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Abstract

We propose a signal pre-processing front-end to enhance
speech based on deep neural networks (DNN5s) and use the en-
hanced speech features directly to train hidden Markov mod-
els (HMMs) for robust speech recognition. As a comprehen-
sive study, we examine its effectiveness for different acoustic
features, acoustic models, and training-testing combinations.
Tested on the Aurora4 task the experimental results indicate
that our proposed framework consistently outperform the state-
of-the-art speech recognition systems in all evaluation condi-
tions. To our best knowledge, this is the first showcase on the
Aurora4 task yielding performance gains by using only an en-
hancement pre-processor without any adaptation or compensa-
tion post-processing on top of the best DNN-HMM system. The
word error rate reduction from the baseline system is up to 50%
for clean-condition training and 15% for multi-condition train-
ing. We believe the system performance could be improved fur-
ther by incorporating post-processing techniques to work coher-
ently with the proposed enhancement pre-processing scheme.
Index Terms: robust speech recognition, speech enhance-
ment, clean-condition training, multi-condition training, hidden
Markov models, deep neural networks

1. Introduction

With the fast development of mobile internet, the speech-
enabled applications using automatic speech recognition (ASR)
are becoming increasingly popular. However, the noise robust-
ness is one of the critical issues to make ASR system widely
used in real world. Historically, most of ASR systems use Mel-
frequency cepstral coefficients (MFCCs) and their derivatives
as speech features, and a set of Gaussian mixture continuous
density HMMs (CDHMMs) for modeling basic speech units.
Many techniques [1, 2, 3] have been proposed to handle the
difficult problem of mismatch between training and application
conditions. One type of approaches to dealing with the above
problem is the so-called data-driven approach based on stereo-
data, which is also the topic of this study. SPLICE [4] is one
successful showcase which is a feature compensation approach
by using environmental selection and stereo data to learn the
mapping function between clean speech and noisy speech via
Gaussian mixture models (GMMs). Then similar approaches
are proposed in [5, 6]. In [7], a stereo-based stochastic mapping
(SSM) technique is presented, which outperforms SPLICE. The
basic idea of SSM is to build a GMM for the joint distribution
of the clean and noisy speech by using stereo data. To relax
the constraint of recorded stereo-data, we propose to use syn-
thesized pseudo-clean features generated by exploiting HMM-
based synthesis to replace the ideal clean features from one of
the stereo channels in SPLICE and SSM [8, 9].
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The recent breakthrough of deep learning [10, 11], espe-
cially the application of deep neural networks (DNNs) in ASR
area [12, 13, 14], marks a new milestone that DNN-HMM
for acoustic modeling becomes the-state-of-the-art instead of
GMM-HMM. It’s believed that the first several layers of DNN
play the role of extracting highly nonlinear and discriminative
features which are robust to irrelevant variabilities. This makes
DNN-HMM inherently noise robust to some extent, which is
verified on Aurora4 database in [15]. In [16, 17], several con-
ventional front-end techniques can further yield performance
gain on top of DNN-HMM system for tasks with small vo-
cabulary or constrained grammar. But on large vocabulary
tasks, the traditional enhancement approach as in [18] which
is effective for GMM-HMM system may even lead to the per-
formance degradation for DNN-HMM system with log Mel-
filterbank (LMFB) features under the well-matched training-
testing condition [15]. Meanwhile, the data-driven approaches
using stereo-data via recurrent neural network (RNN) and DNN
proposed in [19, 20] can improve the recognition accuracy on
small vocabulary tasks. More recently, the masking techniques
[21, 22, 23] are successfully applied for noisy speech recogni-
tion. In [23], the approach using time-frequency masking com-
bined with feature mapping via DNN and stereo-data claims to
achieve the best results on Aurora4 database. Unfortunately,
for multi-condition training using DNN-HMM with LMFB fea-
tures, this approach still results in worse performance, which is
similar to the conclusion in [15].

In this study, inspired by our recent progress on speech
enhancement via DNN as a regression model [24], we fur-
ther verify its effectiveness for noisy speech recognition. First,
DNN is adopted as a pre-processor, which directly estimates
the complicated nonlinear mapping from observed noisy speech
with acoustic context to desired clean speech in log-power
spectral domain. Second, we propose to use global variance
equalization (GVE) to alleviate the over-smoothing problem
of DNN based regression model, which is implemented as a
post-processing operation by linear scaling of log-power spec-
tral features. Third, an exhaustive experimental study is con-
ducted by the comparison of different acoustic features (MFCC
and LMFB), acoustic models (GMM-HMM and DNN-HMM),
and training-testing conditions (high-mismatch, mid-mismatch,
and well-matched). Our approach achieves promising results on
Aurora4 database for all testing cases. Furthermore, compared
with the enhancement approaches in [15, 23], this is the first
time to yield performance gain by using our proposed approach
for the multi-condition training with LMFB features and DNN-
HMM on Aurora4 database, which indicates that the proposed
front-end DNN can further improve the noise robustness on top
of DNN-HMM systems under the well-matched condition for
large vocabulary tasks.
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Figure 1: Overall development flow and architecture.

2. System Overview

The overall flowchart of our proposed ASR system is illustrated
in Fig. 1. In the training stage, first the training samples are
pre-processed by DNN based speech enhancement in the log-
power spectral domain. Then enhanced spectra are further pro-
cessed to extract the acoustic features, namely LMFB or MFCC
features with cepstral mean normalization (CMN), which are
adopted to train the generic HMMs. For GMM-HMM sys-
tem, single pass retraining (SPR) [28] is used to generated the
generic models. The SPR works as follows: given one set of
well-trained models, a new set matching a different training fea-
ture type can be generated in a single re-estimation pass, which
is done by computing the forward and backward probabilities
using the original models together with the original training fea-
tures and then switching to the new training features to com-
pute the parameter estimation for the new set of models. In our
case, the original model and training features are generated us-
ing clean-condition training data of Aurora4 database while the
new features refer to enhanced features. Obviously, SPR is a
simpler and faster training procedure than the traditional retrain-
ing of GMM-HMMs using the new features from scratch. Our
experiments also confirm that SPR can achieve better recogni-
tion performance.

As for DNN-HMM system, we design a novel procedure
for the training of DNN acoustic model with enhanced features.
Prior to this, a reference DNN should be trained using original
features without DNN pre-processing via the procedure in [12].
First, with the well-trained GMM-HMMSs using clean-condition
training features, state-level forced-alignment performed to ob-
tain the frame-level labels which is used for DNN training with
all kinds of input features, including clean-condition training
features, multi-condition training features, and enhanced train-
ing features. The training of reference DNN consists of un-
supervised pre-training and supervised fine-tuning. The pre-
training treats each consecutive pair of layers as a restricted
Boltzmann machine (RBM) while the parameters of RBM are
trained layer by layer with the approximate contrastive diver-
gence algorithm [11]. After pre-training for initializing the
weights of the first several layers, a supervised fine-tuning of
the parameters in the whole neural network with the final out-
put layer is performed via the frame-level cross-entropy crite-
rion. On top of this reference DNN as an initialization, the
DNN model of enhanced features can be further optimized by
only changing the input of DNN from original features to en-
hanced features. This simple fine-tuning procedure of DNN is
not only faster than re-training from scratch but also generates
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Figure 2: DNN for speech enhancement.

better recognition performance which we explain as the infor-
mation of original features may have some complementary ef-
fects to the imperfectly enhanced feature which can be utilized
by powerful DNN modeling.

In the recognition stage, after DNN pre-processing and fea-
ture extraction of the unknown utterance, the normal recogni-
tion is conducted. In the next section, the details of DNN pre-
processor are elaborated.

3. DNN as a Pre-processor

As a pre-processor, DNN is adopted as a regression model,
rather than the classification model used in acoustic modeling,
to predict the clean log-power spectral features given the input
noisy log-power spectral features with acoustic context, which
is shown in Fig. 2. The reason why we use log-power spectral
features rather than LMFB or MFCC features is all the speech
information can be retained in this domain and good listening
quality can be obtained from the reconstructed clean speech ac-
cording to [24]. The acoustic context information along both
time axis (with multiple neighboring frames) and frequency axis
(with full frequency bins) can be fully utilized by DNN to im-
prove the continuity of estimated clean speech. As the train-
ing of this regression DNN requires a large amount of time-
synchronized stereo-data with clean and noisy speech pairs,
which are difficult and expensive to be collected from real sce-
narios, the noisy speech utterances are synthesized by corrupt-
ing the clean speech utterances with additive noises with differ-
ent types and SNRs or convolutional (channel) distortions. The
training of regression also consists of unsupervised pre-training
and supervised fine-tuning. The pre-training is the same as that
in DNN for acoustic modeling. For the supervised fine-tuning,
we aim at minimizing mean squared error between the DNN



output and the reference clean features:
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where &, and x,, are the n™ D-dimensional vectors of esti-
mated and reference clean features, respectively. y”'7 is a
D(27 4 1)-dimensional vector of input noisy features with
neighbouring left and right 7 frames as the acoustic context. W
and b denote all the weight and bias parameters. & is the reg-
ularization weighting coefficient to avoid over-fitting. The ob-
jective function is optimized using back-propagation procedure
with a stochastic gradient descent method in mini-batch mode
of N sample frames. Based on our preliminary experiment, we
observe that the estimated clean speech has a muffling effect
when compared with reference clean speech. To alleviate this
problem, GVE, as a post-processing, is used to further enhance
the speech region and suppress the residue noise of the recov-
ered speech simultaneously. In GVE, a dimension-independent
global equalization factor 5 can be defined as:
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where GVir and GV are the dimension-independent global

variance of the reference clean features and the estimated clean
features, respectively. Then the post-processing is:
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where a”:/n is the final estimated clean speech feature vector.
This simple operation is verified to improve the overall listening
quality.

4. Experiments
4.1. Experimental Setup

Aurora4 [25, 26] database was used to verify the effectiveness
of the proposed approach for the medium vocabulary contin-
uous speech recognition task. It contains speech data in the
presence of additive noises and linear convolutional distortions,
which were introduced synthetically to “clean” speech derived
from WSJ [27] database. Two training sets were designed
for this task. One is clean-condition training set consisting
of 7138 utterances recorded by the primary Sennheiser micro-
phone. The other one is multi-condition training set which is
time-synchronized with the clean-condition training set. One
half of the utterances were recorded by the primary Sennheiser
microphone while the other half were recorded using one of a
secondary microphone. Both halves include a combination of
clean speech from clean-condition training set and speech cor-
rupted by one of six different noises (street, train station, car,
babble, restaurant, airport) at 10-20 dB SNR. These two training
set pairs are also used for training DNN pre-processor. For eval-
uation, the original two sets consisted of 330 utterances from 8
speakers, which was recorded by the primary microphone and
a secondary microphone, respectively. Each set was then cor-
rupted by the same six noises used in the training set at 5-15
dB SNR, creating a total of 14 test sets. These 14 test sets were
grouped into 4 subsets: clean (Set 1), noisy (Set 2 to Set 7),
clean with channel distortion (Set 8), noisy with channel distor-
tion (Set 9 to Set 14), which were denoted as A, B, C, and D,
respectively.
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Table 1: Performance (word error rate in %) comparison of
GMM-HMM systems using MFCC features under different
training conditions on the testing sets of Aurora4 databases.

[ System [ A ] B [ C | D [Avg ]

Clean-condition Training

Noisy 8.0 | 36.7 | 23.7 | 52.1 | 40.3

DNN-PP | 8.0 | 158 | 134 | 323 | 22.1

AFE 7.6 | 27.0 | 25.3 | 41.2 | 31.6
Multi-condition Training

Noisy 125 | 17.6 | 19.3 | 31.0 | 23.1

DNN-PP | 10.3 | 13.7 | 13.1 | 29.0 | 20.0

AFE 102 | 17.4 | 20.0 | 29.0 | 22.0

As for the front-end, the frame length was set to 25 msec
with a frame shift of 10 msec for the 16kHz speech wave-
forms. Then 257-dimensional log-power spectra features were
used to train DNN pre-processor. The DNN architecture was
1799-2048-2048-2048-257, which denoted that the sizes were
1799 (257*7, 7=3) for the input layer, 2048 for three hidden
layers, and 257 for the output layer. Other parameter settings
can refer to [24, 29]. Two acoustic feature types of ASR sys-
tems are adopted, namely 13-dimensional MFCC (including
C)) feature plus their first and second order derivatives, and
24-dimensional log Mel-filterbank feature plus their first and
second order derivatives. Both MFCC and LMFB features are
further processed by cepstral mean normalization.

For acoustic modeling, each triphone was modeled by a
CDHMM with 3 emitting states. There were in total 3300 tied
states based on decision trees. For GMM-HMM systems, each
state had 16 Gaussian mixture components. A bigram language
model (LM) for a Sk-word vocabulary was used in recogni-
tion. For DNN-HMM systems, the input layer was a context
window of 11 frames of MFCC (11*39=429 units) or LMFB
(11*72=792 units) feature vectors. All DNNs for acoustic mod-
eling had 7 hidden layers with 2048 hidden units in each layer
and the final soft-max output layer had 3296 units, correspond-
ing to the tied stats of HMMs. The other parameters were set
according to [15].

Table 1 gives a WER performance comparison of the
GMM-HMM systems using MFCC features under different
training conditions on the Aurora4 testing sets. For clean-
condition training, our approach using DNN pre-processing
(denoted as DNN-PP) achieved significant WER reductions on
all test sets except the clean test set A, reducing the average
WER from 40.3% to 22.1%. DNN-PP also outperformed ad-
vanced front-end (AFE) [30], with a relative WER reduction of
30.1%. For multi-condition training, with a much better base-
line of 23.1% which was comparable to that of our approach in
clean-condition training, our DNN-PP approach can still yield
a remarkably relative WER reduction of 13.4% in average over
the baseline, and 9.1% in average over AFE.

Table 2 lists a WER performance comparison of the DNN-
HMM systems using the MFCC features. The baseline per-
formance of the DNN-HMM systems in both clean-condition
training and multi-condition training was improved by 12.4%
and 39.0%, respectively, over the GMM-HMM systems in Ta-
ble 1 which demonstrated the powerful capability of DNN-
HMM and its noise robustness. In clean-condition training,
our approach reduces the average WER from 35.3% to 18.7%,
with a 47.0% relative improvement. In multi-condition train-
ing, with such a high baseline, our approach can further im-



Table 2: Word error rate (in %) comparison of DNN-HMM sys-
tems using MFCC features under different training conditions
on the Aurora4 testing sets.

[ Sysem [ A B [ C | D [Avg |
Clean-condition Training
Noisy 4.7 | 30.7 | 233 | 47.1 | 353
DNN-PP | 5.1 | 12.0 | 10.5 | 29.0 | 18.7
Multi-condition Training
Noisy 54| 9.7 9.5 | 20.6 | 14.1
DNN-PP | 49 | 83 82 | 206 | 133

Table 3: Performance (word error rate in %) comparison
of DNN-HMM systems using LMFB features under different
training conditions on the testing sets of Aurora4 databases.

[ Sysem [ A B [ C | D [Avg |
Clean-condition Training
Noisy 42 | 30.8 | 22.5 | 47.6 | 355
DNN-PP | 42 | 109 | 10.0 | 27.6 | 17.5
Multi-condition Training
Noisy 46 | 84 | 7.8 | 18.6 | 125
DNN-PP | 45| 7.5 74 | 193 | 123

prove the performance for test sets A, B, and C. The reason
why the performance of test set D was not improved might be
that the DNN-based pre-processor could not well-learn the re-
lationship between noisy and clean speech features when both
additive noises and channel distortions were involved.

Table 3 shows a performance comparison of the DNN-
HMM systems using the LMFB features. In clean-condition
training, although the baseline performance was a little worse
than that using the MFCC features, the performance after DNN
pre-processing was the best compared with the corresponding
results in Tables 1 and 2, which indicated that the LMFB fea-
tures contained more useful speech information than the MFCC
features. In multi-condition training, the baseline WER of
12.5% was the same as that reported in [23], which was the
best baseline performance as far as we know. Furthermore our
proposed approach could reduce the WER on top of this base-
line, especially on the test set B. To our best knowledge, this
is the first showcase of yielding performance gain by using
an enhancement approach alone without adaptation for multi-
condition training with log Mel-filterbank features and DNN
acoustic modeling on the Aurora4 database.

In [23], it was claimed to have reported the best recogni-
tion results on the Aurora4 task with its proposed front-end by
reducing the average WER from 15.3% to 14.2% . Compared
with our proposed DNN-HMM systems based on MFCC fea-
tures in multi-condition training without adaptation, we had re-
duced the average WER from 14.1% to 13.3%. Clearly, both
our baseline and enhanced performances were better than the
14.2% WER reported in [23]. For the DNN-HMM systems
based on the LMFB features, starting with the same average
baseline results of 12.5%, the front-end presented in [23] even
led to a WER increase to 14.3% while our proposed approach
reduced the average WER to 12.3%.

Note that for Aurora4, the additive noise types and chan-
nel distortions of the test sets are exactly the same as those in
the multi-condition training set, giving a well-matched training-
testing condition. But in most real-world applications, it’s dif-
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Table 4: Performance (word error rate in %) comparison of
DNN-HMM systems using LMFB features with a new multi-
condition training set on the testing sets of Aurora4 databases.
[ System [ A [ B | C | D [ Avg ]
Clean-condition Training
DNN-PP [ 43 [ 20.1 [ 10 [ 37.2 [ 25.6
New Multi-condition Training
47 | 114 | 9.7 | 25.1
43 | 13.1 | 7.1 | 28.6

16.7
18.7

Noisy
DNN-PP

ficult to obtain the noise information in advance. To simulate a
more realistic scenario, we design a new multi-condition train-
ing set without knowing the noise information in the test sets,
which included the clean speech utterances recorded by two mi-
crophones in the original multi-condition set, and noisy speech
synthesized by adding 100 noise types [31] to the remaining ut-
terances in the clean-condition set of Aurora4, at different SNRs
from 0 dB to 15 dB with an increment of 5 dB, creating the final
set of 7138 utterances.

This new multi-condition training set was used for training
of both front-end DNN (i.e., DNN pre-processor) and back-end
DNN (i.e., DNN acoustic model). Table 4 gives a similar perfor-
mance comparison as in Table 3 using the new multi-condition
training set. The baseline performance of clean-condition train-
ing was the same as that in Table 3, which was not included
in Table 4. In clean-condition training, DNN pre-processing
trained with the new multi-condition training set still yielded a
significant performance WER reduction from 35.5% to 25.6%.
More interestingly, the baseline performance of the new multi-
condition training could be even better than the best perfor-
mance of clean-condition training in Table 3. These observa-
tions confirm that using multiple noise types for training of both
front-end and back-end DNNs can well predict an unseen noise
condition in the testing stage. For the new multi-condition train-
ing scenario, DNN pre-processing could not further improve
the recognition performance on test sets B and D due to the
mismatch of additive noise types between training and testing
conditions while the WER was reduced on test sets A and C.

5. Conclusion and Future Work

We propose a DNN-based pre-processing framework for noise
robust speech recognition. Contrary to traditional thinking, we
demonstrate that promising results can be achieved by speech
enhancement alone without any feature-based or model-based
post-processing when tested on the Aurora4 ASR task. We have
also shown that the proposed front-end produces better ASR
results than competing pre-processors based on speech separa-
tion. Ongoing future work includes combining the proposed
DNN-based preprocessing technique with other noise robust al-
gorithms and focusing on how to further improve the perfor-
mance for multi-condition training when both additive noises
and convolutional distortion are involved in the test data. Ap-
proach to reducing potential mismatches in noise types between
training and testing conditions will also be investigated.
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