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Abstract

The minimum mean squared error (MMSE) is usually adopted
as the training criterion for speech enhancement based on deep
neural network (DNN). In this study, we propose a probabilis-
tic learning framework to optimize the DNN parameter for
masking-based speech enhancement. Ideal ratio mask (IRM) is
used as the learning target and its prediction error vector at the
DNN output is modeled to follow statistically independent gen-
eralized Gaussian distribution (GGD). Accordingly, we present
a maximum likelihood (ML) approach to DNN parameter opti-
mization. We analyze and discuss the effect of shape parameter
of GGD on noise reduction and speech preservation. Exper-
imental results on the TIMIT corpus show the proposed ML-
based learning approach can achieve consistent improvements
over MMSE-based DNN learning on all evaluation metrics.
Less speech distortion is observed in ML-based approach es-
pecially for high frequency units than MMSE-based approach.

Index Terms: speech enhancement, deep neural network, ideal
ratio mask, the prediction error, generalized Gaussian distribu-
tion, maximum likelihood estimation

1. Introduction
Single-channel speech enhancement aims to improve the qual-
ity and intelligibility of a speech signal degraded by adverse
noise surroundings and plays an important role in real-world ap-
plications, such as automatic speech recognition (ASR), mobile
speech communication, and hearing aids [1]. In the past several
decades, unsupervised speech enhancement techniques, such as
spectral subtraction [2], Wiener filtering [3], minimum mean
squared error (MMSE) estimation [4] and optimally-modified
log-spectral amplitude (OM-LSA) speech estimator [5] have
been studied extensively. However, most of these techniques
fail to track non-stationary noise environments and often cause
musical noise artifacts.

Recently, with the fast development of deep learning tech-
niques [6, 7], supervised machine learning has attracted much
attention. According to the definition of the learning target,
supervised speech enhancement methods can be categorized
into (i) mapping-based methods and (ii) masking-based meth-
ods [8]. Mapping-based methods directly map clean speech
from a noisy signal. For example, Xu [9] proposed deep neu-
ral network (DNN) based speech enhancement framework to
map noisy log-power spectra (LPS) features [10] to clean LPS
features. In [11], deep denoising autoencoder was adopted to
model the complicated relationship between noisy speech and
clean speech. More complex neural network architectures, such
as recurrent neural network (RNN) [12] and long short-term
memory (LSTM) RNN [13], were designed for speech enhance-
ment to achieve performance improvements.

Masking-based methods firstly learn a time-frequency (T-
F) mask from a noisy signal, and then use the estimated mask
to predict the clean speech. A DNN was used to predict ideal
binary mask (IBM) for speech separation [14]. Wang [15] used
different training targets for speech separation and suggested
that ideal ratio mask (IRM) outperformed IBM in terms of ob-
jective intelligibility and quality metrics. A single DNN to
jointly predict the real and imaginary components of the com-
plex ideal ratio mask (cIRM), was adopted in [16] and it was
suggested that cIRM should be preferred over the conventional
magnitude-only IRM. Huang [17] adopted deep recurrent neu-
ral network (DRNN) to jointly optimize the T-F masking func-
tions with the deep learning model.

In DNN-based speech enhancement methods, the optimiza-
tion of objective function is based on MMSE criterion. How-
ever, the MMSE-based estimation method is not very robust in
adverse acoustic scenarios, which may cause additional speech
distortion due to the over-smoothing problem. This effects and
limits the quality and intelligibility of the denoised speech. Re-
searchers began to explore new objective functions. Shivaku-
mar [18] proposed a novel objective loss function, which took
into account the perceptual quality of speech. A weighted re-
construction loss function was introduced into the traditional
denoising autoencoder model in [19]. Kinoshita [20] proposed
a mixture density network to map a set of Gaussian mixture
model (GMM) parameters representing the distribution of a
target variable from an input feature. Koizumi [21] proposed
a training method for DNN-based source enhancement to in-
crease objective sound quality assessment (OSQA) scores. Er-
dogan [22] developed a phase-sensitive objective function for
speech separation. In our recent work [23, 24, 25], a maxi-
mum likelihood (ML) criterion was used to train mapping-based
DNNs for speech enhancement, speech separation, and speech
dereverberation. Compared with MMSE-based approach, the
ML-based approach could achieve better convergence and ob-
jective metrics.

As a measure to estimate the speech presence in a local T-F
unit, IRM has been widely used in speech recognition [26, 27],
speech enhancement [28], and speech separation [29]. Wang
[15] suggested to use mask as training target because its nor-
malization form could reduce the dynamic range of target val-
ues and thus got different training efficiency compared to map-
ping. The effectiveness of IRM in speech enhancement has been
demonstrated in our recent work [30, 31]. It is known that gen-
eralized Gaussian distribution (GGD) [32] is used to model the
probability density function (PDF) of a signal. In this study,
we explore the ML solution within the probabilistic learning
framework to optimize masking-based DNN parameter. Under
the assumption that each dimension of the IRM prediction error
vector at the DNN output follows GGD, a training procedure is

295978-1-5386-5627-3/18/$31.00 ©2018 IEEE ISCSLP 2018

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on August 16,2021 at 10:15:27 UTC from IEEE Xplore.  Restrictions apply. 



Input: Noisy Feature

Output: Estimated IRM

Reference: Oracle IRM

IRM prediction error

Figure 1: The ML-DNN architecture for speech enhancement.

designed to update the DNN parameter. We analyze and discuss
the effect of shape parameter of GGD on evaluation metrics for
ML-based DNN (ML-DNN) approach. The experiments eval-
uated on unseen noise types show that the proposed ML-DNN
approach outperforms MMSE-based DNN (MMSE-DNN) ap-
proach for all objective evaluation metrics.

2. The Proposed ML-DNN Approach
In this study, we redefine the objective function in the proba-
bilistic learning framework and adopt the maximum likelihood
estimation to update the parameter of masking-based DNN, as
shown in Figure 1. The input of DNN is the (2τ + 1)D-
dimensional LPS feature vector of noisy speech with an acous-
tic context of 2τ + 1 neighbouring frames while the output is
the D-dimensional IRM vector. And the reference is the corre-
sponding D-dimensional oracle IRM vector.

In conventional MMSE-DNN, a mini-batch based stochas-
tic gradient descent (SGD) algorithm is adopted to optimize the
model parameter using the following loss function,

E =
1

N

N∑
n=1

||m̂n(y
n+τ
n−τ ,W)−mn||22 (1)

where E is the mean squared error. m̂n(y
n+τ
n−τ ,W) and mn

are the estimated and reference IRM vector at the nth frame, re-
spectively, with N representing the mini-batch size, yn+τ

n−τ being
the noisy LPS feature vector where the window size of context
is 2τ + 1, and W denoting the DNN parameter to be learned.
The IRM prediction error vector en at the nth frame could be
defined as:

en = mn − m̂n(y
n+τ
n−τ ,W) (2)

We assume that each dimension of the IRM prediction error
vector follows a univariate GGD with a zero mean, an unre-
stricted scale parameter αd and a known shape parameter βd:

p(en,d|αd, βd) =
βd

2αdΓ(
1
βd

)
exp

(
−(

|en,d|
αd

)βd

)
(3)

Correspondingly, assuming that each dimension of the IRM pre-
diction error vector is drawn independently from the GGDs, we
can get a multivariate GGD as follows:

p(en|α,β) =

D∏
d=1

βd

2αdΓ(
1
βd

)
exp

(
−(

|en,d|
αd

)βd

)
(4)

where α = αd,β = βd, d = 1, 2, ..., D. If the reference IRM
vector mn is also a random vector, then Eq. (4) is equivalent
to:

p(mn|yn+τ
n−τ ,W,α,β) =

D∏
d=1

βd

2αdΓ(
1
βd

)
exp

(
−(

|mn,d − m̂n,d|
αd

)βd

)
(5)

Given a mini-batch training set with N data pairs (Y,M) ={
(yn+τ

n−τ ,mn)|n = 1, 2, ..., N
}

and making the assumption
that these data pairs are drawn independently from the distri-
bution in Eq. (5), we can define the likelihood function as:

p(M|Y,W,α,β) =

N∏
n=1

D∏
d=1

βd

2αdΓ(
1
βd

)
exp

(
−(

|mn,d − m̂n,d|
αd

)βd

)
(6)

Accordingly, the log-likelihood function can be written as:

ln p(M|Y,W,α,β) =

N∑
n=1

D∑
d=1

ln

(
βd

2αdΓ(
1
βd

)
exp

(
−(

|mn,d − m̂n,d|
αd

)βd

))
(7)

If we assume that the distribution of each dimension has the
same known shape factor β, we can get the log-likelihood func-
tion as follows:

ln p(M|Y,W,α, β) =

N∑
n=1

D∑
d=1

ln

(
β

2αdΓ(
1
β
)

)

−
N∑

n=1

D∑
d=1

( |mn,d − m̂n,d|
αd

)β
(8)

where the parameter set (W,α) is to be optimized. We adopt
maximum likelihood criterion to alternately update W and α.
Firstly keep W fixed maximize Eq.(8) with respect to α. The
scale parameter is obtained as:

αd =

(
β
∑N

n=1 |mn,d − m̂n,d|β
N

) 1
β

(9)

Then to maximize Eq.(8) with respect W is equivalent to mini-
mize the following loss function:

E(W) =

N∑
n=1

D∑
d=1

( |mn,d − m̂n,d|
αd

)β

(10)

where W is optimized by the back-propagation (BP) algorithm
with a SGD method in the mini-batch mode with N sample
frames. The proposed training procedure is repeated until con-
vergence criterion is satisfied or a maximum number of itera-
tions is exceeded. The whole training procedure is summarized
as Algorithm 1.

296

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on August 16,2021 at 10:15:27 UTC from IEEE Xplore.  Restrictions apply. 



Algorithm 1 Procedure of ML-DNN training

Step 1: Initialization
Initialize the DNN parameter W randomly.

Step 2: Alternative optimization in mini-batch mode
Step 2.1: Fix W and update α via Eq. (9)
Step 2.2: Fix α and update W via Eq. (10)

Step 3: Go to Step 2 for the next mini-batch

3. Experimental Results and Analysis
In this study, experiments were conducted on speech waveforms
with 16 kHz. 115 noise types including 100 noise types in [33]
and some other musical noises were adopted to improve the
generalization capacity of DNN. All 4620 utterances from the
training set of the TIMIT corpus were corrupted with the above-
mentioned 115 noise types at six levels of SNR, i.e., 20dB,
15dB, 10dB, 5dB, 0dB, and -5dB, to build a 80-hour training
set. The 192 utterances from core test set of TIMIT corpus were
used to construct the test set. 8 unseen noise types (Destroyer
Engine, Factory, Military Vehicle, Machine Gun, Pink, Volvo,
Speech Babble, and White) from the NOISEX-92 corpus [34]
were adopted for testing.

The frame length was set to 512 samples (32 msec) with
a frame shift of 256 samples. With short-time Fourier analy-
sis, 257-dimensional LPS features [10] were obtained to train
DNNs. Mean and variance normalization were applied to the
input feature vectors of the DNN. Sigmoid activation function
was employed for all layers. All DNN configurations were fixed
at 3 hidden layers, 2048 units for each hidden layer and 7-frame
input. DNNs were initialized with random weights. The mini-
batch size N was set to 128. The learning rate for fine-tuning
was initially 0.1 for the first 10 iterations and decreased by 10%
after every iteration in the next 40 iterations. The momentum
rate was 0.9 and the weight decay coefficient was 0.00001.

We adopted four objective metrics to evaluate the perfor-
mance of our proposed ML-DNN. A perceptual evaluation of
speech quality (PESQ) [35] and the short-time objective intelli-
gibility (STOI, in %) [36] were used to assess the quality and in-
telligibility of enhanced speech. Segmental SNR (SSNR) mea-
sures the degree of noise reduction while log-spectral distortion
(LSD) is designed as an indicator of the speech distortion [10].

3.1. Evaluation on objective metrics

Table 1 and 2 show comparisons of the average performance
on the test set by MMSE-based approach and ML-based ap-
proach (PESQ and STOI) and (SSNR and LSD), respectively,
at four SNR levels across 8 unseen noise types. Different shape
parameters of GGD were used for ML-based approach. Firstly,
for ML-based approach, the performance was greatly affected
by the shape parameter of GGD. ML-DNN which used a larger
shape parameter could achieve better PESQ and STOI metrics
while ML-DNN which used a smaller shape parameter could
achieve better SSNR and LSD metrics. We will analyze and dis-
cuss the distributions of IRM prediction error from ML-DNNs
trained with GGDs using different shape parameters in detail
in the next subsection, which could explain the difference in
objective metrics. Secondly, from these two Tables we can see
that by setting the shape parameter of GGD to 3, all four evalua-
tion metrics (PESQ, STOI, SSNR, and LSD) could achieve rela-
tively better results overall. Compared to MMSE-DNN, consis-
tently large improvements were achieved for the four evaluation
metrics at four SNR levels for ML-DNN trained with GGD us-

ing shape parameter 3, with average gains of 0.12, 2.9, 1.57dB,
and 1.27dB for PESQ, STOI, SSNR, and LSD, respectively.

Table 1: Comparison of average PESQ and STOI (in %) met-
rics by MMSE-based approach and ML-based approach on test
sets at four SNR levels across 8 unseen noise types, where β
in MLGGDβ represents the shape parameter of GGD for ML-
based approach.

Approaches 10dB 5dB 0dB -5dB Ave

PESQ

MMSE 3.18 2.87 2.52 2.17 2.68
MLGGD1 3.09 2.70 2.25 1.81 2.46
MLGGD2 3.26 2.93 2.52 2.10 2.70
MLGGD3 3.31 3.00 2.65 2.26 2.80
MLGGD4 3.27 2.96 2.61 2.23 2.77

STOI

MMSE 90.8 85.6 78.3 69.6 81.1
MLGGD1 93.1 88.0 79.8 68.5 82.3
MLGGD2 93.4 88.7 81.3 71.1 83.6
MLGGD3 93.3 88.7 81.7 72.2 84.0
MLGGD4 93.2 88.7 81.7 72.5 84.0

Table 2: Comparison of average SSNR and LSD metrics by
MMSE-based approach and ML-based approach on test sets
at four SNR levels across 8 unseen noise types, where β in
MLGGDβ represents the shape parameter of GGD for ML-
based approach.

Methods 10dB 5dB 0dB -5dB Ave

SSNR

MMSE 6.87 4.94 3.20 1.71 4.18
MLGGD1 10.54 8.08 5.75 3.68 7.01
MLGGD2 10.09 7.63 5.28 3.17 6.54
MLGGD3 9.14 6.80 4.54 2.52 5.75
MLGGD4 8.03 5.86 3.74 1.79 4.85

LSD

MMSE 2.91 3.75 4.86 6.26 4.44
MLGGD1 2.02 2.69 3.48 4.38 3.14
MLGGD2 2.03 2.66 3.41 4.21 3.10
MLGGD3 2.17 2.75 3.46 4.32 3.17
MLGGD4 2.31 2.87 3.57 4.45 3.30

3.2. Statistical analysis on prediction errors

As can be seen from Table 1 and 2, the shape parameters of
GGD have a great influence on the final performance, and the
influence on speech quality, speech intelligibility, noise reduc-
tion, and speech distortion is not consistent. That is, slightly
larger shape parameters achieved better speech quality and in-
telligibility, while slightly smaller shape parameters resulted in
better noise reduction and less speech distortion. Therefore, we
analyze and discuss the effect of GGD’s shape parameter on
the distribution of IRM prediction error, which in turn can be
related to the trend of the four objective evaluation metrics.

Figure 2 shows the distributions of IRM prediction er-
ror and spectrograms from well-trained DNN using MMSE,
MLGGD1, MLGGD2, MLGGD3, and MLGGD4 approach for
one utterance corrupted by Factory noise at SNR=5dB, where
β in MLGGDβ represents the shape parameter of GGD for
ML-based approach. To have a deeper understanding of the
GGD’s shape parameter on four evaluation metrics, a higher
resolution analysis as shown in Figure 2 is given by listing
the distributions of IRM prediction error on speech-dominant
T-F units in low-frequency band, speech-dominant T-F units
in high-frequency band, and noise-dominant T-F units in low-
frequency band, respectively.

By observing the first column in Figure 2, the distribution
of IRM prediction error gradually shifted to the right when the
shape parameter of GGD changed from 1 to 4. According to the
definition of IRM prediction error in Eq. (2), the rightward shift
of the IRM prediction error indicated that the estimated IRM
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Figure 2: The distributions of IRM prediction error and spectrograms from well-trained DNN using MMSE, MLGGD1, MLGGD2,
MLGGD3, and MLGGD4 approach respectively for one utterance corrupted by Factory noise at SNR=5dB (from left to right):
speech-dominant T-F units in low-frequency band, speech-dominant T-F units in high-frequency band, noise-dominant T-F units in
low-frequency band, and the enhanced speech spectrograms.

gradually became smaller. This means speech distortion in low-
frequency band gradually became larger when the shape param-
eter of GGD changed from 1 to 4 as shown in the green circles
in the last column, which was consistent with LSD metric in Ta-
ble 2. With the gradual increase of shape parameter, the IRM
prediction error from ML-DNN shifted gradually to the left for
those speech-dominant T-F units in high-frequency band, which
indicated the estimated IRM gradually became larger. Thus
speech preservation in high-frequency band was much better for
a larger shape parameter as indicated by the yellow arrows, and
accordingly speech quality and intelligibility were improved.
Similarly, the leftward shift of the IRM prediction error caused
more residual noise with the gradual increase of shape parame-
ter as shown in the third column and the blue rectangles, which
was consistent with the SSNR metric in Table 2.

Figure 3 shows the comparison of spectrograms from
MMSE-DNN and ML-DNN (shape parameter of GGD was
set to 3) for one utterance corrupted by Factory noise at
SNR=5dB. ML-DNN outperformed MMSE-DNN with better
speech preservation in both low-frequency and high-frequency
bands, as shown in the blue rectangles and the yellow circles.
However, ML-DNN might introduce a litter more residual noise
as shown in the green dashed rectangles.

4. Conclusion and Future Work
In this paper, we propose a maximum likelihood approach to
optimize the parameter set of masking-based DNN for speech
enhancement. Based on the assumption that the IRM prediction
error vector at the DNN output follows generalized Gaussian
distribution, we adopt maximum likelihood criterion to alter-

nately update the DNN parameter and the scale parameter of
GGD. We analyze and discuss the effect of shape parameter
on objective evaluation metrics. Compared with the conven-
tional MMSE criterion, the ML approach could achieve con-
sistent improvements on four objective evaluation metrics with
less speech distortion.

Figure 3: Comparison of spectrograms for one utterance cor-
rupted by Factory noise at SNR=5dB: noisy speech (upper left),
clean speech (bottom left), MMSE-DNN (upper right), ML-
DNN where the shape parameter of GGD is 3 (bottom right).
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