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ABSTRACT
In recent years, the deep learning-based approaches are popular in
the field of singe-channel speech enhancement. Convolutional neu-
ral networks (CNNs) are a standard component of many current
speech enhancement system. In this study, we design a new Fully
CNN (FCNN)-based regression model, which can directly achieve
the 2-dimensional (2D) noisy lpg-power spectra (LPS) input to 2-
dimensional (2D) time-frequency mask output mapping, denoted as
2D-RFCNN. First, the whole 2D noisy LPS of one utterance is di-
rectly used as network input to make sure each convolutional filter
can see more contextual information. Second, we only use the pool-
ing operation on the frequency bin to ensure that the final dimen-
sion of frequency bin has a value of 1 and make the number of fea-
ture mapping same to frequency dimension, simultaneously. Finally,
we also use the deep convolutional layers with a small size of filter,
which is popularly used in speech recognition, for speech enhance-
ment. Experiments of the CHiME-4 challenge task shows that our
proposed 2D-RFCNN model not only improves the speech quality
(PESQ) and intelligibility (STOI), but also reduces the recognition
error rate on real test set.

Index Terms— speech enhancement, 2D-to-2D mapping, ideal
ratio mask, deep learning, fully convolutional neural network

1. INTRODUCTION

Single channel speech enhancement is a widely researched problem
in signal processing, which aims to suppress the background noise
and interference from the observed noisy speech to improve the per-
ceptual quality and the performance of automatic speech recogni-
tion (ASR) [1]. The problem of speech enhancement has been an
attractive area of research in statistical signal processing for a rather
long time, and short-time Fourier transform (STFT) based methods
achieve relatively good performance in this field [2]. It is appro-
priate to further categorize this class of speech enhancement algo-
rithms into the sub-categories of spectral subtraction [3], Wiener fil-
tering [4], minimum mean-square error (MMSE) estimator [5], and
the optimally modified log-spectral amplitude (OM-LSA) speech es-
timator [6]. These conventional methods are adaptive to the test sig-
nal, which is in general not robust enough in adverse environments,
particularly when there are non-stationary noises.

Recently, a supervised learning framework has been proposed,
where a deep neural network (DNN) is trained to map from input
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features to the output targets. In [7], a regression DNN is adopted
using mapping-based method directly predicting the log-power spec-
tra (LPS) of clean speech from LPS of the noisy speech. In [8],
the authors use the regression DNN to learn the complex relation-
ship between the noisy spectra and the reference mask. More com-
plicated neural network architectures, for example long short-term
memory (LSTM) based recurrent neural network (RNN) [9], convo-
lutional neural network (CNN) [10], fully CNN (FCNN) [11] and
CNN-BLSTM [12] with an expense of higher computational com-
plexities and run-time latencies than the conventional DNN are ap-
plied to speech enhancement. But the input of existing CNN-based
speech enhancement models is a 2-dimensional (2D) sliding win-
dow of the whole LPS for one utterance and the network output is
a one-dimensional (1D) vector, so we can regard the whole regres-
sion process as 2D-to-1D mapping. For those regression tasks, the
sizes of input and output feature maps are the same and the network
aims to learn the complex relationship between noisy features and
reference features at each time-frequency units.

Based on the above analysis, a better way to solve the regres-
sion problem is to find a new architecture to achieve the 2D input
to 2D output feature mapping on the whole utterance level due to
the strong contextual information in speech application. For the 2D-
to-2D mapping problem, the information contained by 2D input on
utterance level is much richer than 1D vector on frame level or 2D
input with a narrow size on the time axis due to the frame expan-
sion. Obviously, compared with the conventional 1D-to-1D map-
ping (e.g., DNN or LSTM) and 2D-to-1D mapping (e.g., CNN), it is
much more challenging to perform a 2D-to-2D mapping due to the
curse of dimensionality from the perspective of machine learning. In
this study, we design a new CNN-based regression model, which can
directly achieve the 2-dimensional (2D) noisy spectrogram input to
2-dimensional (2D) time-frequency mask output mapping, denoted
as 2D-RFCNN. First, the whole 2D noisy LPS of one utterance is
directly used as network input to make sure each convolutional filter
can see more contextual information. Second, we only use the pool-
ing operation on the frequency bin to ensure that the final dimension
of frequency bin has a value of 1 and make the number of feature
mapping same to frequency dimension, simultaneously. Finally, we
also use the deep convolutional layers with small size of filter, which
is popularly used in speech recognition [13,14], for speech enhance-
ment. Experiments of the CHiME-4 challenge task shows that our
proposed 2DR-CNN model not only improves the speech quality,
perceptual evaluation of speech quality (PESQ) [15] and intelligibil-
ity, short time bbjective intelligibility (STOI) [16], but also reduces
the recognition error rate on real test set.
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Fig. 1. The comparison of existing CNN model and proposed 2D-RFCNN model for speech enhancement. b·c denotes the floor function.
NFM1, NFM2, NFM3 denote the number of feature map at each block.

2. ARCHITECTURAL AND TRAINING NOVELTIES

For the speech enhancement problem, given an utterance of noisy
log-power spectral (LPS), denoted as X ∈ RK×L, where K and L
are the dimensions of frequency bin and time frame, respectively.
The corresponding reference ideal ratio mask (IRM) [8] is denoted
as Mref ∈ RK×L and the estimated mask by neural network is
denoted as M̂ ∈ RK×L. The xl ∈ RK×1, ml

ref ∈ RK×1 and
m̂l ∈ RK×1 are the K-dimensional noisy LPS, reference IRM and
estimated mask at l-th frame. A large amount of time-synchronized
training set, denoted as D = {(Xi,Mi

ref)|i = 1, 2, ..., N}, with N
pairs of noisy LPS, X, and reference IRM, Mref is built simultane-
ously. The training data are synthesized by adding different types of
noise to the clean speech utterances with different SNR levels.

2.1. Review of 2D-to-1D CNN-based Mask Estimation

This section will give a review of a mask-based speech enhancement
using deep learning-based regression model. For convenience, we
first define the Xl

2D-F ∈ RK×(2τ+1) as noisy LPS input with frame
expansion and τ is the number of frames in both of left and right
context at l-th frame. The neural network predicts the mask m̂l at
l-th frame as follow:

m̂l = fθ(X
l
2D-F; θ) (1)

where fθ is parameterized by θ.
The top of Fig. 1 shows the popular CNN training strategy, and

the network input usually is a processed 2D LPS with frame expan-
sion. The size of each 2D LPS input isK×(2τ+1), and the dimen-
sion of each output vector isK×1. So we can see the previous CNN-
based regression task as two-dimensional LPS to one-dimensional
vector mapping, denoted as 2D-1D. And the supervised fine-tuning
is usually used to minimize the mean squared error (MSE) between
the neural network output m̂l and the reference IRM ml

ref, which is

defined as

min
θ

Nmini F∑
i=1

∥∥∥m̂i −mi
ref

∥∥∥2
2

= min
θ

Nmini F∑
i=1

∥∥∥fθ(Xi
2D-F; θ)−mi

ref

∥∥∥2
2

(2)

where Nmini F denote the number of frames in each mini-batch
and ‖·‖2 denotes the L2 norm of a vector. A Adam-based back-
propagation method [17] is adopted to update the parameters of a
neural network in a mini-batch mode.

2.2. The Proposed 2D-to-2D FCNN-based Mask Estimation

In this study, we design a new CNN-based regression model, which
can directly archive the 2-dimensional (2D) noisy LPS input to 2-
dimensional (2D) reference IRM output mapping. In the following,
we will give a detailed description of our proposed 2D-to-2D CNN-
based regression model, denoted as 2D-RFCNN.

2.2.1. 2D Noisy LPS Input

For speech enhancement task, the CNN is usually utilized to solve
the two-dimensional LPS input to one-dimensional vector output
mapping problem with a fully-connected layer or recurrent layer
connecting to output layer, as shown in the top of Fig. 1. On the
one hand, it will produce a plenty of redundant use of training data
and computations due to the frame expansion and frame shift. On the
other hand, the size of each feature map along the time dimension is
2τ + 1, where the τ usually is 5, so it is hard for the CNN to take
advantage of weights sharing in convolutional networks to see more
contextual information along the time axis. In [11], the authors also
find 1-D convolutional filter is better than 2-D convolutional filter for
speech enhancement in the 2D-to-1D regression mapping case. In
this study, the whole noisy LPS of one utterance is adopted as the in-
put to reduce the redundant use of training data. Another advantage
of the proposed model is weights sharing in convolutional networks,
so it can make full use of the contextual information along the time
axis.
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Fig. 2. The detailed architecture of proposed 2D-RFCNN model.

2.2.2. 2D Mask Output

As illustrated in the bottom of Fig.1, the light blue cuboids show the
size of each block output. In order to achieve the final dimension of
frequency bin with a value of 1, we only use one pooling operation
on the frequency bin in each block. The number of feature maps is
also gradually increased after each block, and we set the number of
feature maps in last block is the same as the frequency dimensionK.

Let the convolutional kernel of size is b × w. As opposite to
the traditionally used lager size of filter in speech enhancements,
we only use filters of 3 × 3 with pooling size constrained to 3 ×
1, which is popularly applied in speech recognition [18]. After a
convolution operation, the input size (K × L) of each feature map
will be changed without padding, e.g., the output size of each feature
map is (K−b+1)×(L−w+1) with the b×w convolutional kernel.
To ensure that the final output of our network has the same length in
the time dimension as the input LPS, the zero-padding operation is
applied before each convolutional layer shown in Fig. 2. And for the
last two nets in block4, the zero-padding operation on frequency bin
is not utilized to ensure the final dimension of frequency bin with
a value of 1. The neural network predicts the mask M̂ for each
utterance as follow:

M̂ = gθ(X; θ) (3)

where gθ is parameterized by θ.

2.2.3. 2D-RFCNN Optimization on Utterance Level

Based on the above detailed expansion, our proposed FCNN-based
model can directly output the estimated 2D mask with the same size
of input LPS to achieve the 2D-to-2D mapping for regression task on
the utterance level. The supervised fine-tuning is used to minimize
the MSE between the neural network output gθ(X) and the reference
IRM Mref(k, l), which is defined as follow:

min
θ

Nmini U∑
i=1

∥∥∥M̂i −Mi
ref

∥∥∥2
2

= min
θ

Nmini U∑
i=1

∥∥∥gθ(Xi; θ)−Mi
ref

∥∥∥2
2

(4)

where Nmini U denotes the number of utterances in each min-batch
and ‖·‖2 denotes the L2 norm of a matrix. Adam-based back-

propagation method [17] is adopted to update the parameters of a
neural network in a mini-batch mode.

3. EXPERIMENTAL EVALUATION

3.1. Data Corpus

Now, we present the experimental evaluation of our framework in
the CHiME-4 task [19], which was designed to study real-world
ASR scenarios where a person is talking to a mobile tablet device
equipped with 6 microphones in a variety of adverse environments.
Four conditions were selected: café (CAF), street junction (STR),
public transport (BUS), and pedestrian area (PED). For each case,
two types of noisy speech data were provided: RealData and Sim-
Data. RealData was collected from talkers reading the same sen-
tences from the WSJ0 corpus [20] in the four conditions. Sim-
Data, on the other hand, was constructed by mixing clean utterances
with environmental noise recordings using the techniques described
in [21]. CHiME-4 offers three tasks (1-channel, 2-channel, and 6-
channel) with different testing scenarios. In this paper, we focus
only on the 1-channel case. The readers can refer to [19] for more
detailed information regarding CHiME-4.

3.2. Implementation Details

For front-end configurations, speech waveform is sampled at 16 kHz,
and the corresponding frame length is set to 512 samples (or 32
msec) with a frame shift of 128 samples. The STFT analysis is used
to compute the DFT of each overlapping windowed frame. To train
the 2D-RFCNN model, the 2D reference IRM of one utterance with
size of 257 × L was used for target. NFM1, NFM2 and NFM3 are 64,
128 and 190, respectively. PyTorch was used for neural network
training [22]. The learning rate for the first 5 epochs was initial-
ized as 0.25 and then decreased by 90% after each epoch, and the
number of epochs was 10. And the mini-bath, Nmini U, is 4. The
CHiME-4 challenge [23] training set was used as our training data.
Specifically, we used simulated training data from Channel 1, Chan-
nel 3 and Channel 5 with 7138 utterances (about 12 hours) for each
channel to train the enhancement models. We compare our proposed
method with the following three networks:

1) DNN with 3 hidden layers and 2048 nodes for each layer.
2) LSTM with 2 hidden layers and 1024 cells for each layer.
3) EHNET [12] with the best settings of convolution and

BLSTM layers in the paper.
The context frame of the above three methods is all set as 11.

And the mini-bath, Nmini F, is 256.
For the back-end configurations, the baseline ASR recognition

system is trained on the speech recognition toolkit Kaldi [24]. For
TDNN acoustic model training, backstitch optimization method is
used. The decoding is based on 3-gram language models with ex-
plicit pronunciation and silence probability modeling. The model
is re-scored by a 5-gram language model first. Then the Kaldi-
RNNLM is used for training the RNN, and n-best re-scoring is used
to improve performance. The model is trained according to the
scripts downloaded from the official GitHub website1.

3.3. Experiments on Enhancement

Fig. 3 illustrates a comparison of learning curves of the different re-
gression models using the averaged squared errors normalized by
frame on the simulated development set. Clearly, the learning curve

1https://github.com/kaldi-asr/kaldi/tree/master/egs/chime4
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Table 1. STOI (%) and PESQ comparisons of conventional IMCRA approach, IRM-based deep learning approach using different neural
network architectures for single-channel speech enhancement on the simulation test set.

STOI(%) PESQ

Enhancement BUS CAF PED STR AVG BUS CAF PED STR AVG

Noisy 84.0 79.0 81.3 80.2 81.1 2.14 1.89 1.92 1.96 1.98
IMCRA 85.4 81.5 82.5 81.6 82.8 2.25 1.98 2.03 2.11 2.09

DNN-IRM 85.2 81.3 82.1 81.2 82.5 2.34 2.06 2.09 2.15 2.16
LSTM-IRM 88.1 83.8 85.8 83.9 85.4 2.46 2.20 2.25 2.28 2.30

EHNET-IRM [12] 89.4 84.7 86.7 85.9 86.7 2.58 2.29 2.36 2.39 2.40
2D-RFCNN-IRM 89.8 86.5 88.0 86.6 87.7 2.63 2.37 2.42 2.44 2.46
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Fig. 3. The learning curve comparison on the development set.

of the proposed 2D-RFCNN model could achieve better convergence
than those of the other regression models. More interestingly, the ini-
tial point of the learning curve of the 2D-RFCNN model was higher
than that of the LSTM and EHNET model, which demonstrated that
2D-to-2D mapping is more difficult to learn than 2D-to-1D mapping
initially..

Table 1 shows STOI (%) and PESQ comparisons of conven-
tional IMCRA approach, IRM-based deep learning approach using
different neural network architectures for single-channel speech en-
hancement on the simulation test set. For the first block, “Noisy”
denotes the original speech randomly selected from channel 1-6
(except channel 2), namely 1-channel case. “IMCRA” denotes the
enhanced speech is obtained by IMCRA-based speech enhance-
ment [25]. For the second block, “LSTM-IRM”, “EHNET-IRM”
and “2D-RFCNN-IRM” denote the enhanced speech is obtained
by the estimated IRM using LSTM, EHNET and 2D-RFCNN re-
gression models. We can find that the proposed method produces
consistently better PESQ and STOI performance than the DNN,
LSTM and EHNET approaches.

3.4. Experiments on ASR

Table 2 shows WER(%) the comparison of conventional IMCRA
approach, IRM-based deep learning approach using different neural
network architectures and ISPP-based deep learning approach using
different neural network architectures for single-channel speech en-
hancement on the real test set. The results in Table 2 are obtained by
the Kaldi tools without acoustic model retraining.

For the first block, we can find that the IRM estimated by
“LSTM-IRM” and “EHNET-IRM” can only improve the ASR per-
formance slightly, comparing to “Noisy”. For example, the average
WER of “Noisy” is 12.14%, while the average WERs of “LSTM-
IRM” and “EnhNet-IRM” are 14.07% and 11.69%, respectively.

Table 2. WER (%) comparison of conventional IMCRA approach,
IRM-based deep learning approach using different neural network
architectures and ISPP-based deep learning approach using different
neural network architectures for single-channel speech enhancement
on the real test set.

Enhancement BUS CAF PED STR AVG

Noisy 19.05 12.35 9.34 7.81 12.14
IMCRA 24.40 16.62 11.79 8.26 15.26

DNN-IRM 26.19 18.95 12.67 9.12 16.73
LSTM-IRM 22.51 14.76 11.03 7.98 14.07

EHNET-IRM [12] 18.27 12.31 8.67 7.51 11.69
2D-RFCNN-IRM 16.95 11.73 7.98 7.12 10.94

ISPP-EHNET [12] 14.75 9.21 7.14 5.97 9.27
ISPP-2D-RFCNN 13.98 8.71 6.66 5.45 8.70

“IMCRA”, a kind of classic speech enhancement, is also failed to
improve the ASR performance. While our proposed 2D-RFCNN
model can significantly improve the ASR performance comparing
to “Noisy”, with a relative WER reduction of 9.88%.

For the third block, “ISPP” denotes the improved speech pres-
ence probability (ISPP)-based method proposed in [26], which
combines the classic speech enhancement and IRM-based method.
“ISPP-EHNET” and “ISPP-2D-RFCNN” denote the enhanced
speech is obtained by the ISPP-based method with the IRM esti-
mated by EHNET and 2D-RFCNN, respectively. For the proposed
2D-RFCNN-based regression model, it still can outperform the
EHNET-based regression model using the better ISPP framework.
For example, “ISPP-2D-RFCNN” can improve ASR performance
with a relative WER reduction of 6.15%, comparing to “ISPP-
EHNET”.

4. CONCLUSION

In this work we proposed a novel FCNN-based regression model for
single-channel speech enhancement with 2-dimensional (2D) noisy
lpg-power spectra (LPS) input and 2D time-frequency mask output
, denoted as 2D-RFCNN. Because the network input and output are
the whole utterance feature map, the deep convolutional layers with
a small size of filter can be applied in our architecture for regression
task. Experiments on the CHiME-4 challenge task shows that our
proposed 2D-RFCNN model not only improves the speech quality
(PESQ) and intelligibility (STOI), but also reduces the recognition
error rate on real test set comparing to the competing methods. In
the future, we will applied our 2D-RFCNN to other regression tasks,
for example speech separation.
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