneous regions without any prior information includ-
ing the number of speakers [1, 2], the dialog styles, environmental
scenes and so on. Good speaker diarization results are of great help
for applications such as speech transcription, dominant speaker de-
tection, speech indexing and conference summary [3]. All of these
areas are extremely important for promoting and popularizing the
practical application of speech technology in everyday life. A con-
ventional speaker diarization algorithm can be roughly divided into
two main components: speaker segmentation and clustering. De-
pending on the difference of sequential order between these two
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components, most of the advanced speaker diarization systems fall
into two categories: the bottom-up and the top-down approaches
[4]. The bottom-up method, also known as agglomerative hierarchi-
cal clustering (AHC) [5], first cuts the entire speech recording into
smaller segments, each segment ideally from only one speaker. The
closest segments selected by some distance metrics like Bayesian in-
formation criterion (BIC) [6], are merged iteratively until a certain
stopping criterion is satisfied. Instead, the top-down approach suc-
cessively divides the speech segments to new clusters until the num-
ber of speakers is reached. In general, bottom-up approaches are
far more popular than top-down ones. Recently, i-vector has shown
great effectiveness in the field of speaker recognition [7, 8]. It is nat-
ural to introduce i-vector to speaker diarization as a more powerful
feature to enhance speaker specific information. Moreover, a proba-
bilistic linear discriminant analysis (PLDA) scoring function [9, 10]
is learned to discriminate whether two i-vectors are from the same
person.

A series of diarization challenges, namely DIHARD [11, 12],
have been focused on speaker diarization for challenging recordings
where there is an expectation that the current state-of-the-art will fare
poorly. The data used in DIHARD were drawn from a diverse sam-
pling of sources such as clinical interviews, speech in restaurants,
extended child language acquisition recordings [13], web videos,
speech in the wild and etc [14]. To overcome the noise issues in sin-
gle channel speech, many great efforts have been made in the field of
speech enhancement. In [15, 16], ideal ratio mask (IRM) was used to
make binary classification on time-frequency (T-F) units for speech
separation. Previously, we proposed a deep neural network (DNN)
framework to learn the direct mapping from noisy to clean speech
in log-power spectral (LPS) domain, which demonstrated its superi-
ority to the traditional enhancement methods [17, 18], especially for
tracking the non-stationary noises. For speaker diarization, we have
designed a deep denoising model using the advanced LSTM archi-
tecture with the novel design of hidden layers via densely connected
progressive learning and output layer via multiple-target learning in
[19]. It has been shown to have stronger potentials in coping with
realistic noisy environments than traditional approaches. In [20],
much larger amounts of training data were adopted to guarantee bet-
ter generalization ability.

However, it has been observed that speech enhancement is not
always beneficial to the performance of speaker diarization. As pre-
sented in [21, 22], improvements were attained only in few domains,
such as ADOS and Seedlings. Compared with the original data,
the enhanced data achieved worse overall performance, especially
when using oracle speech activity labels. It’s also the reason why
the official baseline of DIHARD-II [12] adopts the same enhance-
ment model with [20], but not in tracks with oracle SAD. The un-
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Fig. 1. The overall diagram of our proposed front-end processing system for speaker diarization.

derlying reason is often attributed to speech distortions which are
inevitablely introduced during the front-end processing. It’s neces-
sary to explore a practical front-end method to control the degree of
speech enhancement in realistic environments.

In this work, we first extend our previously proposed progres-
sively learning based speech enhancement model by adding multi-
task learning in each intermediate layer, namely progressive multi-
target network. Comprehensive comparisons have been conducted
among all intermediate targets and the outermost targets in terms
of speaker diarization performance. To make it more practical in
any conditions, we use a DNN SAD based SNR estimation to de-
cide whether the recording should be enhanced or not. The pro-
posed methods are evaluated in the development set of the second
DIHARD challenge. The paper is organized as follows. In Section
2, the PMT speech enhancement network is proposed along with the
SNR estimation approach. Section 3 and Section 4 present the ex-
perimental setups and results. In Section 5, we summarize several
findings and conclusions.

2. FRONT-END PROCESSING

In [19, 20], the model structure adopted the advanced network de-
sign of hidden layers via densely connected progressive learning of
hidden layers and multi-objective learning of the output layer. Com-
pared with the input noisy speech, the SNR of the intermediate tar-
get increased gradually, while the output layer still corresponded to
the clean speech. We used LSTM layers to fit the relationship be-
tween different targets, this stacking style network could learn mul-
tiple targets progressively and efficiently. In order to make full use
of the rich set of information from the multiple learning targets, we
updated the progressive learning in [23] with dense structures [24]
in which the input and the estimations of intermediate targets are
spliced together to learn next target. The overall method aimed to
predict the clean LPS (CLPS) features and IRM given the input noisy
LPS (NLPS) features with acoustic context.

Although we have evaluated the effectiveness of the deep-
learning based speech enhancement method for the speaker diariza-
tion task in adverse environments, the performance analysis was not
deep enough, especially for each intermediate target. Furthermore,
the effect of those different learning targets on the performance of
speaker diarzation remains unclear. For this purpose, we present a
newly designed progressive multi-target network. To avoid possible
speech distortions in quiet scenes, we also utilize a SAD based SNR
estimation as an additional switch for the enhancement step.

2.1. Progressive multi-target (PMT) network

As illustrated in Fig. 2, the whole PMT network is divided into suc-
cessively stacking blocks with one LSTM layer and one fully con-
nected layer via multi-target learning per block. The fully connected
layer in every block is also referred to as a target layer, which is de-
signed to learn intermediate speech targets with a higher SNR than
the targets of previous target layers. A series of progressive ratio
masks (PRM) are concatenated with the progressively enhanced log-
power spectra (PELPS) features together as the learning targets. The
PELPS targets are set to LPS features with progressively increasing
SNRs, which are the same in [19, 20].

The newly designed PRM is defined as follows:

zPRM(t, f) =
S(t, f) +NT(t, f)

S(t, f) +NI(t, f)
(1)

where S(t, f) represents the power spectrum of the speech signal at
the time-frequency (T-F) unit (t, f),NT(t, f) andNI(t, f) represent
the power spectrum of the noise in one PRM target and input signals
at the T-F unit (t, f), respectively. When the numerator of Eq. (1)
becomes the power spectrum of the clean speech signal, NT(t, f) is
zero and zPRM(t, f) is regressed to the traditional IRM zIRM(t, f).
Hence, in practical use, the PRM can also serve as a progressively
stronger enhancing ability.

Here, the total number of target layers K is set to 3. Corre-
spondingly, a weighted MMSE criterion is designed to optimize all
network parameters randomly initialized withK target layers as fol-
lows:

EMTL(k) =

k∑
m=1

EPELPS(m) + EPRM(m)

EPELPS(m) =
1

N

N∑
n=1

‖Fm(x̂0
n, x̂

1
n, ..., x̂

m−1
n ,Λm)− xm

n ‖22 (2)

EPRM(m) =
1

N

N∑
n=1

‖FPRM(x̂
0
n, x̂

1
n, ..., x̂

m−1
n ,ΛPRM)− xPRM

n ‖22

where EMTL(k) corresponds to the multi-target loss in kth tar-
get layer. It’s the sum of two kinds of losses, namely EPELPS(m)
and EPRM(m) from all lower layers. x̂m

n and xm
n are the nth D-

dimensional vectors of estimated and reference target PELPS feature
vectors for mth target layer, respectively (m > 0), with N repre-
senting the mini-batch size. x̂0

n denotes the nth vector of input noisy
LPS features with acoustic context. Fm(x̂0

n, x̂
1
n, ..., x̂

m−1
n ,Λk)
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Fig. 2. An illustration of our proposed progressive multi-target net-
work for speech enhancement, where the number of progressive
stages K is set to 3.

is the neural network function for mth target with the dense struc-
ture using the previously learned intermediate targets from x̂0

n

to x̂m−1
n , and Λm represents the parameter set of the weight

matrices and bias vectors before mth target layer, which are op-
timized in the manner of BPTT with gradient descent. xPRM

n ,
FPRM(x̂

0
n, x̂

1
n, ..., x̂

K−1
n ,ΛPRM), and ΛPRM are corresponding ver-

sions to PRM targets.

2.2. SAD based global SNR estimation

Though the oracle SAD labels are provided, we find manual anno-
tations in different files vary a lot in scale and accuracy. Therefore,
we train a deep neural network (DNN) based framewise binary clas-
sification model to detect speech frames. When testing, we choose a
strict threshold to discard more silence and non-speech.

In some cases, the speaker diariziation performance suffers an
obvious decline after using speech enhancement, especially for some
quiet environments. The main reason can be attributed to the distor-
tions generated in the front-end. Given the estimated speech activity
information, we adopt a utterance-level SNR estimation to determine
the application scope of speech enhancement. We assume that the
observed signal x(t) is the sum of the noise signal n(t) and speech
signal s(t), t denotes the time index. Similarly, we also assume that
noise and speech signals are independent. A global SNR can be es-
timated as follows [25]:

SNRglobal = 10 log10
P (x)− P (n)

P (n)

= 10 log10

1
A

A∑
a=1

‖x(a)‖2 − 1
B

B∑
b=1

‖n(b)‖2

1
B

B∑
b=1

‖n(b)‖2

(3)

where A denotes the total points of data which are determined
as containing speech by the segmentation information from a DNN

SAD or official reference SAD, whileB denotes the number of those
non-speech data. After estimating the SNR, only audios with low
SNRs need to be processed by the speech enhancement model. The
SNR threshold is set to 20 dB and the SNR preselection procedure
is shown in Fig. 1.

3. EXPERIMENTAL SETUPS

3.1. Front-end processing

To improve the generalization ability of speech enhancement model,
we built a 1000-hour training set. The clean speech data were
collected from WSJ0[26], AIShell-1[27], THCHS-30[28] and
Librispeech[29]. In addition to the 115 types of noises in [19],
MUSAN [30] corpus was also adopted. The noisy mixture were
made at three SNR levels (-5dB, 0dB and 5dB), and the progressive
increasing SNR between two adjacent targets was set to 10 dB. The
audios were sampled at 16 kHz rate and the frame length is 256 sam-
ples. Therefore, both the PELPS and the PRM were 257 dimension.
As illustrated in Section 2.1, 7-frame expansion was used for the
input, the number of LSTM memory cells in each layer was 1024.

Considering utility efficiency, our SAD model was based on
a feed-forward neural network using 2 hidden layers with 256
and 128 hidden units in each layer. The acoustic features were
39-dimensional perceptual linear prediction (PLP) features (13-
dimensional static PLP features with ∆ and ∆∆) and included
an input context of 5 neighbouring frames (±2), yielding a final
dimensionality of 195 (39 × 5). The overall architecture was 195-
256-128-2. A 600-hour home-made corpus in iFlytek was used for
training with its human annotations.

3.2. Speaker diarization system

We used a standard speaker diarization system described in [20],
which consisted of the following modules: Bayesian information
criterion (BIC) [6] based segmentation and clustering, i-vector ex-
traction, PLDA scoring, and resegmentation. A sliding window
analysis was first conducted to detect speaker turns in extracted
39-dimensioanl PLP features of all detected segments. Then, we
performed a global agglomerative hierarchical clustering (AHC)
algorithm [5] on all splitted segments using the BIC. The cluster-
ing process stoped when the total cluster number reached a default
maximum speaker number.

Next, we used the i-vector as a more powerful speaker repre-
sentation. When training the i-vector extractor, the UBM contained
2048 Gaussians and the total variability (TV) matrix reduced the rep-
resentation dimension to 400. The corpora we used here include
VoxCeleb1 [31] and VoxCeleb2 [32]. The i-vectors were mean nor-
malized, whitened, length-normalized and then used for training a
PLDA model to measure the similarity. When clustering, we repeat-
edly merged the closest two segments based on the PLDA scoring.
At the end, a resegmentation over frames was performed via Viterbi
decoding on the GMM of each speaker, which should be aligned to
oracle SAD boundaries.

4. RESULTS AND ANALYSIS

4.1. Evaluation metric

We evaluate the diarization error rate [33] on the DIHARD develop-
ment set where oracle SAD labels are provided. Collar is set to zero
and multiple speakers in overlap speech segments are counted. Here
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we use oracle SAD and directly compare the speaker error part which
can fairly represent the trend of the overall DER. Rather than target-
ing the best number, we would like to present the detailed analysis
on the effects of speech enhancement to robust speaker diarization.

4.2. Comparison between baseline model and PMT model

Since the proposed model structure is an improved version of the
original method [20] which is also adopted in the official DIHARD-
II baseline1 [12], here we also take it as our baseline model and com-
pare the performance of the two methods. The details of them are
presented in Table 1, we use the mask outputs in the outermost layer
of both models to make the comparison fair which keeps the same
usage with [12, 20]. Given that the speaker error of the original data
is 12.1%, both methods yield improvements. The main difference
between these two model architectures is the adoption of PRM tar-
gets. However, we use a larger training data set here, which is also
the reason for the better results.

Table 1. Details comparison between baseline model and the pro-
posed PMT model.

SE models Training data PL stages PRM targets SpkErr
Baseline[12, 20] 400h 3 No 11.62%
Proposed model 1000h 3 Yes 11.39%

4.3. Detailed analysis of different outputs of PMT model

Fig. 3 lists the diarization performance of all individual outputs from
PMT speech enhancement network in terms of speaker error. Sev-
eral observations can be made. First, it’s obvious to see that PELPS
in the outermost target layer 3 yields the worst performance, which
is a common method that directly learns the clean speech during
the training process [18, 21]. An important reason is that in a mis-
matched real test scenario, excessive noise reduction can lead to
great nonlinear distortions which can severely hurt the back-end di-
arization performance. However, performance of the PELPS greatly
improves as the hierarchy is reduced, given that PELPS outputs of
target layer 1 and 2 correspond to 11.0% and 11.96%, respectively.
It indicates that the introduced distortions of PELPS targets can be
well controlled when using the shallow outputs of PMT network.

Second, as a contrast, the performance of mask-based targets
PRM is much more stable which is at least better than the original
data. Still, the results from target layer 1 are superior than those
higher layers. As described in Section 2.1, each target layer is given
a specified SNR gain. It’s shown that the target of PELPS1 and
PRM1 with +10dB SNR gain is optimal in speaker diarzation. As
suggested in [34], a simple ensemble method by averaging the PRM
and PELPS outputs in feature level could improve the enhancement
metrics. However, similar improvement doesn’t migrate to speaker
diarization. Compared with original data, the best performance by
PRM1 reduces the average speaker error by absolute 1.15%, from
12.1% to 10.95%. It indicates that in order to reduce mismatches
in realistic situations, it is better to consider using relatively higher
SNR speech as the training target instead of pure clean speech.

4.4. Performance on different data domains

To explore the difference between the original data and the enhanced
data, we list the domain-wise results in Table 2. As we can see,

1https://github.com/staplesinLA/denoising DIHARD18

表格 1

Original PRM PELPS Ensemble

Target layer: 1 12.1 10.95 11.00 11.07

Target layer: 2 12.1 11.33 11.96 11.25

Target layer: 3 12.1 11.39 13.01 12.53
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Fig. 3. Histogram of the speaker error of different enhanced outputs
in the PMT network.

the baseline speech enhancement model obtains improvements in
many domains, and the PRM1 yields more stable and better over-
all performance. In most domains, the enhanced speech data re-
duce the speaker error except for domains like LIBRIVOX, DCIEM,
which were recorded under quiet conditions [12]. A threshold of 20
dB was adopted as SNR-preselection to divide the audios into two
groups: high SNR and low SNR, and we only performed speech en-
hancement on those low SNR data. As seen in Table 2, performance
losses in these two areas have been recovered substantially. At the
same time, the average speaker error rate also dropped to 10.7%, in-
dicating that the SNR-based preselection of speech enhancement is
reasonable in practical application. The combination of the above
technologies has led to improvements in most domains.

Table 2. The speaker error of each domain in the second DIHARD
development set.

Data domains Original Baseline PRM1 SNR preselection
LIBRIVOX 0.63 1.09 0.82 0.63

YOUTHPOINT 1.70 1.61 1.45 1.16
SEEDLINGS 30.09 28.83 27.00 26.90

ADOS 21.23 14.02 13.99 13.99
SCOTUS 5.24 3.67 3.66 3.78
DCIEM 4.04 4.82 7.66 4.04

RT04 12.80 10.37 11.28 11.28
CIR 27.93 28.52 27.86 27.86
SLX 7.55 9.92 5.29 5.51

MIXER6 5.74 5.93 3.28 3.28
VAST 20.56 19.58 16.38 17.32
Ave. 12.10 11.62 10.95 10.70

5. CONCLUSIONS AND FUTURE WORK

In this work, we propose a progressive multi-target network for
single channel speech enhancement which jointly learns the pro-
gressive multiple targets PELPS and PRM. Through comprehensive
experiments, PRM1 obtained from the shallowest target layer has
the best performance in speaker diarization. A DNN SAD based
SNR estimation is adopted to select recordings which need to be en-
hanced. Compared with original speech data, the proposed method
effectively avoids performance loss and achieves consistent im-
provements under most conditions in the DIHARD corpora.
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