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Abstract
We propose a space-and-speaker-aware iterative mask es-

timation (SSA-IME) approach to improving complex angular
central Gaussian distributions (cACGMM) based beamform-
ing in an iterative manner by leveraging upon the complemen-
tary information obtained from SSA-based regression. First, a
mask calculated by beamformed speech features is proposed to
enhance the estimation accuracy of the ideal ratio mask from
noisy speech. Second, the outputs of cACGMM-beamformed
speech with given time annotation as initial values are used to
extract the log-power spectral and inter-phase difference fea-
tures of different speakers serving as inputs to estimate the
regression-based SSA model. Finally, in decoding, the mask
estimated by the SSA model is also used to iteratively refine
cACGMM-based masks, yielding enhanced multi-array speech.
Tested on the recent CHiME-6 Challenge Track 1 tasks, the pro-
posed SSA-IME framework significantly and consistently out-
performs state-of-the-art approaches, and achieves the lowest
word error rates for both Track 1 speech recognition tasks.
Index Terms: speech recognition, CHiME-6 Challenge, multi-
channel speech enhancement, SSA-IME

1. Introduction
Automatic speech recognition (ASR) in distant-talking scenar-
ios based on the use of microphone arrays has become an impor-
tant part of everyday life with the emergence of speech-enabled
applications on multi-microphone portable devices due to its
convenience and flexibility [1]. Many limited tasks were first
investigated, such as the TIdigits [2], the TIMIT [3], the Wall
Street Journal (WSJ) [4] and LibriSpeech [5] corpora, which do
not consider noisy or reverberant conditions. The CHiME (1-
4) [6, 7, 8] series were also launched to investigate the effects
of background noise in far-field cases, focusing on solving ASR
problems in real-world applications. To improve ASR robust-
ness, multi-channel speech enhancement was usually adopted
as front-end system. The representative algorithms in this cat-
egory include multi-channel Wiener filtering [9], blind source
separation methods [10, 11, 12, 13], and beamforming meth-
ods [14, 15, 16]. Beamforming became a popular approach
in the CHiME-3 Challenge [17]. In CHiME-4 Challenge, the
best system proposed an approach combining the conventional
multi-channel speech enhancement and deep learning meth-
ods [18] to improve multi-channel speech recognition.

Recently, the CHiME-5 Challenge provides the first large-
scale corpus of real multi-talker conversational speech recorded
via commercially available microphone arrays in multiple re-
alistic homes [19]. It essentially congregates a large number of
acoustic problems that may exist in real life, which poses a great
challenge to existing ASR systems, especially for front-end pro-
cessing with noisy, reverberant, and overlapping speech. In this

challenge, the best system [20] proposed a speaker-dependent
speech separation framework, exploiting advantages of both
deep learning based and conventional preprocessing techniques.
In the latest CHiME-6 Challenge [21], the data set for Track 1
is generated from the CHiME-5 data with array synchroniza-
tion. The word error rates (WERs) of the worn microphone and
multi-array data in the official baseline report are 41.21% and
51.76%, respectively, fully illustrating the difficulty of and is-
sues confronted with the CHiME-6 ASR tasks.

In this paper, we propose a novel space-and-speaker-
aware iterative mask estimation (SSA-IME) approach to multi-
channel speech recognition in the CHiME-6 Challenge. It aims
to improve the complex angular central Gaussian distributions
(cACGMM)-based beamforming approach in an iterative man-
ner by leveraging upon the complementary information ob-
tained from space-and-speaker-aware (SSA)-based regression
model. Although cACGMM has been recently demonstrated to
be quite effective for multi-channel, ASR in operational scenar-
ios, the corresponding mask estimation, however, is not always
accurate in multi-talker environments due to the lack of prior or
context information. To train this model, we construct a sim-
ulated dataset based on the official real multi-channel training
data. First, to avoid the impact of noise on accuracy of the ideal
ratio mask, the beamformed mask calculated by beamformed
features is proposed. Second, The log-power spectral (LPS) and
inter-phase difference (IPD) features of different speakers as the
input of the proposed SSA model are extracted from the beam-
formed outputs of cACGMM-based beamforming with time an-
notation as initial values. These features contain rich space
and speaker information which can make the regression model
distinguish the different speakers by itself from multi-channel
noisy data without any prior information. Finally, the mask es-
timated by SSA model is also used to refine cACGMM-based
mask estimation, yielding an ASR performance improvement.
Tested on the recently launched CHiME-6 Challenge Track1
tasks (multiple-array speech recognition), the proposed SSA-
IME approach significantly and consistently outperforms the
GSS approach [22]. Furthermore, the SSA-IME approach plays
a key role in the ensemble system that achieves the best perfor-
mance in the CHiME-6 Challenge Track 1 tasks.

2. The SSA-IME Framework
The overall SSA-IME framework is shown in Fig. 1. The SSA
model is trained using the concatenated features which contain
the space and speaker information. To reduce the impact of
noise on the accuracy of ideal ratio mask [23], the learning tar-
get of the SSA model is calculated by beamformed signals.

The decoding process of SSA-IME is divided into four
successive steps, namely, beamforming initialization, SSA-
based signal statistics estimation, beamforming, and recogni-
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Figure 1: An illustration of SSA-IME framework.

tion. First, beamformed speech is initialized and a T-F mask of
test speech is obtained by cACGMM-based beamforming [24]
using time annotation as initial prior values. Then, the mask es-
timated by our SSA model is used to improve the initial mask
where the SSA model uses the features of the initial beam-
formed speech. And the ASR-based voice activity detection
(VAD) information from the segmentation results of a recog-
nizer with beamformed speech [18] also can be used to improve
the initial mask. Next, the improved mask is used as the initial
values of the cACGMM-based approach to generate the esti-
mated mask which steers the beamforming, thereby obtaining
the beamformed speech for ASR.

2.1. Multi-channel beamforming

At the beginning, we use a weighted prediction error
(WPE) [25] algorithm on the multi-channel signals of the refer-
ence array, which is commonly used as a dereverberation pre-
processor. We use generalized eigenvalue (GEV) beamformer
which aims to maximize the signal-to-noise power ratio in the
output [26]. Using the information provided by SSA model, a
cACGMM is adopted to better estimate the cross-power density
matrices in the GEV beamformer, while avoiding the speaker
permutation problem.

The goal of a GEV beamformer is to find a linear vector of
filter coefficients WGEV(f) ∈ R

M×1 to maximize the signal-
to-noise power ratio in each frequency bin [26]:

WGEV(f) = EV {R−1
nn(f)Rss(f)} (1)

where f is the frequency bin index and EV {} denotes the
eigenvector corresponding to the largest eigenvalue. Rss(f) ∈
R

M×M and Rnn(f) ∈ R
M×M are the cross-power density

matrices of the speech and noise terms, respectively. The above
cost function has the same form as the Rayleigh coefficient.
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Figure 2: Training data generation for building SSA models.

The cross-power density matrices can be defined as:

Rvv(f) =

T∑
t=1

Mv(t, f)X(t, f)XH(t, f) (2)

where f is the frequency bin index and t is the frame index.
X(t, f) ∈ C

M×1 is the observed signal from M microphones
of the reference array. v can represent the speech of different
speakers or noise class, and Mv(t, f) denotes the probabilities
of v in the time-frequency bin (t, f).

Finally, the estimate for the source signal is achieved as:

Ŝ(t, f) = WH
GEV(f)X(t, f). (3)

Obviously, the key of the GEV beamformer is the estimation of
time-frequency masks Mv(t, f).

2.2. Training data generation for SSA model

In this section, we will give a detailed description on the train-
ing data generation of the SSA model as shown in Fig. 2. Based
on the speech analysis, the most challenging part of CHiME-6
is about the dialogue style. Unlike reading speech, the com-
plexity of conversational and spontaneous speech greatly in-
creases the difficulty of a speech recognition system. For in-
stance, casual pronunciation and frequent overlapping speech
severely decrease the discriminating ability of acoustic models.

First, to investigate the speech overlapping problem, we ex-
cluded non-speech regions and aligned the time stamps of all
speakers to locate the overlapped speech regions. The non-
overlapped speech of each speaker is obtained by removing
the overlapped speech regions from the aligned time stamps of
each speaker. According to the introduction of the CHiME-
6 dataset, there are a fixed number of four speakers in each
session. Therefore, the non-overlapped speech of the four
speakers in each session is used for generating training data.
And STFT features of these mixed speech are denoted as
XT1(t, f),XT2(t, f),XT3and XT4(t, f) ∈ C

M×1 , respec-
tively. Note that the four speakers in one session are in turn
considered as target speakers. Because the speech is directly
selected from the far-field data, it contains much background
noise. To reduce the noise influence on data simulation, we first
perform single-channel noise estimation and suppression based
on Log-Spectral Amplitude Estimator (LSA) [27]. We can ob-
tain the estimated noise and enhanced speech of each speaker

as N̂Ti
LSA(t, f) ∈ C

M×1 and ŜTi
LSA(t, f) ∈ C

M×1, respectively,
to calculate:
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Figure 3: An illustration of SSA model training.
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where ‖·‖2 denotes the L2 norm of a vector. MTi
LSA denotes the

mask calculated by LSA-based speech. To generate the simu-
lated data, the enhanced target speech and interference speech
are linearly added.

Then, because the enhanced speech, ŜTi
LSA, is obtained by

conventional single-channel speech enhancement, it also con-
tains non-linear residue noises. Accordingly the mask, MTi

LSA,
can not accurately present the speech presence probability, but
it can provide more elaborate information at time-frequency bin
level comparing to the time annotation at frame level. The mask
is just used as the initial value for cACGMM and the outputs of
cACGMM-based beamforming are used for SSA model train-
ing. And the noise estimated by LSA is directly adopted as the
initial value. According to the Eqs. (1) and (2), different mask
estimations, MTi

LSA(t, f), will result in different beamforming

weights, W Ti
GEV(f), which not only suppress noises but also pro-

vide space and speaker information. The beamformed features
of each target can be obtained as:

ŜTi
BF(t, f) = (W Ti

GEV(f))
HŜTi

LSA(t, f)

Ŝ
Tij

BF (t, f) = (W Ti
GEV(f))

HŜ
Tj

LSA(t, f)

N̂
Tij

BF (t, f) = (W Ti
GEV(f))

HN̂
Tj

LSA(t, f)

(5)

where ŜTi
BF(t, f), Ŝ

Tij

BF (t, f) and N̂
Tij

BF (t, f) are weighted target
speech, weighted interference speech and weighted estimated
noise. Finally the learning target of each speaker can be com-
puted as:

MTi
BF(t, f) =

∣∣∣ŜTi
BF(t, f)

∣∣∣
2

∑4
j=1

∣∣∣ŜTij

BF (t, f)
∣∣∣
2

+
∑4

j=1

∣∣∣N̂Tij

BF (t, f)
∣∣∣
2 (6)

2.3. SSA model training

In this section, we will describe the training process of the SSA
model in detail. To improve the mask estimation accuracy,
a neural-network-based mask estimator learned from a multi-
feature concatenation data set is proposed. The beamformed

STFT features, ŜTi
BF, are composed of the elements in Eq. (6).

Unlike conventional regression model for mask estimation, the
beamformed features of four speakers are used together as the
input of the BLSTM-based regression model as shown in Fig. 3.

Specifically, log(|ŜTi
BF|2) (i = 1, 2, 3, 4) denotes the log-power

spectral (LPS) features of four speakers on a whole utterance.

And ϕ̂
Dj

BF (j = 1, 2, 3) denotes the inter-phase difference (IPD)
between a target speaker and three other interfering speakers
on a whole utterance, which contains the spatial information
between different speakers. Based on the above introduction,
the BLSTM-based regression model can learn both space and
speaker information at the same time. Therefore, we defined
this regression model as space-and-speaker-aware (SSA) model
which is also a speaker-independent speech separation model.

To train the BLSTM-based SSA model, the learning targets
generated in Section 2.2 are used because they are calculated by
beamformed features which are more reliable than the conven-
tional masks. The optimization function of the BLSTM-based
model is defined as:

ESSA =

4∑
i=1

∑
t,f

(
M̂Ti

SSA(t, f)−MTi
BF(t, f)

)2

(7)

where M̂Ti
SSA(t, f) and MTi

BF(t, f) are the BLSTM estimated
mask and the reference mask, respectively. By using ESSA, the
model can not only distinguish four speaker as much as possi-
ble by taking advantage of the space and speaker information
but also yield robust and refined masks. After training, the one
single SSA model of all four speakers can be generated.

3. Experiments
3.1. Data corpus

The latest CHiME-6 Challenge provides the first large-scale
corpus of real multi-talker conversational speech recorded via
commercially available microphone arrays in multiple realistic
homes [28]. Speech material is elicited using a dinner party sce-
nario with efforts taken to capture data that is representative of
natural conversational speech. The parties have been made us-
ing multiple 4-channel microphone arrays and have been fully
transcribed. This corpus essentially congregates a large num-
ber of acoustic problems that may exist in real life, which poses
a great challenge to existing ASR systems, especially for the
front-end processing in the case of noise, reverberation, over-
lapping speech. The CHiME-6 Challenge contains two tracks,
namely Track 1 for multiple-array speech recognition and Track
2 for multiple-array diarization and recognition. Here, we focus
on Track 1 where annotations can be used to recognize a given
test utterance.

3.2. Implementation detail

For front-end configurations, speech waveform is sampled at 16
kHz, and the corresponding frame length is set to 1024 samples
(or 64 msec) with a frame shift of 256 samples. The STFT anal-
ysis is used to compute the DFT of each overlapping windowed
frame. To train the SSA model, the four reference masks were
concatenated to the size of 513× 4 as the learning targets. Four
beamformed LPS features and three IPD features were concate-
nated to the size of 513× 7 as the input. PyTorch was used for
neural network training [29]. The learning rate for the first 3
epochs was initialized as 0.01 and then decreased by 90% after
each epoch, and the number of epochs was 10. For beamform-
ing, we stack all arrays into one big array according to [30].
The channel selection [31] and online beamforming [32] are
also adopted. The CHiME-6 Challenge training set was used as
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our training data. BLSTM with 2 hidden layers and 1024 cells
for each layer was employed as mask estimator.

For the back-end configurations, the baseline ASR recog-
nition system is trained on the speech recognition toolkit
Kaldi [33]. For factorized time delay neural network (TDNN-
F) acoustic model training, backstitch optimization method is
used. The decoding is based on 3-gram language models with
explicit pronunciation and silence probability modeling.

3.3. Results and analysis

Table 1: WER (%) comparison of official BeamformIt, GSS-
based approach and our SSA-IME based approach for multi-
channel speech enhancement using baseline ASR system on the
development and evaluation set.

Enhancement Dataset DINING KITCHEN LIVING AVG

BeamformIt
Dev 68.54 74.11 65.74 69.48
Eval 53.69 67.55 64.15 61.19

GSS
Dev 50.61 50.13 45.30 48.34
Eval 42.18 58.13 48.49 48.89

SSA-IME
Dev 48.35 46.05 42.56 45.23
Eval 39.36 54.45 45.33 45.71

In Table 1 we show a WER (%) comparison of official
BeamformIt, GSS-based and our SSA-IME based approach for
multi-channel speech enhancement using the baseline ASR sys-
tem on the development and evaluation sets.

First, “BeamformIt” [34] and “GSS” [22] are two base-
line multi-channel speech enhancements, respectively. “GSS”
used a spatial mixture model initiated with time annotations and
the ASR-based VAD information from the segmentation results
of a recognizer, while “BeamformIt” is a conventional multi-
channel beamforming without any prior information. Compar-
ing the two methods, we could find that the “GSS” significantly
outperformed the “BeamformIt”, e.g., the AVG WERs were sig-
nificantly reduced from 69.48% to 48.34% and from 61.19%
to 48.89% on development and evaluation sets, respectively.
Based on the above results, it indicates that the speaker prior
information is very important to improve the performance of
multi-channel speech enhancement.

Second, “SSA-IME” denotes the proposed method which
estimated the mask in an iterative manner from different pieces
of complementary information sources, such as, the mask es-
timated by SSA model and the ASR-based VAD information
from the segmentation results of a recognizer, yielding abso-
lute WER reductions of 3.11% and 3.18% over GSS approach
on development and evaluation sets, respectively. The pro-
posed SSA-IME framework significantly and consistently out-
performs the state-of-the-art GSS approach, and achieves the
lowest ASR word error rates for both Track 1A and Track 1B.

To better understand the effectiveness of the proposed SSA-
IME approach, an utterance of Speaker P05 selected from Ses-
sion 02 was illustrated in Fig. 4. In the top panel, the bound-
aries from different speakers shown with the red areas indicat-
ing the target speaker P05 and the blue area denoting the inter-
fering Speaker P07. The spectrograms of speech recorded with
channel-1 and worn microphones are plotted in Figs. 4 (b) and
(c) respectively. Compared with the spectrogram after Beam-
formIt shown in Fig. 4(d), speech processed by GSS shown in
Fig. 4(e) removed most of the interferences. Though it also re-
tains some residual noises, it shows that GSS greatly improves

(b) Original, channel-1

(c) Worn

(d) BeamformIt (existence of interfering speaker)

(e) GSS (Good suppression of interference, existence of residual noises)

(f) Our SSA-IME (Good suppression of interference, better denoising)

(a) Speaker presence bars

Figure 4: Spectrogram comparison of an utterance of speaker
P05 from Session 02. (d) and (e) are the spectrograms from
BeamformIt and GSS methods, respectively. The spectrogram
after our final multi-channel beamforming is plotted in (f).

the speech intelligibility. In Fig. 4(f), the proposed SSA-IME
method cannot only removes the interfering speaker well but
also have better denoising effect than GSS, yielding a better
recognition performance.

4. Summary
In this paper, we have proposed an effective SSA-IME speech
preprocessing framework to accurately estimate speech masks
in an iterative manner from different pieces of complementary
information sources with comprehensive and promising results
on a state-of-the-art ASR challenge corpus. By using multi-
feature concatenation, the SSA model not only makes a full use
of the space and speaker information but also distinguishes dif-
ferent speakers from multi-channel noisy data. In the future, we
can improve SSA-IME further by leveraging upon better spa-
tial beamforming approaches, better deep learning architectures
for mask estimation, and more informative feedback from the
ASR systems. Finally, our back-end acoustic modeling effort, a
key to our overall Track 1 ASR system, is described in another
companion paper submitted to the same conference.
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