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ABSTRACT

We present an information fusion approach to robust recognition
of microphone array speech for the recently launched 3rd CHiME
Challenge. Itis based on a deep learning framework with a large neu-
ral network consisting of subnets with different architectures. Multi-
ple knowledge sources are integrated via an early fusion of normal-
ized noisy features with different beamforming techniques, speech
enhanced features, speaker related features, and other auxiliary fea-
tures concatenated as the input to each subnet, and a late fusion by
combining the outputs of all subnets to produce one single output set.
Our experiments demonstrate that all information sources are com-
plementary in our proposed framework. Our best system achieves an
average word error rate reduction of 68% from the officially released
baseline results on the test set of real data.

Index Terms— CHIiME Challenge, deep learning, information
fusion, microphone array, robust speech recognition

1. INTRODUCTION

With the emergence of tremendously speech-enabled applications
using the techniques of automatic speech recognition (ASR) in mo-
bile internet era, the environment robustness has been one of the
most critical issues to be addressed to make the system more us-
able. For the past several decades, many techniques [1, 2] have been
proposed to handle this difficult problem. In contrast, there were
not many popular benchmarks for the noise robustness issues in the
past due to the lack of the good solution to the strong demand in
real application which led to a bad feedback loop. One remarkable
benchmark was the Aurora series initiated by Nokia in 2000, in-
cluding Aurora-2 [3], Aurora-3 [4, 5, 6, 7] and Aurora-4 [8] tasks.
The Aurora-2 and Aurora-4 databases were designed with artificially
generated noisy data for the recognition tasks of the small vocabu-
lary and median vocabulary, respectively. Meanwhile, the Aurora-3
task aimed to recognize the digit strings in real automobile environ-
ments.

Evolving into the mobile era and the rising popularity of the
deep learning technologies, the focus on noise robustness has been
reactivated by a recent ASR series of CHIME challenges [9, 10, 11]
in recent years. This series differs from the Aurora tasks in several
aspects. First, the scenarios are extended to far-field speech recog-
nition in the everyday listening conditions, e.g., the family living
room. Second, the room impulse responses (RIRs) simulating speak-
er movements and reverberation have been convolved with the utter-
ance to generate more realistic artificial noisy data. Third, research
on the distant microphone arrays based ASR is more emphasized
rather than the single-microphone techniques. One main difference

430

of the CHiME-3 challenge launched this year from the past CHIME-
1 and CHiME-2 challenges is a set of real-world data is collected
from several typical scenes via mobile tablet devices equipped with
microphone arrays. In this sense, the CHiME-3 challenge might start
a drive of new research attempting to solve ASR problems in real-
world applications. Furthermore, officially released results have also
indicated that the traditional approaches working well for the simu-
lation data could be totally failed for the real data.

Following the investigations of the techniques used in previ-
ous CHiME or REVERB [12] challenges and the specificity of the
CHiME-3 challenge, we propose our solution via a large neural net
consisting of subnets with different architectures, namely deep neu-
ral networks (DNNs) [13] and recurrent neural networks (RNNs)
[14], to combine multiple knowledge sources by early feature fusion
and late model fusion. In the early fusion stage, diversified features
are concatenated to boost the recognition performance. First, the
concatenation of multi-channel acoustic features is investigated with
each channel corresponding to one beamforming result of a channel
subset in a microphone array. This is quite different from the tra-
ditional approach that one single overall output, after beamforming
combining all channels of the array, is fed to the recognizer. One
reason such a proposed multi-channel concatenation approach can
achieve a better performance might be that it reduces the risk caused
by the imperfection of the existing beamforming approaches, espe-
cially for the microphone array with many highly diverse channels.

A few issues need to be carefully considered in the proposed fu-
sion approach. First, for multi-channel concatenation there is an in-
crease of input layer size of DNN, which can be even larger than the
size of the hidden layers and often leads to a performance degrada-
tion. To alleviate this problem, multiple frame expansion is applied
to the main channel while only one central frame is used for the other
channels. Second, appending multiple enhanced features is believed
to be beneficial, motivated by an observation that the use of the en-
hanced features from the main channel alone could not improve over
the noisy features on the real data possibly due to the large residual
noise [11]. Furthermore, different feature normalization approach-
es, speaker related features, and auxiliary features are also studied
in the early fusion. As for late fusion, the outputs of all subnets
with different architectures are combined via a simple posterior av-
erage strategy [15] to generate one single output set for subsequent
decoding. Based on our experiments, both early and late fusions are
equally important and strongly complementary in terms of reducing
the ASR word error rate (WER). Obviously the proposed two-stage
fusion is superior to the purely early fusion or late fusion. If all the
information are concatenated in the early fusion, then it is difficult
to handle the issue of high-dimension in the input layer and dynamic
range of different features. Similarly, if only the late fusion is used,
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Fig. 1. System overview.

the poor performance of each subnet can be predictable.

2. SYSTEM DESCRIPTION

The overall flowchart of our proposed system is illustrated in Fig. 1.
The dashed block conceptually denotes a large neural network, con-
sisting of K subnets with different architectures. As for the input,
multiple knowledge sources are exploited to generate different fea-
ture combinations. Each combination as an early fusion includes
one type of multi-channel beamforming concatenations, with the
enhanced features, feature normalization, speaker related features,
and auxiliary features, to be elaborated in the following subsections.
Each subnet is built independently with different architectures and
learning methods. Finally, in recognition, the outputs of the large
neural network for each frame are generated by a late fusion of al-
1 subnets in the output layer, which are then fed to a decoder with
hidden Markov models (HMMs).

2.1. Early fusion
2.1.1. Beamforming and feature concatenation

Formulating a strategy to make a full use of multi-channel informa-
tion of microphone array speech in the neural networks is critical
to the recognition performance. The existing approaches can be di-
vided into two broad classes, traditional beamforming to generate
one single channel output for subsequent processing and channel
concatenation. For example, in [16, 17], the concatenation of the
noisy features in each channel of a microphone array outperforms
the beamforming approach, especially for moving speech as it might
preserve the signals from all directions. In [18], the beamformed fea-
tures concatenated with the noisy features from the main channel of
the microphone array yield a better recognition performance. In our
current study, multiple sets of beamforming results are concatenated.
Each beamformed result is generated on a subnet of channels in the
microphone array. As for beamforming, two approaches are inves-
tigated. One approach is waveform averaging of specified channels,
which is a special case of beamforming but robust to moving speech,
denoted as Avg in Table 1 below. The other approach is generalized
sidelobe canceller (GSC) [19, 20] based on a relative transfer func-
tion [21].
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2.1.2. Enhanced features

To demonstrate the effectiveness of the enhanced features (denoted
as Enh) combined with the beamforming concatenation, we use the
officially provided approaches [11]. The source localization tech-
nique in [22] is used to track the target speaker while the speech
signal is estimated by time-varying minimum variance distortionless
response (MVDR) beamforming with diagonal loading [23].

2.1.3. Normalized features

Utterance-based feature normalization is a widely used technique
for ASR systems to eliminate the effect of the possible irrelevan-
t variabilities, including speaker variability, background noises and
channel distortions. Two normalization approaches, namely mean
normalization (denoted as MN in Table 1) and mean variance nor-
malization (denoted as MVN in Table 1) are applied to the acoustic
features. MVN is more effective for the additive noises especially in
low SNRs while MN is more stable for the high SNR cases.

2.1.4. Speaker related features

Similar to [24], the i-vectors (denoted as iVec in Table 1) to represen-
t some speaker information are extracted via the standard procedure
[25, 26] as the parallel features fed to the input layer of neural net-
s. The main advantage of this speaker adaptation approach is that
the architecture of neural net remains unchanged and it is unneces-
sary to perform the first-pass decoding. Inspired by the beamforming
concatenation, the multi-channel i-vectors are also extracted corre-
sponding to each beamforming results, which is verified more effec-
tive than the single-channel i-vector. Note that for both training and
testing, the i-vector is estimated based on the utterances of one single
speaker and only changed across different speakers.

2.1.5. Auxiliary features

Besides the commonly used log Mel-filterbank (LMFB) features,
other auxiliary features are also adopted. One feature set is the
pitch and probability-of-voicing features proposed in [27], which are
tuned for the ASR systems. It is believed that those features not on-
ly give large improvements for tonal language recognition but also
yield remarkable gains for non-tonal languages which is also con-
firmed on our task. The other set is the cochleagram (CG) features
well verified for ASR [28]. In our experiments, the pitch related fea-
tures are always concatenated with the LMFB features while the CG
features are optionally used.

As mentioned above, in early fusion, diversified features are
concatenated together. One issue is to control the input feature di-
mension to avoid a possible performance degradation. Suppose the
dimension of the basic acoustic features is D1 and the size of acous-
tic context is 7 frames. The number of channels after beamforming
is M. The dimensions of the i-vector and auxiliary features are D>
and D3, respectively. Then the final dimension for the input feature
vectoris Dy * 7+ M * D1 + M * Do + M x D3, which means the
acoustic context expansion is only applied to the main channel of the
basic acoustic features.

2.2. Neural network training

Three types of neural nets are adopted as subnets, namely DNN, long
short-term memory (LSTM) based RNN [29], and bi-directional L-
STM (BLSTM) based RNN [30]. Before neural network training,
the state labels should be generated by the forced-alignment via a



Table 1. Description of 12 subsystems.

Feature fusion Feature dimension NN type NN training

S1 MN(Avgl+Avg2+C2+Enh)+iVecl+iVec2 1804 DNN CE+ReFA+sMBR

S2 MN(GSC1+GSC2+GSC3+Enh)+iVec1+iVec2 1804 DNN CE+ReFA+sMBR

S3 MVN(Avg1+Avg2+C2+Enh+CG1+CG2)+iVecl+iVec2 1864 DNN CE+ReFA+sMBR

S4 | MVN(GSC1+GSC2+GSC3+Enh+CG1+CG2)+iVecl+iVec2 1864 DNN CE+ReFA+sMBR

S5 MN(Avgl+Avg2+C2+Enh)+iVecl+iVec2 544 LSTM-RNN CE+ReFA

S6 MN(GSC1+GSC2+GSC3+Enh)+iVecl+iVec2 544 LSTM-RNN CE

S7 MVN(Avg1+Avg2+C2+Enh)+iVecl+iVec2 544 LSTM-RNN CE+ReFA

S8 MVN(GSC1+GSC2+GSC3+Enh)+iVecl+iVec2 544 LSTM-RNN CE

S9 MN(Avgl+Avg2+C2+Enh)+iVecl+iVec2 544 BLSTM-RNN CE+ReFA
S10 MN(GSC1+GSC2+GSC3+Enh)+iVecl+iVec2 544 BLSTM-RNN CE
S11 MVN(Avg1+Avg2+C2+Enh)+iVecl+iVec2 544 BLSTM-RNN CE+ReFA
S12 MVN(GSCI1+GSC2+GSC3+Enh)+iVecl+iVec2 544 BLSTM-RNN CE

state-of-the-art system with Gaussian mixture continuous density H-
MMs (GMM-HMMs) [31]. The only difference is the use of multi-
channel concatenation of acoustic features after waveform average
beamforming. This set of state labels is used for the training of all
subnets. For the DNN training, the Kaldi recipe for CHiME-2 chal-
lenge [32] is adopted with the standard procedure, namely the pre-
training using restricted Boltzmann machines plus the cross entropy
(CE) training. And the DNN can be refined by re-alignment (ReFA)
and sequence discriminative training using the state-level minimum
Bayes risk (sSMBR) criterion [13]. As for the training of LSTM-RNN
or BLSTM-RNN, the CE training [29] and ReFA are adopted with
the truncated backpropagation through time (BPTT) learning algo-
rithm to update the model parameters.

2.3. Late fusion

For all K subnets, the outputs share the same tied state set from the
HMM topology of the GMM-HMM or DNN-HMM system. So late
fusion can be implemented by a simple strategy of state posterior
averaging in the output layers [15]. This approach has been verified
to be more effective than lattice fusion or ROVER [33] in our exper-
iment, which is reasonable as fusion at the frame level (state level)
is with a higher resolution than fusion at the text-level and not af-
fected by the language model. Back to Fig. 1, if we treat the early
fusion and late fusion as the internal operations of the large neural
net in dashed box, then the input might be a high-dimensional vector
with diversified features from multiple knowledge sources while the
output is the normal state posterior representation.

3. EXPERIMENTS AND RESULTS

3.1. Experimental Setup

The CHiME-3 challenge was designed to focus on a real-world and
commercially motivated scenarios that a person talking to a mobile
tablet device in a variety of real and challengingly public noisy con-
ditions [11]. Four environments were selected, namely café (CAF),
street junction (STR), public transport (BUS) and pedestrian area
(PED). For each environment, both the real and simulated noisy
speech data were provided. The real data consists of 6-channel
recordings of sentences from the WSJO corpus [34] spoken in four
environments. The simulated data was constructed by mixing clean
utterances with the background noises [35]. The training set con-
tained 1600 real noisy utterances from the combinations of four
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speakers and four environments with 100 utterances for each combi-
nation, and 7138 simulated utterances. The development set and test
set included the same 410 and 330 utterances as in the WSJO task.
In each environment the set was split into four random partitions
and each was assigned to a different talker. This resulted in 1640
(410x4) and 1320 (330x4) real utterances for the development set
and test set, respectively. Similarly, the simulated data could be
generated for the development and test sets. Other details can be
found in [11].

For the GMM-HMM systems, the 182-dimensional feature vec-
tor consisted of 13-dimensional Mel-frequency cepstral coefficients
(MFCCs) with 7-frame context expansion and 2-channel concatena-
tion. The two sets were formed by waveform averaging of the orig-
inal channels (4,5,6) and channels (1,3). The number of tied states
was 1965 which was also the size of the output layer for all subnets.
And a total of 15019 Gaussians were used. Other settings were the
same as in the Kaldi recipe [31, 11].

As for the input features to the neural network, 40-dimensional
LMFB features and 2-dimensional pitch features with their first-
order and second-order derivatives were formed as the basic acoustic
features (1D1=126). The dimension of i-vector for each channel was
set to 20 (D2=20). And the dimension of CG features for each chan-
nel was 30 (D3=30). The acoustic context size 7 was 11. For the
DNN architecture, 7 hidden layers with 2048 neurons for each lay-
er were used. The other parameters of DNN can refer to the Kaldi
recipe [11]. For both LSTM-RNN and BLSTM-RNN, 3 recurren-
t layers were used. For LSTM-RNN, the number of memory cells
was 2048 while the size of the recurrent projection layer was 512.
For BLSTM-RNN, the number of memory cells was 1024 while the
size of the recurrent projection layer was 800 for both forward and
backward layers.

In Table 1, the K (K=12) subsystems corresponding to the K
subnets before late fusion in Fig. 1 are listed with the detailed con-
figurations. For example, system S1 adopted the waveform average
beamforming where Avgl and Avg2 denoted the average of channels
(4,5,6) and (1,3), respectively. And the channel 2 (C2) was also con-
catenated. This design was inspired by the positions of the 6 chan-
nels on the tablet. Mean normalization (MN) was applied to Avgl,
Avg2, C2 and enhancement (Enh) features. iVecl and iVec?2 are the
i-vectors corresponding to Avgl and Avg2, respectively. The dimen-
sion of the input feature vectors for S1 was 1804. For S2, GSCl,
GSC2, GSC3 represented the GSC-based beamforming of channel
combinations (4,5), (1,3), (2,5), respectively.



Table 2. WER (%) comparison of different stages of the early fusion
for S1 system on the development and test sets of real data.

Table 3. WER (%) comparison of different stages of the early fusion
for S2 system on the development and test sets of real data..

3.2. Experimental Results
3.2.1. Early fusion

First, the experiments on early fusion are shown in Table 2 and 3.
Table 2 gives a WER comparison at different stages of early fu-
sion for the S1 system on the development and test sets of real data.
“Baseline(C5)” denoted the baseline DNN system using the speech
data of channel 5 and CE training. Our proposed beamforming and
concatenation system “Avgl+Avg2” consistently outperformed the
baseline system for all testing cases, e.g., relative WER reductions
of 15.3% and 17.2% were achieved for the development and test sets
in average. Then by appending of the C2 features, the recognition
performance was slightly improved. More interestingly, the con-
catenation with the enhanced features brought about an absolute 1%
WER reduction for both the development and test sets. In contrast,
according to the officially released preliminary results [11], no gain
was observed by the use of the enhanced features only. This indicat-
ed the necessity of the parallel beamformed and enhanced features,
which might be strongly complementary. Furthermore, the addition-
al i-vector features gave remarkable gains which demonstrated the
effectiveness of this speaker adapted features. As for DNN training,
ReFA and sMBR could consistently reduce the WER. Overall, the
relative WER reductions of 40.3% and 39.2% were yielded from the
baseline system for the development and test sets, respectively. By
considering that the test set was more difficult than the development
set, these similarly relative improvements showed a generalization
ability of our proposed early fusion.

Table 3 lists a WER comparison at different stages of early fu-
sion for the S2 system on the development and test sets of real data.
Similar observations to those for S1 as in Table 2 could be made.
The main difference from S1 to S2 was the use of GSC-based beam-
forming. It was interesting that in the stage of pure beamforming
concatenation, GSC-based approach outperformed the waveform av-
erage approach, e.g., average WER from 19.66% to 18.59% on the
test set. However, by the performance comparison of the final sys-
tems, S1 and S2, we could make an opposite observation that the
waveform average was slightly better than GSC which implied that
the simple average operation in the time domain was a more robust
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System | BUS [ CAF [ PED | STR | Avg. System | BUS [ CAF [ PED [ STR | Avg.
Development set Development set

[ Baseline(C5) [ 20.93 [ 12.89 [ 9.18 [ 13.58 | 14.15 | GSCI 1692 | 1044 | 7.57 | 11.28 | 11.55
Avgl+Avg2 | 1674 | 11.83 | 7.79 | 11.58 | 11.98 +GSC2 1637 | 973 | 723 | 10.57 | 10.98
1C2 1574 | 1152 | 792 | 1147 | 11.66 +GSC3 15.96 | 9.97 7.26 10.6 | 10.95

+Enh 1435 | 10.06 | 7.76 | 10.50 | 10.67 +Enh 1462 | 929 | 723 | 997 | 10.28
+iVecl+iVec2 | 12.33 | 9.45 6.83 | 1037 | 9.75 +iVecl+iVec2 | 13.57 | 8.83 6.9 10.09 | 9.85
+ReFA 11.7 9.00 6.86 9.76 933 +ReFA 13.39 | 8.45 6.9 9.95 9.68
+sMBR 1087 | 792 | 6.14 | 883 | 845 +sMBR 12.16 | 8.14 | 6.12 | 8.64 | 877
\ Test set | \ Test set |
[ Baseline(C5) [ 34.77 | 26.24 | 20.76 | 16.23 | 2450 | GSCl 27.16 | 21.78 | 17.12 | 13.34 | 19.85
Avgl+Ave2 | 28.04 | 22.23 | 17.30 | 13.54 | 20.28 +GSC2 2582 | 2094 | 1598 | 12.83 | 18.89
vor) 5758 13122 T 1728 11287 1 1966 +GSC3 25.69 | 20.86 | 15.21 | 12.63 | 18.59
“Enh 5531 T313¢ T 1588 11257 | 1863 +Enh 2427 | 2122 | 1556 | 12.29 | 1833
TVecisivear 12279 120,03 11513 T 1160 [ 1739 +iVecl+iVec2 | 22.36 | 20.30 | 1452 | 11.58 | 17.19
RTA 5133 [ 1888 [ 1478 | 1132 | 1638 +ReFA 2256 | 1991 | 14.87 | 11.6 | 17.24
+MBR | 19.09 | 16.74 | 13.19 | 10.53 | 14.89 +sMBR | 2002 | 17.26 | 1291 | 104 | 15.15

beamforming approach. Finally, both S1 and S2 gave significan-
t gains over the baseline system and each feature set in the early
fusion stage made a contribution in reducing the WER.

3.2.2. Late fusion

Before late fusion, the recognition performances of the 12 subsys-
tems are shown in Table 4. Clearly, no single subsystem could
achieve the best performance for all environments, even in one sub-
set, e.g. the development set with real data. For the test set with real
data, S11 achieved the best performance in average but still not the
best for each of four environments. And there were 8 subsystems
with one best performance case at least. Those observations deliv-
ered important messages. On one hand, the noise statistics should be
quite different in four environments. Each subsystem with one fea-
ture combination could not well handle all the noise conditions. On
the other hand, all the subsystems might be complementary, which
was one key motivation of our late fusion strategy.

Table 5 illustrates a WER comparison of different combinations
in late fusion on the development and test sets of the real and sim-
ulated data. We designed the fusion experiments from two aspects,
namely fusion of different neural networks with the fixed input fea-
ture combination and fusion of different inputs with the fixed type of
neural networks. From the results of F(1,5,9), F(2,6,10), F(3,7,11),
F(4,8,12), significant improvements were achieved by fusing differ-
ent architectures (DNN, LSTM-RNN, BLSTM-RNN), e.g., WER on
the real test data was reduced from 14.82% in the best single sub-
system to 12.1% in F(3,7,11) in average, indicating that learning
different architectures could help each other in predicting the state
posteriors at the output layer. With the fixed neural network type, the
improvements by fusing different feature inputs were also significant
on the real data. What'’s interesting was the small dynamic range of
the WERs for the first 7 fusion systems which could be potentially
boosted with further fusion. So we fused all 12 subsystems in F(1-
12), and a relative WER reduction of 28.8% was obtained from the
best single subsystem on the real test data. Finally, the F(1-12) sys-
tem consistently achieves the best results for both development and
test set of real data and this observation could be also applied for the
most of best systems on the simulation data.



Table 4. WER (%) comparison of 12 subsystems on the development and test sets of real and simulated data.

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12

BUS | 6.64 591 7.24 6.52 7.73 6.80 7.18 6.50 6.78 5.80 6.73 6.27

CAF | 9.09 9.23 | 10.27 | 10.04 | 10.15 | 10.41 | 9.31 | 10.03 | 9.40 9.20 8.97 9.31
Simu | PED | 6.17 5.72 6.90 6.39 6.90 6.42 6.68 6.65 6.45 6.09 6.80 6.25
STR | 8.33 6.96 9.01 7.29 9.07 8.16 8.45 7.57 7.82 6.90 7.74 7.52

Avg. | 7.56 6.96 8.36 7.56 8.46 7.95 791 7.69 7.61 7.00 7.56 7.34

Dev BUS | 10.87 | 12.16 | 12.16 | 7.08 | 13.26 | 14.43 | 13.69 | 13.69 | 11.37 | 12.45 | 11.77 | 12.17
CAF | 7.92 8.14 8.83 | 10.12 | 1038 | 9.75 | 10.31 | 9.73 8.75 8.63 8.88 8.81

Real | PED | 6.14 6.12 5.94 8.48 7.57 7.80 7.60 8.16 6.73 7.17 7.15 6.80
STR | 8.88 8.64 7.47 | 1031 | 10.34 | 10.50 | 9.92 | 10.29 | 8.94 9.05 9.03 8.98

Avg. | 8.45 8.77 9.10 9.00 | 10.39 | 10.62 | 10.38 | 10.47 | 8.95 9.33 9.21 9.19

BUS | 7.68 6.74 745 | 1332 | 7.55 7.71 7.13 6.71 7.10 7.27 6.35 6.37
CAF | 11.60 | 9.51 | 11.00 | 9.17 | 11.80 | 12.03 | 9.92 9.88 | 11.09 | 10.96 9.3 9.56
Simu | PED | 11.58 | 8.37 | 1096 | 6.37 | 11.21 | 10.70 | 9.58 8.87 | 10.24 | 9.77 8.59 8.74
STR | 11.52 | 9.21 | 11.94 | 898 | 11.75 | 10.89 | 11.15 | 10.09 | 11.04 | 9.97 | 11.11 | 9.60

Avg. | 1059 | 846 | 10.34 | 9.46 | 10.58 | 10.33 | 945 8.89 9.87 9.49 8.84 8.57

Test BUS | 19.09 | 20.02 | 23.35 | 25.24 | 21.84 | 23.72 | 22.06 | 22.43 | 19.48 | 22.99 | 19.41 | 21.07
CAF | 16.74 | 17.26 | 19.78 | 20.58 | 18.57 | 19.74 | 19.05 | 19.44 | 16.14 | 17.59 | 16.64 | 17.69

Real | PED | 13.19 | 1291 | 14.69 | 14.07 | 16.11 | 16.42 | 15.13 | 1553 | 14.52 | 1441 | 13.19 | 12.65
STR | 10.53 | 10.40 | 11.90 | 12.57 | 11.06 | 12.18 | 11.28 | 11.09 | 9.92 | 10.96 | 10.05 | 10.16

Avg. | 14.89 | 15.15 | 17.43 | 18.11 | 16.89 | 18.02 | 16.99 | 17.12 | 15.01 | 16.49 | 14.82 | 15.39

4. CONCLUSION

For the recently launched CHiME-3 challenge, we propose to inte-
grate multiple knowledge sources denoted by multiple feature sets
into the neural nets with different architectures. The early fusion is
adopted as a local feature concatenation while the late fusion act-
s as the model average. The use of both fusions can reduce about
two-thirds of WER over the officially released baseline results [11].
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