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ABSTRACT

In our previous work, a progressive learning framework for long
short-term memory (LSTM)-based speech enhancement was pro-
posed to improve the performance in low SNR environment, where
each LSTM layer is guided to learn an intermediate target with a
specific SNR gain via the MMSE criterion. However, the constraint
relationship among these targets is not considered in the objective
function. In this paper, we incorporate two kinds of geometric con-
straints among these targets into the objective function to help LSTM
achieve better training. One constraint is edge constraint and the
other is the centroid constraint. In addition, we propose a method for
constructing the intermediate targets online. It saves device storage
space and alleviates the trouble of manually constructing interme-
diate targets. Experiment results demonstrate these geometric con-
straints can bring remarkable improvements in low SNR environ-
ments.

Index Terms— Speech enhancement, progressive learning,
LSTM, geometric constraint, deep learning

1. INTRODUCTION

The goal of speech enhancement is to improve the perceptual quality
and speech intelligibility by suppressing the ambient noise com-
ponents present in the recorded speech. Single-channel speech
enhancement has attracted much research attention due to its im-
portance in real-world applications including mobile speech com-
munication, hearing aids and robust automatic speech recognition.
Traditional speech enhancement methods have been studied for
decades including spectral subtraction [1], Wiener filtering [2], min-
imum mean squared error (MMSE) estimation [3] and optimally-
modified log-spectral amplitude (OM-LSA) speech estimator [4].
However, these traditional methods can not well deal with highly
non-stationary noise, which leads to difficulty in using these meth-
ods in real-world application scenarios.

Recently, deep learning has been successfully applied to var-
ious tasks [5] [6] [7], which greatly motivated the investigation
of deep learning for speech enhancement. The investigation is
mainly from the aspects of learning targets, deep neural network
(DNN) structures and input features. There are two groups of
learning targets: masking-based targets and mapping-based tar-
gets. Masking-based targets include ideal binary mask [8], ideal
ratio mask [9], spectral magnitude mask [10], complex ideal ratio
mask [11] and phase-sensitive mask [12]. They describe the time-
frequency relationships between the target speech and background
noise. Mapping-based targets include short-time Fourier transform
(STFT) magnitude spectra, STFT log-power spectra [13] and mel

spectra. They are the spectral representations of the target speech.
As for the input features, most researchers operate at the spectral
domain. Others operate at some higher-level features or the wave-
form level, training the end-to-end model [14]. In addition, many
types of DNNs have been utilized in DNN-based speech enhance-
ment, such as feed-forward DNNs [15], recurrent neural networks
[16], convolutional neural networks [17] and generative adversarial
networks [18]. DNN-based speech enhancement has made great
progress. However, it still suffers from performance degradation
in low signal-to-noise-ratio (SNR) environments regardless of its
strong modeling ability. [19] proposed a preliminary progressive
learning (PL) framework on DNN model to improve the speech
intelligibility in low SNR environments. And each hidden layer of
the DNN network is guided to learn an intermediate target with a
specific SNR gain explicitly. [20] continued to study the PL with
advanced long short-term memory (LSTM) network. In addition,
to alleviate the possible information loss, it proposed densely con-
nected progressive learning in which the input and the estimations
of intermediate targets are spliced together to learn the next target.
Compared with [19], better performance was achieved.

In this study, we continue to explore the PL from the aspect of
target optimization. In the previous PL framework [19] [20], the
constraint relationship among targets is not considered in the ob-
jective function. In this paper, we propose two kinds of constraint
relations from the geometric point of view, namely edge constraint
and centroid constraint. They are incorporated into the objective
function as a regularization term. Experimental results demonstrate
that performance improvement can be achieved by using these two
constraints. In addtion, we also proposed the method for online cal-
culating the target that the intermediate layer needs to learn in the
frequency domain. In prior work [20], we generate these interme-
diate targets directly in the time domain and then store them on the
hard disk. When the number of targets is large, this will take a lot of
time and storage space to generate and store these intermediate tar-
gets. We also propose a method for automatically constructing the
intermediate targets online via the approximate relationship in the
power spectrum. In comparison, the proposed method can achieve a
comparable performance.

The rest of the paper is organized as follows. In Section 2, we
describe the proposed geometry constrained PL. In Section 3, we
present the experiments. Finally, we conclude in Section 4.

2. GEOMETRY CONSTRAINED PL

2.1. Review of densely connected PL framework

In our prior work, [20] has proposed a densely connected progress-
sive learning framework, which is designed to improve speech intel-
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ligibility in low SNR environments. The procedure of direct map-
ping from noisy to clean speech is decomposed into multiple stages
with SNR increasing progressively by guiding hidden layers in the
LSTM network to learn target explicitly. The densely connected PL
framework with 2 targets is illustrated in Fig. 1. t0, t1 and t2 are
denoted as the log-power spectra (LPS) of input noisy speech, the
first target and the second target, respectively. All the target layers
are designed to learn intermediate speech features with higher SNRs
or clean speech as shown in Fig. 1. In order to alleviate the informa-
tion loss and make full use of learning targets, a densely connected
architecture is adopted in PL framework, namely concating the esti-
mated target and current input to learn next layer. As for optimiza-
tion procedure, a weighted MMSE criterion is designed to optimize
all network parameters in the manner of back propagation through
time with gradient descent [21] randomly initialized with K target
layers as follows

E =

K∑
k=1

βkE(k) (1)

E(k) = MSE(̂tk, tk) = ‖̂tk − tk‖2 (2)

where K is the number of target. βk is a weighting factor for the
k-th target layer to balance the MSE loss of multiple targets.
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Fig. 1. The architecture of PL framework (2 targets as an example)

2.2. Motivation

In the previous intermediate optimization process, we simply fit the
intermediate estimated target to the learning target, which ignores
constraint relationship between targets. In other words, previous op-
timization method is equivalent to a point-to-point mapping, leading
to inconsistent learning pace between targets. In geometry, the tar-
get is regarded as a point in D-dimensional space where D is the
dimension of LPS feature. Accordingly, we propose two constraints,
namely edge constraint and centroid constraint, to rectify the pro-
cess of target optimization procedure, and then further improve the
overall performance.

2.3. Derivation of construting intermediate targets

In time domain, background noise is an additive signal to clean
speech so that the noisy speech xk(t) can be formulated as:

xk(t) = s(t) + αk·n(t) (3)

where xk(t), s(t), n(t) denote noisy speech, clean speech and noise,
respectively. Besides, αk is an adjustable factor of utterance level
employed to control the SNR level. When k = 0, 1, 2, the xk(t) is
denoted as the time domain representation of t0, t1, t2 as shown in
Fig. 1, respectively.

Thus, in PL framework, suppose the number of target isK,K ≥
1, the SNR of k-th target is snrk and the SNR gain between k-th and
(k − 1)-th target is gk, namely gk = snrk − snrk−1. In this way,
the 0-th target and the K-th target refers to input noisy speech and
clean speech, respectively. Considering the definition of SNR, due
to snrk − snr0 =

∑k
i=1 gi, we can derive the relationship between

αk and α0 as shown as follows

αk = α0/10
∑k

i=1 gi/20 (4)

Then considering in frame level, we perform STFT for the k-th
target, and then we approximately compute the corresponding power
spectrum as follows

|Xk(d)|2 = |S(d)|2 + αk
2·|N(d)|2 (5)

where d is denoted as freqency bin index and here we assume that
S(d) and N(d) is irrelevant.

According to Eq. (4) and Eq. (5), we realize that the power spec-
trum |Xk(d)|2 can be expressed by a linear combination of |X0(d)|2
and |XK(d)|2, which is shown as follows

|Xk(d)|2 = pk|X0(d)|2 + qk|XK(d)|2 (6)

where pk = 1/10
∑k

i=1 gi/10 and qk = 1 − pk. Because the log-
power spectra is D-dimensional vector, namely d = 1, 2, ..., D, the
tk can be expressed as

tk = [ log |Xk(1)|2, log |Xk(2)|2, ..., log |Xk(D)|2 ]> (7)

By using Eq. (6), we have the new expression in LPS domain:

tk = log (pk · et0 + qk · etK ) (8)

where t0, tk, tK denote the D-dimensional LPS of input noisy
speech, the k-th target and the last target, respectively. In this way,
no matter how many targets, we can use Eq. (8) to calculate the
intermediate targets online which not only removes the step of con-
structing the intermediate targets in the time domain, but also saves
a lot of storage space. And the experimental results also demonstrate
that this method can also achieve a comparable performance, even
bring slight improvements in some cases. Moreover, according to
Eq. (8), we can find there is indeed strong connection between
different targets which inspires us to discover the constraint be-
tween the targets in the next subsections. In the study all PL related
experiments use this method to generate online targets.

2.4. Edge constraint

In geometry, the D-dimensional learning target can be regarded as
a point in D-dimensional space. For ease of analysis, we take two
targets as an example in the PL framework. As shown in Fig. 2(b),
t1,t2 represent two learning targets, namely D-dimensional vector,

7515

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on August 16,2021 at 09:09:00 UTC from IEEE Xplore.  Restrictions apply. 



learning target
estimated target

1t

2t

2t

1t

ct

ct

2

1 1-t t

learning target
estimated target

2

2 2-t t



learning target
estimated target

2t

1t 1t

2t

2t

1t 1t

2t

2

1 1-t t

2

2 2-t t

2

1 1-t t

2

2 2-t t

2

c c-t t

(a) No constraint

learning target
estimated target

1t

2t

2t

1t

ct

ct

2

1 1-t t

learning target
estimated target

2

2 2-t t



learning target
estimated target

2t

1t 1t

2t

2t

1t 1t

2t

2

1 1-t t

2

2 2-t t

2

1 1-t t

2

2 2-t t

2

c c-t t

(b) Edge constraint

learning target
estimated target

1t

2t

2t

1t

ct

ct

2

1 1-t t

learning target
estimated target

2

2 2-t t



learning target
estimated target

2t

1t 1t

2t

2t

1t 1t

2t

2

1 1-t t

2

2 2-t t

2

1 1-t t

2

2 2-t t

2

c c-t t

(c) Centroid constraint

Fig. 2. Illustration of the interpretation for geometric constraints

as shown by red points. And t̂1 and t̂2 represent the correspond-
ing estimated targets obtained by the network output during training
as shown by the blue points. In standard PL framework, we just
perform a point-to-point mapping by minimizing Euclidean distance
between learning target and estimated target as shown by the dot-
ted line. Whereas in the related experiments, we observe that the
MSE loss of the latter target is always greater than the former one,
which means the MSE loss of t2 is greater than t1. The interpreta-
tion is that the top layer increases the learning difficulty due to the
large gap with the input noisy speech. That is why blue dotted line
is longer than red dotted line. Here we connect blue and red dots re-
spectively as shown by the solid black line. In order to alleviate pace
inconsistency of target learning, intuitively we consider minimizing
the angle between two black lines (edges), namely the angle θ, from
the perspective of geometry. In other word, we expect these two
black edges to be parallel so that we utilize cosine distance to mea-
sure the angle between learning targets and estimated targets which
is expressed as follows

min(1− cos < t2 − t1, t̂2 − t̂1 >) (9)

cos < t2 − t1, t̂2 − t̂1 >=
(t2 − t1) · (̂t2 − t̂1)
‖t2 − t1‖‖̂t2 − t̂1‖

(10)

Therefore, we introduce an edge constraint as a regularization term
which enables optimization of all targets to keep pace with each
other as far as possible. Similarly, when the number of targets in-
creases to three or more, we can subdivide it into two targets per
group to consider and then add the constraints at corresponding loss
function. Combining with the particularity of the progressive learn-
ing framework structure, our final loss function with the edge con-
straint on the k-th target can be written as

L1(k) = E(k) +

k−1∑
i=1

λi(1− cos < (̂tk − t̂i), (tk − ti) >) (11)

where λi is denoted as weight factor, which is used to adjust the
weight of the constraint term. E(k) is the same as Eq. (2). The total
loss is defined as:

L1 =

K∑
k=1

βkL1(k) (12)

2.5. Centroid constraint for post-processing

Similar to [19], the post-processing method is to average the esti-
mations of multiple targets, which is equivalent to make tradeoffs
between noise reduction and introduced nonlinear distortions. How-
ever, if we look at the post-processing from a geometric perspec-
tive like edge constraint mentioned in Section 2.4, then the post-
processing can be regarded as using the centroid of estimated targets
as the final result. As shown in Fig. 2(c), the tc and t̂c are denoted as
the centroid of the learning target and estimated target, respectively,
as shown by the two black points. As there are only two targets, the
centroid degenerates to the midpoint of the line segment, namely the
black dotted line. Accordingly, the centroid has global information
about all learning targets or estimated targets. It is instinctive to min-
imize the ‖̂tc − tc‖

2
, which means gradually reducing the Euclidean

distance between the two black points from a global perspective as
shown in Fig. 2(c). On the one hand, from the perspective of target
optimization, it seems that we increase an additional optimization
target to make the distances between learning targets and estimated
targets get closer, equivalent to certain emphasis on target optimiza-
tion. On the other hand, the centroid constraint is consistent with
our post-processing operations, which may achieve a better tradeoff
of noise reduction and speech distortion. To obtain further improve-
ments of the overall performance, we can add centroid constraint af-
ter adding the edge constraint. In this way, the edge information and
global information of the targets are both taken into account instead
of superficial point-to-point mapping. Therefore, the final loss func-
tion with edge constraint and centroid constraint on the k-th target
can be written as (13)

L2 = L1 + λMSE

(
K∑
i=1

t̂i,
K∑
i=1

ti

)
(13)

where λ is the weight factor for adjusting the centroid constraint.

3. EXPERIMENTS AND RESULT ANALYSIS

3.1. Experimental setup

In our experiments, the clean speech data is derived from the WSJ0
corpus [22] and 115 noise types were selected as our noise database.
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For training set, firstly we corrupted 7138 utterances (about 15
hours) from 83 speakers with 115 noise types [23] at three SNR
levels (-5dB, 0dB, 5dB) to build a 45-hour training set composed
of pairs of clean and noisy utterances. Similarly, 330 utterances
from 8 other speakers, namely the Nov92 WSJ evaluation set, 6
unseen noises including buccaneer2, destroyerengine, destroyerops,
factory1, pink, white from NOISEX-92 corpus [24], were used
to construct the test set. Perceptual evaluation of speech quality
(PESQ) [25] and short-time objective intelligibility (STOI) [26]
are adopted to evaluate the intelligibility and quality of enhanced
speech.

As for feature extraction, first the speech waveform was sampled
at 16kHz, and the corresponding frame length was set to 32 msec
(512 samples) with a frame shift of 16 msec (256 samples). A short-
time Fourier analysis was employed to calculate the spectra of each
overlapping windowed frame. Thus, the D-dimentional (D=257)
LPS features were produced and normalized by global mean and
variance before feeding them into the neural network [15].

For the training procedure, LSTM was used with 1024 units for
each layer. Then we set β1 = 0.1 and β2 = 1.0 in Eq. 1.

3.2. Result analysis
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Fig. 3. Learning curve of training procedure

Fig. 3 shows the learning curve of entire training phase. The
curve in Fig. 3(a) gives the curve of cosine distance with respect to
epochs. The blue line with ‘*’ and red line with ‘+’ refer to the stan-
dard PL and the standard PL with L1 loss function. Accordingly, we
can observe that the θ indeed gradually decreases during the training
phase according to the blue line with ‘*’, whereas the PL+L1 can
obtain smaller θ compared with PL. Then looking at the Fig. 3(b),
we find that the MSE loss on t2 of PL+L1 is slightly larger than PL
and the MSE loss on t1 is basically unchanged. The interpretation
is that PL+L1 sacrifices very little MSE loss to make the angle θ
smaller which verify that adding edge constraints is feasible.

Table 1 lists the average PESQ and STOI results of Target1 and
Target2 at different systems across six unseen noise types at -5dB,
0dB, 5dB. PL t1 and PL t2 refer to the standard PL framework by
using t1 and t2 for enhancement in Fig. 1, respectively. PL+L1
refers to the standard PL with the edge constraint, the corresponding
weight factor λ is set to 20. So that PL+L1 t1 and PL+L1 t2 is
denoted as the enhancement results of t1 and t2, respectively. Com-
pare with PL t2, the results of PL+L1 t2 could achieve remarkable
improvements for both STOI and PESQ, e.g., STOI increasing from
0.587 to 0.619 and PESQ increasing from 1.486 to 1.602 at SNR=-
5dB. If we observe all SNR conditions, the gap between PL+L1 t2
and PL t2 decreases as the SNR level increases. Besides, we no-
tice that PL t1 can achieve higher STOI but lower STOI than PL t2.
The reason is that t2 removes noise excessively, resulting in very se-
rious speech distortion. By adding the edge constraint, we decrease
the gap of STOI between t1 and t2 when comparing PL+L1 t1 and
PL+L1 t2 at all SNR level. Besides, as shown in Table 1, PL std t1

Table 1. The average PESQ and STOI comparison of all targets in
different systems across 6 unseen noises at -5dB, 0dB, 5dB

PESQ STOI
System -5dB 0dB 5dB -5dB 0dB 5dB
Noisy 1.31 1.60 1.94 0.606 0.731 0.842

PL std t1 1.41 1.80 2.21 0.648 0.779 0.874
PL t1 1.36 1.78 2.21 0.647 0.778 0.874

PL+L1 t1 1.43 1.85 2.24 0.657 0.785 0.879
PL std t2 1.50 2.02 2.46 0.591 0.742 0.845

PL t2 1.49 2.04 2.47 0.587 0.741 0.845
PL+L1 t2 1.60 2.11 2.52 0.619 0.759 0.855

Table 2. The average PESQ and STOI comparison of different sys-
tems after post-processing across 6 unseen noises at -5dB, 0dB, 5dB

PESQ STOI
System -5dB 0dB 5dB -5dB 0dB 5dB
Noisy 1.31 1.60 1.94 0.606 0.731 0.842

PL+PP 1.48 2.00 2.43 0.636 0.776 0.870
PL+L2+PP 1.59 2.09 2.50 0.654 0.789 0.879

and PL std t2 refers to the t1 and t2 of standard PL in which we con-
struct intermediate target in the time domain manually. Accordingly,
we can find that the performance is comparable when comparing
PL std t1 with PL t1 or comparing PL std t2 with PL t2.

As for the centroid constraint, the average PESQ and STOI com-
parison across 6 unseen noises is shown as Table 2. PL+L2+PP
refers to the enhancement results of standard PL with L2 loss after
post-processing. In PL+L2+PP, we incorporate two kinds of geo-
metric constraints, namely edge constraint and centroid constraint.
The weight factors of edge constraint and centroid constraint are 20
and 1.0, respectively. As centroid constraint is closely related to
post-processing, we directly gave the results of the post-processing.
Compared with PL+PP, PL+L2+PP can achieve better results, es-
pecially in STOI. For instance, the STOI gain is 0.018 at SNR=-5dB.
Thus, according to the analysis above, both the edge constraint and
centroid constraint can achieve overall performance improvements
in low SNR environments.

4. CONCLUSION

In this study, firstly we have derived a method for constructing in-
termediate learning target online. More importantly, two geometric-
based constraints, namely edge constraints and centroid constraints,
are proposed to guide the learning of each target of PL framework
more effectively and correctly. The cosine edge constraints mainly
keep optimization direction of each target consistent, while the cen-
troid constraints reduce the distance between the learning target and
the estimated target globally. Experiments demonstrate that the pro-
posed geometry constrained PL can achieves good PESQ and STOI
improvements at low SNR environments.
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