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Abstract—In this paper, we propose a novel multi-modal
attention network (MAN), which is based on encoder-decoder
framework, for handwritten mathematical expression recognition
(HMER). Here, multi-modal means two specific modalities: online
and offline, where online modality employs dynamic trajectories
as input and offline modality employs static images as input. More
specifically, the proposed method first feeds dynamic trajectories
and static images into online and offline channels of the multi-
modal encoder respectively. The output of the encoder is then
transferred to the multi-modal decoder to generate a LaTeX
sequence as the mathematical expression recognition result. To
make full use of the complementary information that comes from
the two modalities, we propose a re-attention mechanism as an
enhanced version of the multi-modal attention mechanism which
can further improve the recognition performance. Evaluated on
a benchmark published by CROHME competition, the proposed
approach achieves an expression recognition accuracy of 54.05%
on CROHME 2014 and 50.56% on CROHME 2016 which
substantially outperforms the state-of-the-arts using the single
online or offline modality.

Index Terms—Multi-modal, Handwritten Mathematical Ex-
pression Recognition, Encoder-Decoder, Attention

I. INTRODUCTION

The recognition of handwritten mathematical expression is
an indivisible branch of optical character recognition. Different
from the original character recognition, handwritten mathemat-
ical expression recognition (HMER) is confronted with more
challenges due to the complicated two-dimensional structural
analysis [1]–[3].

The recent studies of HMER can be roughly divided into
two tasks: online HMER [4], [5] and offline HMER [6]. The
difference between these two tasks is that the input of online
HMER is dynamic handwriting trajectories while the input
of offline HMER is static images. Therefore, the primary
issue of these two tasks varies severely. In general, online
HMER can achieve better performance than offline HMER
as the input of online HMER has rich dynamic (spatial and
temporal) information which is extremely helpful for hand-
writing recognition. Owing to these rich dynamic information,
online HMER meets fewer difficulties coming from ambiguous
handwriting which are usually hard to deal with in offline
HMER. Nevertheless, the lack of global image information in
online HMER may lead to incorrect recognition of delayed
strokes or inserted strokes [7], [8] which can be naturally
solved in offline HMER. Therefore, it is an intuitive way to
utilize both dynamic trajectories and static images to build a

more powerful recognition system for HMER.

Inspired by recent work in multi-modal researches [9]–[12],
we propose a novel multi-modal attention network (MAN)
that attempts to utilize both the advantages of dynamic hand-
writing trajectories and static images for HMER. To our best
knowledge, this is the first multi-modal learning study for
HMER. The proposed multi-modal attention network is based
on the encoder-decoder framework [13]–[15]. The encoder
which we call multi-modal encoder, comprises two channels:
online channel and offline channel. The online channel em-
ploys dynamic handwriting trajectories as input and the offline
channel employs static images as input. More specifically, the
online channel is convolutional neural networks (CNN) [16]
following a stack of bidirectional recurrent neural networks
with gated recurrent units (GRU-RNN) while the offline
channel is a deeper CNN. The output of the encoder is then
transferred to the multi-modal decoder to generate a math
symbol sequence including spatial structure in LaTeX format
[17] for recognition. The multi-modal attention mechanism
equipped in the decoder adopts the output of online and
offline channels to compute a multi-modal context vector that
only contains the useful parts of input to describe one math
symbol at each decoding step. Therefore, the multi-modal
context vector can contain both dynamic information from
online modality and static global information from offline
modality simultaneously. Besides, to make full use of the com-
plementary information that comes from the two modalities,
we propose a novel re-attention mechanism as an enhanced
version of the multi-modal attention mechanism to help control
the flow of one modality information into the other one to
further improve the recognition performance. In experiments,
we evaluate our method on a benchmark published by the com-
petition for handwritten mathematical expression (CROHME),
and we achieve expression recognition accuracy of 54.05%
on CROHME 2014 and 50.56% on CROHME 2016 which
substantially outperforms the state-of-the-arts using the single
online or offline modality. Besides, the proposed re-attention
mechanism can be easily adopted to other multi-modal tasks.
The contributions of this paper are as follows:

∙ We propose a novel multi-modal attention network
(MAN) which can exploit both advantages of online
and offline modalities to improve the performance of
handwritten mathematical expression recognition.
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∙ We propose to utilize a multi-modal encoder to encode
dynamic trajectories and static images simultaneously.
Instead of employing a stack of GRU-RNNs as introduced
in [7], we employ CNN following a fewer stack of GRU-
RNN as the online encoder which helps reduce overfitting
and achieve better recognition results.

∙ We show the advantages of multi-modal attention against
single-modal attention through experimental analysis and
attention visualization.

II. THE PROPOSED APPROACH

In this section, we elaborate the proposed MAN based
encoder-decoder framework for HMER. As illustrated in Fig.
1, the raw data is a sequence of points containing xy-
coordinates and stroke information. First, data processing
should be applied to raw data to get trajectory sequences and
greyscale images. Then the online channel and the offline
channel of multi-modal encoder, extract high-level features
from trajectory sequences and greyscale images respective-
ly. The multi-modal decoder is unidirectional GRU-RNN
equipped with a multi-modal attention mechanism. To acquire
better alignments between input handwriting traces and output
LaTeX symbols, we propose a re-attention mechanism as an
enhanced version of the multi-modal attention mechanism
which can make online and offline modalities complementary
to each other and further improve the recognition performance.

A. Processing

The raw data of handwriting traces are collected during the
writing process, which can be represented as a variable length
sequence:

{[𝑥1, 𝑦1, 𝑠1] , [𝑥2, 𝑦2, 𝑠2] , ⋅ ⋅ ⋅ , [𝑥𝑁 , 𝑦𝑁 , 𝑠𝑁 ]} (1)

where 𝑥𝑖 and 𝑦𝑖 are the xy-coordinates of the pen movements
and 𝑠𝑖 indicates which stroke the 𝑖th point belongs to.

As for the online input, following [18], we remove the
redundant points and normalize the xy-coordinates into a
standard interval because of the non-uniform sampling and
the variable size of handwriting input. Then we obtain an 8-
dimension feature vector for each point 𝑖:[
𝑥𝑖, 𝑦𝑖,Δ𝑥𝑖,Δ𝑦𝑖,Δ

2𝑥𝑖,Δ
2𝑦𝑖, 𝛿 (𝑠𝑖 = 𝑠𝑖+1) , 𝛿 (𝑠𝑖 ∕= 𝑠𝑖+1)

]
(2)

where Δ𝑥𝑖 = 𝑥𝑖+1−𝑥𝑖, Δ𝑦𝑖 = 𝑦𝑖+1−𝑦𝑖, Δ2𝑥𝑖 = 𝑥𝑖+2−𝑥𝑖,
Δ2𝑦𝑖 = 𝑦𝑖+2 − 𝑦𝑖. 𝛿 (⋅) = 1 means that the condition is true
otherwise zero. The two terms, 𝛿 (𝑠𝑖 = 𝑠𝑖+1) and 𝛿 (𝑠𝑖 ∕= 𝑠𝑖+1)
indicate whether the point is the final point of a stroke, which
we usually call pen down, i.e. [1, 0] and pen up, i.e. [0, 1]. To
simplify the description of the following sections, we will use
Xon = (x1,x2, ⋅ ⋅ ⋅ ,x𝑁 ) to represent the trajectory sequence,
which is used as the input for online channel of multi-modal
encoder. Note that x𝑖 here is actually an 8-dimension vector.

As for the offline input, we first calculate the heights of
all strokes. Then we count the average height of strokes with
the height greater than one tenth of the highest stroke. Further-
more, we normalize xy-coordinates of all points in accordance

N Nx y x y x y x y x y x yN Nx yN

Fig. 1. Architectures of multi-modal attention network (MAN) for hand-
written mathematical expression recognition. We show three pairs of images
to visualize the decoding procedure. The left image denotes the attention
probabilities on online input and the right image denotes the attention
probabilities on offline input.

with the average height. After that, to obtain the static image
from strokes, we simply line trajectory points of each stroke to
transform traces into the image-like representation. We record
this static image as Xoff and treat it as the input for offline
channel of the multi-modal encoder.

B. Multi-modal Encoder

Since our model is designed for multi-modal HMER and to
deal with both online and offline input, we equip the multi-
modal encoder with two channels, namely online channel and
offline channel.

Considering online channel, the input is a sequence, Xon =
(x1,x2, ⋅ ⋅ ⋅ ,x𝑁 ). Different from [7], we do not choose to use
a stack of RNNs. Instead, we employ CNN following a fewer
stack of RNNs, which can acquire better local information
and improve the recognition performance. In addition, simple
RNN meets the problems of the exploding gradient and the
vanishing gradient [19], [20]. Therefore, we actually apply
GRU as an improved architecture of simple RNN. The hidden
state of GRU [21] can be calculated as:

h𝑡 = GRU (x𝑡,h𝑡−1) (3)
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Furthermore, unidirectional GRU cannot exploit the future
context information, so we adopt bidirectional GRU which
can utilize both past and future context information. As for
the offline channel, the input is the static image. Thus, we
choose to use DenseNet [22] which has shown its superiority
on image processing.

The output of the online channel is a variable-length se-
quence, namely A = (a1,a2, ⋅ ⋅ ⋅ ,a𝐿on) and each element is a
𝐷-dimension vector. As for the offline channel, the output is
a 3D tensor of size 𝐷 ×𝐻 ×𝑊 . Then we transform the 3D
tensor into a variable-length vector sequence of 𝐿off elements,
B = (b1,b2, ⋅ ⋅ ⋅ ,b𝐿off), where 𝐿off = 𝐻 × 𝑊 and each
element is a 𝐷-dimension vector as well.

C. Multi-modal Decoder

As shown in Fig. 1, the multi-modal decoder generates a
LaTeX sequence for recognition:

Y = {y1,y2, ⋅ ⋅ ⋅ ,y𝐶} ,y𝑖 ∈ ℝ
𝐾 (4)

where 𝐾 is the number of total math symbols in the vocabulary
and 𝐶 is the length of LaTeX sequence. Note that the decoder
also has two channels to accept the features from online and
offline channels of the encoder, which are the online trajectory
sequence feature A and the offline static image feature B.

Since the length of the LaTeX string is not fixed and the
output of two encoder channels has variable length, we em-
ploy an intermediate fixed-size vector c𝑡 namely multi-modal
context vector [23] generated by a unidirectional GRU with
a multi-modal attention mechanism which will be described
later. Then another unidirectional GRU is adopted to produce
the LaTeX sequence symbol by symbol. The decoder structure
can be denoted as:

ĥ𝑡 = GRU1 (y𝑡−1,h𝑡−1) (5)

c𝑡 = 𝑓matt

(
ĥ𝑡,A,B

)
(6)

h𝑡 = GRU2

(
c𝑡, ĥ𝑡

)
(7)

where GRU1, GRU2 indicate two GRU layers, 𝑓matt denotes
the multi-modal attention mechanism and ĥ𝑡, h𝑡 represent the
hidden state of the first and the second GRU layers.

To obtain the probability of each predicted symbol, we
exploit an additional two-layer perceptron using the previous
target symbol y𝑡−1, the hidden state of the second GRU layer,
h𝑡 and the multi-modal context vector c𝑡 as input:

𝑝(y𝑡∣Xon,Xoff,y𝑡−1)=𝑔 (W𝑜𝜙 (Ey𝑡−1+Wℎh𝑡+W𝑐c𝑡))
(8)

where 𝑔 represents the softmax activation function and 𝜙 rep-
resents the maxout activation function. Then W𝑜 ∈ ℝ

𝐾×𝑚
2 ,

Wℎ ∈ ℝ
𝑚×𝑛, W𝑐 ∈ ℝ

𝑚×𝐷, E ∈ ℝ
𝑚×𝐾 .

Attention mechanism [24]–[26] is usually adopted in se-
quence learning. The difference in our study is that our
attention mechanism has more than one modalities. Therefore,
we propose a multi-modal attention mechanism which can
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Fig. 2. Re-attention mechanism. “Concat” denotes concatenation operation.

exploit information from both online and offline modalities.
The attention mechanism can be denoted as:

�̂�on
𝑡𝑖 = 𝑔

(
v𝑇

att tanh
(
Wattĥ𝑡 +Uon

atta𝑖 +Uon
𝑓 f̂ on

𝑖

))
(9)

�̂�off
𝑡𝑖 = 𝑔

(
v𝑇

att tanh
(
Wattĥ𝑡 +Uoff

attb𝑖 +Uoff
𝑓 f̂ off

𝑖

))
(10)

where vatt ∈ ℝ
𝑛′

, Watt ∈ ℝ
𝑛′×𝑛 are shared parameters while

Uon
att ∈ ℝ

𝑛′×𝐷, Uoff
att ∈ ℝ

𝑛′×𝐷, Uon
𝑓 ∈ ℝ

𝑛′×𝑘, Uoff
𝑓 ∈ ℝ

𝑛′×𝑘

are unshared parameters. �̂�on
𝑡𝑖 , �̂�off

𝑡𝑖 are the attention coefficients
of a𝑖, b𝑖 at time step 𝑡. f̂ on

𝑖 and f̂ off
𝑖 denote the coverage vectors

at the location 𝑖 of F̂on and F̂off, which can be calculated as:

F̂on = Qon ∗
𝑡−1∑
𝑙=1

�̂�on
𝑙 , F̂off = Qoff ∗

𝑡−1∑
𝑙=1

�̂�off
𝑙 (11)

where �̂�on
𝑙 , �̂�off

𝑙 represent the attention probabilities of online
and offline part at time step 𝑙. Qon represents a 1𝐷 convolution
filter with 𝑘 output channels while Qoff represents a 2𝐷
convolution filter with 𝑘 output channels as well.

Once the attention weights are calculated, the single modal
context vectors of online and offline can be obtained as:

ĉon
𝑡 =

𝐿on∑
𝑖=1

�̂�on
𝑡𝑖 a𝑖, ĉoff

𝑡 =

𝐿off∑
𝑖=1

�̂�off
𝑡𝑖 b𝑖 (12)

Finally, we can obtain the multi-modal context vector by
concatenating the single online and offline modal vectors as:

c𝑡 = tanh

(
WFC

[
ĉon
𝑡

ĉoff
𝑡

])
(13)

where WFC ∈ ℝ
𝐷×2𝐷. In addition, to make full use of the

information that comes from the online and offline modalities,
we propose a re-attention mechanism as an enhanced version
of the multi-modal attention mechanism which is shown in Fig.
2. Note that to simplify the illustration, we have omitted the
coverage vectors. The re-attention mechanism can be divided
into two parts, namely pre-attention model and fine-attention
model. The pre-attention model is the same as the multi-modal
attention mechanism. The fine-attention model is similar to
pre-attention model and the difference is that we utilize single
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modal vectors of another modality which are computed by pre-
attention model as an additional item to calculate the query
of the fine-attention. Therefore, the computation of the fine-
attention query can be represented as:

qon
𝑡𝑖 = Wattĥ𝑡 +Uon

atta𝑖 +Uon
𝑓 f on

𝑖 +Uoff
𝑝 ĉoff

𝑡 (14)

qoff
𝑡𝑖 = Wattĥ𝑡 +Uoff

attb𝑖 +Uoff
𝑓 f off

𝑖 +Uon
𝑝 ĉon

𝑡 (15)

where Uon
𝑝 ∈ ℝ

𝑛′×𝐷, Uoff
𝑝 ∈ ℝ

𝑛′×𝐷. Note that the same
part of the pre-attention and the fine-attention models share
parameters. Obviously, the fine-attention model can be execut-
ed repeatedly any times. We denote the multi-modal attention
network with multi-modal attention mechanism as MAN and
which with re-attention mechanism as E-MAN (Enhanced
MAN).

III. EXPERIMENTS

Our experiments are conducted on CROHME competition
database. We use the training set of CROHME 2014 as our
training set, which consists of 8836 expressions. After training,
we evaluate the performance of our models on CROHME 2014
and CROHME 2016 testing set. The CROHME 2014 testing
set has 986 expressions while CROHME 2016 testing set has
1147 expressions.

Our model aims to minimize the predicted symbol prob-
ability as show in Eq. (8) and employs cross entropy (CE)
as the criterion. Besides. we set weight decay as 10−5 to
reduce overfitting. The multi-modal encoder has two channels,
namely online channel and offline channel, respectively. The
online channel is a DenseNet followed by two layers of
bidirectional GRU and each GRU layer has 250 forward and
250 backward GRU units. The offline channel is a deeper
DenseNet. The DenseNet in online channel has 5 dense blocks.
Each block without bottleneck layer has 3 convolutional layers
with kernel size of (1 × 3). The growth rate is 24 while the
𝜃 in transition layer is 1. The DenseNet in offline channel
is actually DenseNet-BC [22] with 𝜃 = 0.5 and has 3 dense
blocks. Each block has 16 convolutional layers with kernel
size of (3 × 3). The growth rate is also 24. The multi-modal
decoder is two layers of unidirectional GRU layers with a
multi-modal attention or re-attention mechanism. Each GRU
layer in the decoder has 256 forward units. Note that there is an
additional fully connected layer on top of online and offline
channel of the encoder to convert the output dimension of
these two channels to be the same. The embedding dimension
𝑚 and the number of output channels 𝑘 are both 256 while
the attention dimension 𝑛′ and annotation dimension 𝐷 are
both 500. The kernel sizes of convolution filters Qon, Qoff for
computing coverage vectors are set to (1× 7) and (11× 11).

We train our network by AdaDelta algorithm and the
corresponding hyperparameters are set as 𝜌 = 0.9, 𝜀 = 10−8.
During the decoding stage, we expect to obtain the most
likely LaTeX sequence. To achieve better performance, we
employ beam search algorithm and maintain the 10 most likely
candidate LaTeX symbols at each decoding step.

TABLE I
PERFORMANCE COMPARISONS ON CROHME 2014 BETWEEN ORIGINAL

TAP, WAP AND OUR IMPLEMENTED TAP, WAP.

System ExpRate(%) ≤ 1(%) ≤ 2(%) ≤ 3(%)

TAP-Original 46.86 61.87 65.82 66.63
TAP-Ours 48.47 63.28 67.34 67.95

WAP-Original 43.71 58.42 62.88 64.20
WAP-Ours 48.38 66.13 70.18 70.79

TABLE II
COMPARISONS OF EXPRESSION RECOGNITION RATE (EXPRATE) IN % ON

CROHME 2014 AND CROHME 2016.

System CROHME 2014 CROHME 2016

ExpRate ≤ 1 ≤ 2 ExpRate ≤ 1 ≤ 2

UPV 37.22 44.42 47.26 - - -
Wiris - - - 49.61 60.42 64.69

IM2TEX 35.90 - - - - -
TAP-Ours 48.47 63.28 67.34 44.81 59.72 62.77
WAP-Ours 48.38 66.13 70.18 46.82 64.64 65.48

MAN 52.43 68.25 71.81 49.87 64.52 67.13
E-MAN 54.05 68.76 72.21 50.56 64.78 67.13

A. Recognition performance

To be fairly comparable, the single-modal recognition sys-
tem and multi-modal recognition system are implemented
using the same configuration. In Table I, we first show our
implemented TAP and WAP models for HMER are better than
original TAP and WAP introduced in [7], [8]. Considering
TAP, rather than only employing GRU-RNN as the encoder,
we also employ a CNN layer for processing input feature
to further improve the ability of feature extraction and help
alleviate over-fitting. As for WAP, the encoders used in original
WAP and our WAP are both DenseNet although the encoder is
VGG [27] in [8]. Furthermore, our models are all implemented
by Pytorch while original TAP and WAP are implemented
by Theano, which may also influence the performance. The
source codes of our own TAP and WAP are publicly available1.

The TAP-Original and WAP-Original represent original TAP
and WAP respectively while TAP-Ours and WAP-Ours repre-
sent our own TAP and WAP respectively. As we can see, our
implemented TAP and WAP substantially outperform original
TAP and WAP. We use TAP-Ours and WAP-Ours as default
in the following experiments.

The overall ExpRate comparisons are demonstrated in Ta-
ble II. The system UPV denotes the best system in all of
submitted systems to CROHME 2014 competition, while the
system Wiris denotes the best system in all of submitted
systems to CROHME 2016 competition. The details can be
seen in [28], [29]. IM2TEX [30] is a system which employs a
coarse-to-fine attention and achieves comparable performance
to UPV. We use MAN to denote our multi-modal attention
network with the multi-modal attention mechanism and use
E-MAN to denote our multi-modal attention network with the
re-attention mechanism.

1https://github.com/jmwang66
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The system MAN achieves an ExpRate of 52.43% on
CROHME 2014 and 49.87% on CROHME 2016, which
significantly outperforms all the published modal-specific
models. With the re-attention mechanism, E-MAN achieves
an ExpRate of 54.05% on CROHME 2014 and 50.56% on
CROHME 2016 which further improves the performance over
MAN. We also show the results of the expression recognition
accuracies with one, two (and three) errors per expression,
represented by “≤ 1”, “≤ 2” (and “≤ 3”) in Table I and
Table II, but they are not totally comparable with the submitted
systems to CROHME competitions as we do not consider the
segmentation error in our models.

B. Attention visualization and modal complementarity

In this section, we show how the proposed attention mech-
anism is capable to attend the useful parts of the input at
each decoding step through attention visualization. We only
show the results of re-attention mechanism as it achieves better
performance than multi-modal attention mechanism. Since our
model has two modality inputs, the attention visualization
also has two parts, namely online and offline attention. In
addition, we utilize the red color to describe the attention
probabilities. As shown in Fig. 3, the correctly recognized ex-
pression,

∫
2𝑥−2𝑑𝑥 is used to show how the model translates

this handwritten mathematical expression from a trajectory
sequence and the corresponding static image into a LaTeX
sequence “ ∖int 2 x ∧ { - 2 } d x ” step by step. When
decoding basic math symbols, such as “

∫
”, “2”, “x”, “d”

and “-”, the re-attention mechanism helps the model attend
the corresponding parts well. For the spatial relationship in
𝑥−2, the re-attention mechanism accurately distinguishes the
superscript relationship to decode the symbol “∧”. At the
same time, the decoder generates a pair of braces “{}” right
after detecting the superscript spatial relationship, which are
necessary for LaTeX grammar.

Furthermore, the proposed re-attention mechanism can help
the model generate more accurate attention by fully utiliz-
ing the information that comes from the online and offline
modalities and making them complementary to each other,
which can acquire better recognition performance than TAP or
WAP. In Fig. 4, we show how the re-attention mechanism can
acquire better alignments between features and symbols than
using single online modality (TAP). The basic symbol “𝑥”
is unparsed in single online modality as the model focuses
attention on both the current symbol “𝑥” and the following
symbols “𝑑”, “𝑥”. However, the online attention in multi-
modal well distinguishes the last three symbols, “𝑥”, “𝑑”, “𝑥”.

In addition to better attention, the proposed model can
also improve recognition performance by mitigating ambiguity
problems even though the attentions of single modality and
multi-modal are both accurate. As shown in Fig. 5, two
representative examples are shown. For the online example,
the writing trajectory of symbols, “ ∈ ” and “t” is similar
which can easily lead to recognition error. The similar problem
exists in offline modality example. The symbol of the ground
truth “ 𝛽 ” is similar to the symbol “p” due to the bad writing.

Fig. 3. Attention visualization for a correctly recognized example of a
handwriting mathematical expression with the LaTeX ground truth “ ∖int 2
x ∧ { - 2 } d x ”. Numbers of 1 to 11 at the left of the images denote the
orders of each decoding step.

Fig. 4. Examples of online attention in single modal (TAP) and multi-modal
(re-attention). Parts of the recognized LaTeX sequence are printed below each
image (the red areas in the images indicate the attended regions, and the red
text in the LaTeX sequence indicates the corresponding words).

As a result, it is hard to distinguish only by using the static
information from offline modality. However, our multi-modal
attention network can acquire information from both online
and offline modalities to solve ambiguity problems above and
achieve better recognition results.

IV. CONCLUSIONS

In this study, a multi-modal attention network (MAN) based
on encoder-decoder framework for HMER is introduced. To
make full use of the information that comes from the online
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Fig. 5. Examples to show that re-attention mechanism can help mitigate
ambiguity problems in single online modality (TAP) or single offline modality
(WAP). The symbols in red color represent incorrectly recognized symbols.

and offline modalities, we propose a re-attention mechanism
as an enhanced version of the multi-modal attention mechanis-
m. We achieve significant improvements on both CROHME
2014 competition and CROHME 2016 competition compared
with state-of-the-art single-modal systems. Through attention
visualization, we show how our model improves recognition
performance with better alignments. In the future, we aim to
investigate a better way to combine two modalities to achieve
a higher performance and efficiency.
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