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Abstract—In this study, we investigate on the learning behav-
iors of DNN by explicit feature transformations. As a demonstra-
tion, linear and logarithm transformations, corresponding to the
amplitude spectra and log-power spectra, are compared with the
same minimum mean squared error (MMSE) objective function
for optimizing DNN parameters. Based on the experimental
analysis of the DNN learning behaviors, we make an interesting
observation that the learning with the amplitude spectra tends
to improve the speech intelligibility while the learning with the
log-power spectra yields better speech quality. By leveraging on
this strong complementarity, the feature concatenation with two
transformations for the input layer and post-processing with
two learned targets are proposed to boost DNN-based speech
enhancement.

I. INTRODUCTION

With the fast development of mobile internet, speech en-

hancement techniques have became extremely important in

real-world applications, such as automatic speech recognition

(ASR), mobile communication and hearing aids [1]. Histor-

ically, many signal processing methods for speech enhance-

ment have been proposed during the past several decades,

such as spectral subtraction [2], Wiener filtering [3], minimum

mean squared error (MMSE) estimation [4], [5] and optimally-

modified log-spectral amplitude (OM-LSA) speech estimator

[6]. Model assumptions for the interactions between speech

and noise were made in these methods, which could often

lead to an imperfect listening quality of the enhanced speech.

For example, most of these techniques can not make a good

estimate of clean speech in highly non-stationary noise cases

and musical noise artifacts [7] might be caused.

Recently, a bunch of deep learning based approaches were

proposed for speech enhancement with promising results.

In [8], stacked denoising autoencoder (SDA) based speech

enhancement methods were adopted to model the complicated

relationship between noisy speech and clean speech. In our

recent work [9], [10], a novel speech enhancement framework

via deep neural network (DNN) as a regression model to

predict the clean log-power spectra (LPS) features from noisy

LPS features was designed. No musical noise was found in

the enhanced speech and highly non-stationary noise could

be suppressed. Furthermore, large scale of noise types could

be included in the training set to improve the generalization

capacity to unseen noise environments [11].

However, according to our analysis, DNN-based speech en-

hancement in the log-power spectral domain tends to eliminate

the noises with the risk of introducing speech distortions.

Especially in low signal-to-noise ratio (SNR) conditions, it

often leads to severe distortions in the speech segments. To

address this problem, we revisit the feature design of the input

noisy speech and output clean speech in the regression DNN

learning. In a general framework, the final features fed to

DNN can be generated via the amplitude spectra (AS) with

an explicit transformation. The learning behavior of DNN

varies with different transformations. Specifically, the linear

and logarithm transformations, corresponding to AS features

and LPS features are compared, which is similar to a prior

work [4], [5] proposed by Ephraim and Malah in terms of the

comparison between short-time spectral amplitude estimator

and short-time log-spectral amplitude estimator. We make an

interesting observation that the DNN learning in AS feature

domain tends to improve the speech intelligibility while the

DNN learning in the LPS feature domain yields better speech

quality. By leveraging on this strong complementarity, feature

concatenation with two transformations for the input layer

and post-processing with two learned targets are proposed to

improve the performance of the objective measures for both

speech quality and speech intelligibility, namely perceptual

evaluation of speech quality (PESQ) [12] and short-time

objective intelligibility (STOI) [13].

II. SYSTEM OVERVIEW

A blockdiagram of our proposed speech enhancement sys-

tem is illustrated in Fig. 1. In the training stage, a regression

DNN model is trained from a collection of stereo data,

consisting of pairs of noisy and clean speech represented

by transformed features from the amplitude spectra via the

function g(·). To optimize the parameters of DNN, the MMSE

criterion is adopted as follows,

E =
1

N

N∑

n=1

‖X̂g

n(Y
g
n,W , b)−Xg

n‖22 + κ‖W ‖22 (1)

where X̂
g

n and Xg
n are the nth D-dimensional vectors of

estimated and clean reference features with the transformation

function g, respectively. Y g
n is the input noisy feature vector.

W and b denote all the weight and bias parameters. κ is the

regularization weighting coefficient to avoid over-fitting.

In the enhancement stage, the well-trained DNN model is

fed with the noisy features to generate the enhanced features.

The additional phase information is calculated from the orig-

inal noisy speech. Finally an overlap-add method is used to
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Fig. 1. A block diagram of the DNN-based speech enhancement via the
explicit transformation.

synthesize the waveform of the enhanced speech. A detailed

description of DNN training, feature extraction, and waveform

reconstruction can refer to [9], [14].

In our previous work [9], [10], only the DNN learning in the

LPS feature domain is conducted, which corresponds to the

logarithm transformation function for g(·). But in low SNR

conditions, this regression DNN often focuses on the noise

removal with the risk of introducing speech distortions and

even speech information lost. This characteristic should be

partly due to the feature design. To address this problem, the

linear transformation function (actually an identity function)

for g(·), corresponding to AS feature domain, is investigated.

In the next section, we will make a comparison of the DNN

learning behaviors between these two transformations.

III. THE DNN LEARNING BEHAVIOR

First, we show an utterance example corrupted by pink

noise at -5dB SNR in Fig. 2. The DNN approach using LPS

features successfully eliminates most of the background noises

with a better PESQ for speech quality. However the speech

information is partially lost in the rectangle box, yielding

a worse STOI for speech intelligibility. The observation for

DNN approach using AS features is opposite, namely better

speech preservation (a better STOI) with more residual noises

(a worse PESQ). By this comparison, it seems that LPS and

AS systems are strongly complementary to each other in terms

of different evaluation measures.

The reason for this interesting observation can be explained

by the DNN learning behaviors illustrated in Fig. 3 and Fig. 4.

From the learning curves in Fig. 3, the LPS system always

generates smaller squared errors than AS system in the LPS

(a) LPS system

(b) AS system

(c) noisy speech

(d) clean speech

Fig. 2. Spectrogram of an utterance tested with pink noise at -5dB SNR:
(a) DNN approach using LPS features (PESQ=1.810, STOI=0.645), (b) DNN
approach using AS features (PESQ=1.680, STOI=0.733), (c) noisy speech
(PESQ=1.107, STOI=0.573), (d) clean speech.
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Fig. 3. The comparison of DNN learning curves using averaged squared errors
on development set in LPS domain.

domain, which is reasonable as the objective function of DNN

for LPS system exactly aims to minimize the mean square

error in the LPS domain while the AS system is optimized in

AS domain rather than LPS domain. And this learning curve

can give a rough explanation to Fig. 2 as the smaller squared

error can lead to less background noises in the enhanced

speech. To have a deeper understanding of the DNN learning

behavior, a higher resolution analysis as shown in Fig. 4 is

given by using the distribution with respect to the frame-level

squared error and frame-level SNR on the development set in

LPS domain after DNN learning. Overall, the distribution of

LPS system mainly focuses on the lower squared error area

(marked red) than AS system, which is similar to learning

curves in Fig. 3. Specifically, in the high frame-level SNR

range from 15dB to 20dB, larger squared errors are distributed

in AS system than LPS system, which implies that AS system

can not well handle the high SNR segments with more residual

noises after enhancement. However, in the low frame-level

SNR range below 5dB, we make an opposite observation

that more squared errors are generated in LPS system, which

indicates that LPS system can not well handle the low SNR

segments with more speech distortions after enhancement.

IV. IMPROVED DNN VIA MULTIPLE TRANSFORMS

Based on the analysis in Section III, we aim at improving

our previous DNN approach operating in LPS domain [9]

by leveraging the strong complementarity between the two
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Fig. 4. The comparison of distribution with respect to frame-level squared
error and frame-level SNR on the development set in LPS domain after DNN
learning for LPS system (left) and AS system (right).

transformations corresponding to LPS and AS features in this

section. Two strategies, namely feature concatenation and post-

processing, are elaborated as follows.

A. Feature Concatenation

The feature design of the regression DNN for denoising

plays an important role for both input layer and output layer.

Feature concatenation in the input layer is one simple way to

fully utilize multiple feature transformations. Each transfor-

mation might characterize one critical property of the speech

signal. With different learning targets, two concatenation sys-

tems can be designed as in Tab. I. The LPS+AS-LPS is the

concatenating version of LPS-LPS with AS features appended

while LPS+AS-AS corresponds to AS-AS augmented with

LPS features. The effectiveness of feature combination has

been demonstrated in many speech areas. For example in

speech recognition, feature combination may lead to signif-

icant performance improvements [15]. One similar work in

[16] shows the effectivity of feature concatenation in DNN-

based speech separation. It is expected that the concatenation

of LPS and AS features can improve both measures for speech

quality and speech intelligibility.

B. Post-processing

For the two concatenation systems, namely LPS+AS-LPS

and LPS+AS-AS, although the input features are the same, the

final enhancement results should vary a lot due to the different

learning targets. So a post-processing approach to leverage on

the outputs of both LPS+AS-LPS and LPS+AS-AS DNNs is

proposed as follows,

X̂
PP

= α ∗ X̂LPS
+ (1− α)X̂

AS→LPS
(2)

where X̂
LPS

is the output of LPS+AS-LPS DNN system

while X̂
AS→LPS

is the transformed version from the output

of LPS+AS-AS DNN system to the LPS domain. α is the

weighting coefficient.

V. EXPERIMENTS AND RESULTS ANALYSIS

In this study, 115 noise types including 100 noise types

recorded by G. Hu [17] and some other musical noises were

adopted to improve the generalization capacity of DNN. The

clean speech data is derived from the TIMIT corpus [18]. All

4620 utterances from the training set of the TIMIT database

TABLE I
FOUR DNN SYSTEMS.

DNN System Input Feature Output Target
LPS-LPS LPS LPS
AS-AS AS AS

LPS+AS-LPS LPS+AS LPS
LPS+AS-AS LPS+AS AS

were corrupted with the abovementioned 115 noise types at six

levels of SNR, i.e., 20dB, 15dB, 10dB, 5dB, 0dB, and -5dB, to

build 80-hour multi-condition training set, consisting of pairs

of clean and noisy speech utterances. The 192 utterances from

core test set of TIMIT database were used to construct the test

set for each combination of noise types and SNR levels. As we

only conducted the evaluation of mismatched noise types, 13

unseen noise types1, from the NOISEX-92 corpus [19], were

adopted for testing.

As for signal analysis, all experiments were conducted on

waveforms with 16kHz sample rate, and the corresponding

frame length was set to 512 samples (or 32 msec) with a frame

shift of 256 samples. A short-time Fourier analysis was used

to compute the DFT of each overlapping windowed frame.

Then 257-dimensional LPS features [14] or AS features were

used to train DNNs. PESQ and STOI were used to assess the

quality and intelligibility of the enhanced speech.

All DNN configurations were fixed at L = 3 hidden layers,

2048 units at each hidden layer, and 7-frame acoustic context.

Rectified linear units (ReLU) [20] was used as the activation

function of DNN, and the DNN was initialized with random

weights. Dropout and static noise aware training [21] were

used to improve its generalization capacity for unseen noise

types. Other details of the setup can be found in [10].

A. Experiments on Feature Concatenation

Tab. II presents the average STOI and PESQ comparison for

four DNN systems in Tab. I on the test set at different SNRs

of the 13 unseen noise environments. Better LSD and PESQ

performances could be obtained by LPS-LPS system, while

better STOI and SSNR performances were achieved by AS-

AS system. This has been partially interpreted by the learning

curves of Fig. 3 and the distributions of Fig. 4 for PESQ

and STOI in Section III. In other words, LPS-LPS system

could bring better speech quality in terms of PESQ especially

for high SNR cases while AS-AS system tended to improve

speech intelligibility in terms of STOI for low SNR cases. For

example, PESQ of LPS-LPS system was 3.58 at 20dB while

PESQ of AS-AS system was 3.24. On the contrary, STOI of

LPS-LPS system was 0.697 at -5dB while STOI of AS-AS

system was 0.739.

By conducting feature concatenation for input layer, all four

evaluation metrics were improved for both feature transforma-

tions, corresponding to LPS+AS-LPS system and LPS+AS-AS

1The 13 unseen environment noises for evaluation are Buccaneer1, Bucca-
neer2, Destroyer engine, Destroyer ops, F16, Factory1, Factory2, HF channel,
Leopard, M109, Machine gun, Pink, and Volvo. They are all collected from
the NOISEX-92 corpus.



TABLE II
AVERAGE STOI AND PESQ COMPARISON AT DIFFERENT SNRS ON 13

UNSEEN NOISE ENVIRONMENTS, AMONG: LPS-LPS SYSTEM,
LPS+AS-LPS SYSTEM, AS-AS SYSTEM, AND LPS+AS-AS SYSTEM.

LPS-LPS LPS+AS-LPS AS-AS LPS+AS-AS

SNR(dB) STOI PESQ STOI PESQ STOI PESQ STOI PESQ

20 0.960 3.58 0.963 3.62 0.969 3.24 0.972 3.46

15 0.946 3.37 0.949 3.41 0.955 3.10 0.958 3.28

10 0.920 3.12 0.924 3.16 0.930 2.92 0.933 3.06

5 0.875 2.83 0.884 2.88 0.890 2.70 0.893 2.81

0 0.801 2.49 0.822 2.56 0.828 2.42 0.833 2.52

-5 0.697 2.09 0.730 2.17 0.739 2.08 0.746 2.19

Avg 0.866 2.91 0.879 2.97 0.885 2.74 0.889 2.89

system. And the gap between the two concatenated systems

was smaller than that between two baseline systems. The STOI

performance of LPS+AS-LPS system was improved over LPS-

LPS system, from 0.866 to 0.879 in average. And significant

improvement was achieved at lower SNRs, e.g., from 0.697

to 0.730 at -5dB SNR. And PESQ performance of LPS+AS-

AS system was also improved over AS-AS system, from 2.74

to 2.89 in average. All those results demonstrated the strong

complementarity between the two feature transformations.

B. Experiments on Post-processing

On top of LPS+AS-LPS and LPS+AS-AS systems, the post-

processing was conducted via (2). Fig. 5 lists average STOI

and PESQ performance on the test set of 13 unseen noise

types across different SNRs. With the weighting factor α
ranging from 0 to 1, the PESQ and STOI performance was

not monotonically increasing nor decreasing between the two

systems, but with peak values. This confirmed that the two

concatenation systems could still be complementary. And both

the optimal values of α for STOI and PESQ were close to 0.5.

VI. CONCLUSIONS

In this paper, we first analyze the learning behavior of DNN-

based speech enhancement with LPS features and AS features.

Experimental results show that these two feature transforma-

tions can improve the quality and intelligibility of the en-

hanced speech, respectively. Thus, we propose two approaches

to boost DNN-based speech enhancement by leveraging on

the complementarity between these two features. With feature

concatenation for the input layer, evaluation metrics were

improved. Intelligibility of enhanced speech was significantly

improved especially at low SNRs. By post-processing with

two learned targets, the performance can be further improved.
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