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AQ1

Abstract. Detecting anatomical landmarks on structural magnetic
resonance imaging (MRI) is an important medical computer-aid tech-
nique. However, for some brain anatomical landmarks detection,
linear/non-linear registration with skull stripping across subjects is usu-
ally unavoidable. In this paper, we propose a novel method. Starting
from the original MRI data, a series of 3D convolutional neural networks
(cascaded 3D-CNNs) are adopted to iteratively update the predicted
landmarks. Specially, the predicted landmarks of each 3D-CNN model
are used to estimate the corresponding linear transformation matrix by
linear square regression, which is very different from traditional registra-
tion methods. Based on the estimated matrix, we can use it to trans-
form the original image for getting the new image for the next 3D-CNN
model. With these cascaded 3D-CNNs and linear square regression, we
can finally achieve registration and landmark detection. AQ2

Keywords: Anatomical landmark detection · Cascaded 3D-CNNs
Linear square regression · Fast · Robust

1 Introduction

Recently, deep learning [1] is increasingly used for landmarks detection in medical
analysis [2–6]. Interesting, a data-driven manner is utilized to generate discrim-
inative landmarks [6] between Alzheimer’s disease (AD) [8] and normal control,
which can effectively improve the performance of AD diagnosis. This kind of
landmark detection is also the topic of this paper.

In [6], Zhang et al. defined discriminative landmarks between AD and
healthy control (HC) via a data-driven manner and then used a regression-forest
algorithm to identify those landmarks. Furthermore, similar method can be effec-
tively used with the help of longitudinal structural MR images [9]. But, in order
c© Springer Nature Switzerland AG 2018
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2 Z.-R. Wang et al.

to cover landmarks in different locations, many random forests have to be trained
and used. Besides, massive image patches have to be extracted for training these
models. Moreover, some additional fine processes have to be employed to make
the algorithm have final good performance. As an improved scheme, a fully con-
volutional network (FCN) has also been adopted to jointly predict all landmarks
at the same time in [7]. However, the FCN was completed by two stage training,
due to limited medical imaging data. But, in the first training stage, massive
image patches still need to be extracted for training.

In addition to the above mentioned problems, as a basic step for brain MRI
preprocessing, linear/non-linear registration with skull stripping across subjects
is usually unavoidable. To address this critical issue, we propose a novel method
to directly work on original MRI data (with little preprocessing), for iteratively
estimating landmarks with cascaded 3D-CNNs. In particular, landmarks pre-
dicted by each 3D-CNN model are used to estimate the corresponding linear
transformation matrix by linear square regression. Based on the estimate trans-
formation matrix, we can use it to transform the image and obtain the new
image for the next 3D-CNN model. Finally, a linear transformation matrix can
be estimated. This registration strategy is very different from traditional linear
registration methods [10]. They usually try to hard search a best transformation
which can yield the minimum cost for a given cost function while our regis-
tration can be regarded as a learning-based method. The whole procedure can
be regarded as fast linear image registration and seamlessly achieve landmark
detection at the same time.

2 Materials

All subjects used in this study are obtained from the publicly available dataset,
ADNI-11. Totally, there are 199 AD, 229 HCs and 404 MCI subjects, each with
1.5T T1-weighted MR image. All these images are conducted with some neces-
sary preprocessing, i.e., reorientation and resampling to 256× 256 × 256 (with a
voxel resolution 1× 1 × 1 mm3). A preprocessed MR image and its corresponding
landmarks are shown in Fig. 1. As we can see, many landmarks are concentrated
around the hippocampus. These areas play important roles in memory and are
related to AD [8]. We call these images as original images (ori-images) and
the images after linear registration (the Colin27 template [14] for reference) as
lin-images.

In experiments, we randomly select 420 subjects from 428 AD and HC sub-
jects as our training set, and use the remaining 8 subjects as validation set to
tune the parameters of our networks. Totally, 404 new MCI subjects are used
as our testing set to evaluate our approach, demonstrating its robustness. For
all the training subjects, their corresponding 100 anatomical landmarks in ori-
images (ori-landmarks) and lin-images (lin-landmarks) respectively are defined
by [6]. For all the testing subjects, we use their corresponding 100 ori-landmarks

1 http://adni.loni.usc.edu.
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Fast and Robust Detection of Anatomical Landmarks 3

defined by the same way as the ground truth to evaluate the performance of our
approach. All these landmarks can be represented as follows:

L = [(x1, y1, z1)T, .(xi, yi, zi)T.., (x100, y100, z100)T] (1)

where (xi, yi, zi)T denotes the coordinate of the i-th landmark. For simplic-
ity, we use Lori and Llin to represent the ori-landmarks and the lin-landmarks,
respectively.

Fig. 1. Example anatomical landmarks on different slices with 3 mm striding.

3 Method

3.1 Overview

The pipeline of proposed method is shown in Fig. 2, which is composed of a
number of similar blocks (1,...,n). The input images of each block come from
the output images of its previous block. Each block consists of two main parts,
namely a 3D-CNN model and a landmark-based linear transformation estimation
with linear square regression (LSR), except the last block that only contains a
3D-CNN model. The structure of 3D-CNN is the same for all the blocks. The
details of the 3D-CNN and the LSR will be described in Sects. 3.2 and 3.3.

In the training stage, for the 3D-CNN in the first block, we use the ori-images
and their corresponding Lori (L1

lin) to train the first 3D-CNN. Once completing
this training step, the trained 3D-CNN is used to predict the landmarks L1

pre of
the training ori-images. Then, we can conduct the LSR between the L1

pre and
their corresponding lin-landmarks Llin and get the corresponding transforma-
tion matrix W1 and biases b1 for each subject in the first block. Based on the
estimated matrix W1, biases b1 and the ori-images, we can get a set of new
training data (through linear transformation) for the next 3D-CNN. By apply-
ing the same corresponding matrix W1 and biases b1 to the Llin, the labels
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4 Z.-R. Wang et al.

Fig. 2. The pipeline of proposed method.

L2
lin of the second 3D-CNN in the second block can be obtained. Next, we keep

training the second 3D-CNN. Especially, the weights of the first 3D-CNN are
used to initialize the weights of the second 3D-CNN, which is very important
as shown in Sect. 4.3. But, there is a problem in the testing stage, since we
don’t know their lin-landmarks Llin, to address this problem, we use the average
landmarks Lmean of all training lin-landmarks Llin as our targets in the LSR
for every testing subject. This could cause a potential issue since the targeted
landmarks are changing across subjects. To further handle this problem and
get better performance, we propose a novel data augmentation, i.e., we also use
the Lmean as targets in the LSR to augment our training data for the second
3D-CNN, which helps our model to see more data based on different transforma-
tions and thus enhance the generalization ability of our model. In this way, the
amount of training data of the second 3D-CNN are also doubled, compared with
the training data of the first 3D-CNN, since no data augmentation is used for
the first 3D-CNN. The same training/testing strategies are used for the blocks
3 to n.
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Fast and Robust Detection of Anatomical Landmarks 5

3.2 3D-CNN

The conventional convolutional neural network (CNN) [11] consists of suc-
cessively stacked convolutional layers, optionally followed by spatial pooling,
one or more fully-connected layers and a softmax layer. For convolutional and
pooling layers in the usual 2-dimensional CNN (2D-CNN), each layer is a
three-dimensional tensor organized by a set of planes called feature maps, while
convolutional and pooling layers in the 3D-CNN are the four-dimensional ten-
sors organized by a set of cubes, which is naturally suitable to deal with 3D
MR images. The fully-connected layer and the softmax layer are the same
with the common deep neural network (DNN). Inspired by the locally-sensitive,
orientation-selective neurons in the visual system of cats, each unit in a feature
map is constrained to connect a local region in the previous layer, which is called
the local receptive field. Two contiguous local receptive fields are usually shifted
for s pixels (referred as stride) along a certain direction. All units in the same
feature map of a convolutional layer share a set of weights, each computing a dot
product between its weights and local receptive field in the previous layer and
then followed by nonlinear activation functions (e.g., rectifier). Meanwhile, the
units in a pooling layer perform a spatial average or max operation for their local
receptive field to reduce spatial resolution and noise interferences. Accordingly,
the key information for identifying the pattern can be retained. We formalize
the convolution operation in 3D-CNN as:

Yi,j,h,k =
∑

m,n,q,l

X(i−1)×s+m,(j−1)×s+n,(h−1)×s+q,lKm,n,q,k,l

where Xi,j,h,k is the value of the input unit in feature map k at row i, column
j and height h, while Yi,j,h,k is corresponding to the output unit. Km,n,q,k,l is
the connection weight between a unit in feature map k of the output and a unit
in channel l of the input, with an offset of m rows, n columns and q heights
between the output unit and the input unit. Similarly, the pooling operation
can be conducted by using a max operation in this study. The 3D-CNN model
used in this paper is shown in Fig. 3.

3.3 Linear Square Regression

As shown in Fig. 4, given D source points (blue points) Sd = (xs d, ys d, zs d)T

(d = 1, ...,D) and their corresponding target points (red points) Td =
(xt d, yt d, zt d)T (d = 1, ...,D), the LSR tries to find a 3 × 3 matrix W and
a 3-dimensional vector b to minimize the Eq. (2) so that the new transformed
points Trd (green points) can get close to the target points.

Loss =
1
2

D∑

d=1

|WSd + b − Td|2 (2)

namely:

(W ∗, b∗) = arg min
(W,b)

Loss (3)
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Fig. 3. Schematic diagram of 3DCNN for landmark detection.

The Eq. 3 has closed solution. So the transformed points:

Trd = WSd + b (d = 1, ...,D) (4)

In the i-th block, for the input image j, the source points are the predicted land-
marks Li,j

pre of the i-th 3D-CNN while the target points are the lin-landmarks Lj
lin

or the average landmarks Lmean. Based on the transformation matrix W j
i and

the bias vector bj
i , we can transform the input image j and the corresponding

landmarks Li,j
lin for training the (i + 1)-th 3D-CNN in the training stage. Obvi-

ously, the transformed landmarks L
(i+1),j
lin can be directly obtained by using the

Eq. (4), and the transformed image can also be obtained by using this equation.
As shown in Fig. 5, we can assume a point PT in the transformed image, corre-
sponds to its corresponding location PS in the image j, which can be obtained
by tracing back based on the W j

i and bj
i , thus, we can get the intensity value

for the point PT (PS) according to image interpolation.

4 Experiments

4.1 Evaluation Criteria

In the experiments, we focus on evaluating our approach in detecting anatomical
landmarks for the ori-images. For example, for the testing subject j, based on the
predicted landmarks Ln,j

pre of the last 3D-CNN model and a series of estimated
transformation matrices W j

i (i = 1, ..., n − 1) and biases bj
i (i = 1, ..., n − 1), the

final predicted landmarks in the ori-images can be traced back according to the
following formula:

Li,j
pre = (W j

i )
−1 ∗ (L(i+1),j

pre − bj
i ) (i = n − 1, ..., 1)
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Fast and Robust Detection of Anatomical Landmarks 7

Fig. 4. The diagram of the linear square regression. (Color figure online)

Fig. 5. The diagram about how to find corresponding points between MR image and
transformed MR image by using the transformation matrix and bias.

To quantitatively evaluate detection performance, we use the mean Euclidean
distance to measure the detection error (DE) between all final predicted land-
marks and the ground truth landmarks in the ori-images:

DE =
P∑

p=1

√
(xp − x̃p)2 + (yp − ỹp)2 + (zp − z̃p)2

(xp, yp, zp) is the ground truth landmark and (x̃p, ỹp, z̃p) is the predicted land-
mark. There are P (40400) landmarks in all for 404 MCI subjects, each with 100
landmarks.

4.2 Experimental Setup

All 3D-CNN models in our approach have the same structure, i.e., five convolu-
tional layers in the front. Their local receptive fields, feature maps and strides are
[(5,5,5),24,1], [(5,5,5),64,1], [(5,5,5),128,1], [(3,3,3),256,1], [(3,3,3),512,1], respec-
tively. The first four convolutional layers are followed by a pooling layer while the
last convolutional layer is followed by two fully-connected layers with 1024 neural
nodes. All convolutional layers are equipped with batch normalization. All pool-
ing layers have local receptive field (2,2,2) and stride is 2, except the first pooling
layer which has local receptive field (3,3,3) and stride 3. The activation func-
tions of the convolutional and fully-connected layers are ReLU, while the output
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8 Z.-R. Wang et al.

layer with 300 neural nodes uses a sigmoid function to predict landmarks. In
the training of 3D-CNN models, the common stochastic gradient descent (SGD)
algorithm with a momentum coefficient is used.

Table 1. The DE (mm) comparison of different training strategies and different total
numbers of blocks.

Block1 Block2 Block3 Block4 Block5

Structure1 3.20 2.86 2.72 2.66 2.66

Structure2 3.20 2.82 2.68 2.57 2.57

Structure3 3.20 2.70 2.27 2.02 1.95

4.3 Results

Table 1 lists the DE comparison of different training strategies and different
total numbers of blocks. For structure1, we don’t use data augmentation and
all CNN models are randomly initialized. That is, in the training stage, only
lin-landmarks Llin are used as targets in the LSR while both Llin and Lmean

are used in the structure2. Further more, in the structure3, not only the data
augmentation strategy is used in the training stage, but also the weights of the
(i− 1)-th 3D-CNN are used to initialize the weights of the i-th 3D-CNN. For all
structures (1–3), with the increase of the number of blocks, the performance of
our approach can become better and better. In the structure3, the DE can be
reduced to 1.95 mm (block5) from 3.20 mm (block1), which shows the usefulness
of the cascaded 3D-CNNs in this task. When the number of blocks is increased
to 5, the performance keeps unchanging (for structure1 and structure2) or just
small increment (i.e., for structure3). Moreover, when the number of blocks is
set to 5, compared with the structure1, the DE of the structure2 can be reduced
to 2.57 mm from 2.66 mm due to the use of data augmentation strategy, which
enhances the generalization ability of our model. Finally, the improvement of the
structure3 is significant, compared with the structure2, due to two main reasons.
First, the i-th 3D-CNN can get better initial weights than random initialization
and thus can be trained easily. Second, more importantly, we think the train-
ing data of the i-th 3D-CNN is augmented based on the training data of the
(i − 1)-th 3D-CNN, which allows our model to cover more possible transforma-
tions. All these make our 3D-CNN models improve the performance gradually.

Table 2 lists the average detection time for the whole process in our proposed
approach, using a computer with the processor of Intel(R) Xeon(R) E5-2650
2.20 GHz and NVIDIA GPU P40. It should be noted that each individual time
includes the time cost of reading and writing data. As we can see, our proposed
approach is free of traditional image registration and has very low detection
error.

We tentatively only use the traditional linear registration (TLR) method
including skull stripping to detect landmarks. First, all testing images are skull-
stripped and then the FLIRT [13] is used to achieve linear registration based
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Fast and Robust Detection of Anatomical Landmarks 9

on the Colin27 template. Finally, we take the average landmarks of all training
lin-landmarks as our detected landmarks in lin-images for every testing image
and then their landmarks in corresponding ori-images can be found by utilizing
linear registration matrix. In Table 3, we can see the detection result 2.93 mm is
unsatisfactory if we only use TLR. Further more, if we train a 3D-CNN model
based on these lin-images, the detection result can reduce to 2.05 mm while
the 3D-CNN model based on ori-images only can achieve 3.20 mm as shown
in Table 1, which means linear registration is very important. Comparing with
our method, the traditional linear registration with skull-stripping needs more
processes and gets higher detection error than our proposed method. So we think
our method has more advantages and the whole procedure can be regarded as
fast linear registration and seamlessly achieve landmark detection at the same
time.

Table 2. The average detection time of the whole process of our proposed system.

Procedure Implementation Individual time Total time

3D-CNNs (1–5) prediction C++/MXNet [12] 13.3 s 15.9 s

LSR (block 1–4) Python 2.3 s

Final prediction Python 0.3 s

Table 3. The comparison of different methods.

Method DE

TLR 2.93 mm

TLR+3D-CNN 2.05 mm

Our proposed method 1.95mm

5 Conclusion

In this study, we propose a novel and effective approach to fast detect anatom-
ical landmarks and estimate linear transformation for image registration. It’s
interesting we find a clever and effective way to combine landmarks detection
and linear registration. Our experimental results show a competitive advantage.
For the future work, we will verify our algorithm on other anatomical landmarks
and enhance our deep learning model.
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