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Abstract—Recently, hidden Markov models (HMMs) have
achieved promising results for offline handwritten Chinese text
recognition. However, due to the large vocabulary of Chinese
characters with each modeled by a uniform and fixed number
of hidden states, a high demand of memory and computation
is required. In this study, to address this issue, we present
parsimonious HMMs via the state tying which can fully utilize
the similarities among different Chinese characters. Two-step
algorithm with the data-driven question-set is adopted to
generate the tied-state pool using the likelihood measure. The
proposed parsimonious HMMs with both Gaussian mixture
models (GMMs) and deep neural networks (DNNs) as the
emission distributions not only lead to a compact model but
also improve the recognition accuracy via the data sharing
for the tied states and the confusion decreasing among state
classes. Tested on ICDAR-2013 competition database, in the
best configured case, the new parsimonious DNN-HMM can
yield a relative character error rate (CER) reduction of 6.2%,
25% reduction of model size and 60% reduction of decoding
time over the conventional DNN-HMM. In the compact setting
case of average 1-state HMM, our parsimonious DNN-HMM
significantly outperforms the conventional DNN-HMM with a
relative CER reduction of 35.5%.

Keywords-Parsimonious HMM, character similarity, state
tying, two-step algorithm, handwritten Chinese text recognition

I. INTRODUCTION

Offline handwritten Chinese text recognition (HCTR)

is a challenge topic due to large vocabulary and unre-

strained writing styles [1]. Most existing techniques can

be classified into two categories: oversegmentation-based

and segmentation-free approaches. Oversegmentation-based

approaches often need to explicitly segment text line into

a sequence of primitive image patches and then merge

them to form a candidate lattice [2]–[5]. In contrast to

the oversegmentation-based approaches, segmentation-free

approaches do not require the explicit segmentation for text

line. [6] adopted the Gaussian mixture model based hidden

Markov model (GMM-HMM) for the text line modeling.

With the success of deep learning [7], deep neural networks

(DNNs) have been widely applied for HCTR. Recently,

[12] successfully used multidimensional long-short term

memory recurrent neural network (MDLSTM-RNN) with

connectionist temporal classification (CTC) [13] for HCTR.

More recently, [9]–[11] proposed hybrid neural network

based HMMs (NN-HMMs) for HCTR, which achieved the

best performance on the ICDAR-2013 competition database

The sequence of concatenated character HMMs

The observation sequence of sliding windows

Figure 1. HMM-based handwritten Chinese text line modeling.

[1] among existing segmentation-free approaches.

The success of NN-HMMs [9], [11] is attributed to two

aspects. First, the DNN or convolutional neural network

(CNN) [8] is powerful in modeling the emission distributions

just like in MDLSTM-RNN [12]. Second, the left-to-right

HMM [14] with a set of hidden states is adopted to represent

each character class, illustrated in Fig. 1. Accordingly, to

model the text line as a observation sequence of frames

implemented by sliding windows, the character HMMs are

concatenated as shown in Fig. 1. However, there is one main

problem in the conventional HMM-based HCTR, where each

character is modeled with a uniform and fixed number of

hidden states, e.g., 5 states in Fig. 1. Due to the large

vocabulary of Chinese characters, this setting requires a

high demand of memory and computation. Moreover, the

uniform setting of state number is unreasonable as the

similarity among different characters and the diversity of ap-

pearances are not well considered. Chinese characters, which

are mainly logographic and consisting of basic radicals,

constitute the oldest continuously used system of writing

in the world which is different from the purely sound-

based writing systems [15] such as Greek, Hebrew, etc. For

example in Fig. 2, the regions in red dashed boxes of the left

and middle handwritten Chinese characters are quite similar

as they belong to the same radical.

In this study, to address the above-mentioned problem

in conventional DNN-HMM approach, we present parsimo-

nious DNN-HMMs via the state tying which can fully utilize

the similarities among different Chinese characters. We

adopt two-step algorithm with the data-driven question-set
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to generate the tied-state pool using the likelihood measure,

which is inspired by the similar idea in speech recognition

area [16]–[18]. The proposed parsimonious DNN-HMMs

not only lead to a compact model but also improve the

recognition accuracy via the data sharing for the tied states

and the confusion decreasing among state classes. Tested on

ICDAR-2013 competition database, in the best configured

case, the new parsimonious DNN-HMM can yield a relative

character error rate (CER) reduction of 6.2%, 25% reduction

of model size and 60% reduction of decoding time over

the conventional DNN-HMM. In the compact setting case

of average 1-state HMM, our parsimonious DNN-HMM

significantly outperforms the conventional DNN-HMM with

a relative CER reduction of 35.5%.

II. OVERVIEW OF PARSIMONIOUS DNN-HMM

The proposed framework aims to search the optimal

character sequence Ĉ for a given extracted feature sequence
X = {x0,x1, ...,xT } of a text line, which can be formulated
according to the Bayesian decision theory as follows:

Ĉ = argmax
C

p(C|X) = argmax
C

p(X|C)P (C) (1)

where p(X|C) is the conditional probability of X given C
which is named as the character model. Meanwhile P (C) is
the prior probability of C which is named as the language
model. As one implementation of this Bayesian framework,

we use an HMM to model one character class, accordingly a

text line is modeled by a sequence of HMMs. An HMM has

a set of states and each frame is supposed to be assigned to

one underlying state. For each state, an emission distribution

describes the statistical property of the observed frame. With

HMMs, we rewrite the p(X|C) in:
p(X|C) =

∑
S

[p(X, S|C)] (2)

=
∑
S

[
π(s0)

T∏
t=1

ast−1stp(xt|st)
]

(3)

=
∑
S

[
π(s0)

T∏
t=1

ast−1st

p(st|xt)p(xt)
p(st)

]
(4)

S = {s0, s1, ..., sT } is one underlying state sequence ofC to
represent X. π(s0) is the prior probability of the initial state
s0 and ast−1st is the transition probability from state st−1 at
the (t−1)th frame to state st at the tth frame. p(xt|st) is the
emission probability, which can be directly calculated (e.g.,

GMM in [6]) or indirectly obtained via the state posterior

probability p(st|xt) (e.g. DNN in [9]).
Within this framework, the main procedure to train par-

simonious DNN-HMMs are summarized in Algorithm 1.

In the recognition stage, after the feature extraction of

the unknown handwritten text line, the final recognition

results can be generated via a weighted finite-state trans-

ducer (WFST) [23], [24] based decoder by integrating both

5-state HMM for 
character 

...

Tied-state Pool

5-state HMM for 
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5-state HMM for 
character 

...

Figure 2. Illustration of state tying.

character model and language model. Note that the number

of output layer neurons in DNN corresponds to the number

of tied-states, which is controlled by state tying results. In

the next section, we will elaborate the state tying algorithm.

Algorithm 1 Training steps of parsimonious DNN-HMMs
1 Preprocess all training text lines and extract gradient

direction features [22] followed by PCA transforma-

tion [25].

2 Train conventional GMM-HMMs with the uniform and

fixed number of hidden states for all character HMMs.

3 Calculate the first-order and second-order statistics based

on state-level forced-alignment based on GMM-HMMs.

4 Generate the question set based on the statistics using a

top-down data-driven method.

5 Two-step algorithm:

• First-step: Build the state-tying trees based on statis-
tics and question set using a top-down data-driven

method.

• Second-step: Using a bottom-up greedy algorithm to
recluster the tied-state results from fist-step, then get

the final tied-state pool.

6 Train parsimonious GMM-HMMs based on the final tied-

state pool for all character HMMs.

7 Train parsimonious DNN-HMMs using state-level la-

bels from the forced-alignment of parsimonious GMM-

HMMs.

III. TWO-STEP STATE TYING

To give a better explanation of state tying, Fig. 2 shows an

example of three Chinese characters with the final tied-state
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pool. Each character in this figure is initially modeled by an

HMM with 5 states. After parsimonious modeling, the first

two states of left and middle characters are tied together

while the last three states of middle and right characters

are tied together. This is reasonable as these tied states are

corresponding to the similar regions of dashed boxes.

We adopt two-step algorithm with the data-driven

question-set to generate the tied-state pool. We will in-

troduce the first-step algorithm, second-step algorithm and

question-set building separately in the next subsections.

A. The first-step data-driven method for state tying

In the first step, the binary decision tree is adopted for

state tying with each node partitioned by a question. Each

question is related with a set of Chinese characters which

will be described in Section III-C. One tree is constructed

for each HMM state (e.g., state 1 to state 5 in Fig. 2) to

cluster the corresponding states of all associated characters.

Because the number of Chinese characters used in this study

is 3980, the whole tree on each state is pretty large. In Fig. 3,

we just show a fragment of the decision tree for tying the

first state of HMM, where five clusters correspond to five

leave nodes with each associated with a set of tied character

classes. Similar to [17], the basic principle is to partition

states recursively to maximize the increase in expected log-

likelihood. All states with the same position in HMMs are

initially grouped together at the root node and the expected

log-likelihood of the training data is calculated. This node

is then split into two subsets based on the question which

partitions the states to maximize the increase in expected

log-likelihood. A maximum priority queue is maintained to

save the expected log-likelihood improvements by splitting

each parent node to two children nodes. Each node is then

recursively partitioned until reaching the threshold of tied-

state number.

B. The second-step data-driven method for state tying

In order to get the final tied-state pool, the tied-states

generated by first-step are reclusterred in this step. In the

second step, the clusters in leaf nodes obtained in the

first step is re-clustered by a bottom-up procedure using

sequential greedy optimisation. Similar to [18], the expected

log-likelihood decrease by combining every two clusters

is calculated. A minimum priority queue is maintained to

re-cluster the two clusters with minimum log-likelihood

decrease to a new cluster. This process is repeated until

reaching these target tied-state number N. Finally the tied-

state pool is composed by the reculusterred tied-state. We

illustrate this second-step in Fig. 4.

The expected log-likelihood in the above-mentioned two

steps can be calculated on the feature vector x based on
the Gaussian distribution assumption withe D-dimensional

Yes No

Is in           ?

Yes YesNo No

Is in       ? Is in     ?

Yes No

Is in     ?

Yes No

Is in  ?

            Leaf node

            Non-leaf node

     L

        N

Figure 3. A tree fragment for tying the first state of HMM.

mean vector μ and covariance matrix Σ:

L(x) = E [logN (x;μ,Σ)]

= −1

2
E
[
(x− μ)�Σ−1(x− μ) + log((2π)D|Σ|)]

= −1

2
[(1 + log(2π))D + log |Σ|] (5)

Let S be a cluster with N training feature vectors, the

expected log likelihood on this cluster is given by:

L(S) = −N

2
[(1 + log(2π))D + log |Σ|] (6)

If we partition S into two subsets S1 and S2, withN1 andN2

feature vectors, mean vectors μ1 and μ2, covariance matrices

Σ1 and Σ2 respectively, then the expected log-likelihood

increase after splitting becomes:

ΔL = L(S1) + L(S2)− L(S)

=
N

2
log |Σ| − N1

2
log |Σ1| − N2

2
log |Σ2| (7)

Similarly, we can also obtain the expected log-likelihood

decrease for the second step re-clustering accordingly. The

statistics required in these equations can be calculated from

the training data.

C. Data-driven question set generation

The question set used for state tying is built via a top-

down tree-based method like in [18]. Initially, all characters

are placed in root node and the expected log likelihood of all

the training data is calculated. Then k-means clustering [21]
with k = 2 is conducted for several times on different initial
assignments and the best clustering result is selected to split

the root node. A maximum priority queue is maintained to

store the likelihood increase by splitting each parent node
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Figure 4. Illustraion of second-step procedure.

to two children nodes. This splitting process is recursively

performed until each leaf node only has one character class.

Each node corresponds to one question which is constituted

of all the leaves which this node can reach to when traversing

the tree. Finally, the question set consists of these questions.

IV. EXPERIMENTS

In this section, we present experiments on recognizing

offline handwritten Chinese text line with Kaldi toolkit [20],

for the purpose of evaluating and comparing the proposed

parsimonious HMMs with the conventional HMMs [9]. We

use the public CASIA-HWDB database [19] for training,

including HWDB1.0, HWDB1.1, HWDB2.0, HWDB2.1,

and HWDB2.2 datasets. HWDB1.0 and HWDB1.1 are of-

fline isolated handwritten Chinese character datasets while

HWDB2.0-HWDB2.2 are offline handwritten Chinese text

datasets. In total, there are 3,980 classes (Chinese characters,

symbols, garbage) with 4,091,599 samples. Here “garbage”

classes represent the short blank model between characters

and the long blank model at the beginning or end of the

text line. The ICDAR-2013 competition set [1] is adopted

as the evaluation set. The gradient-based feature extracted

from one frame of the text line is a 256-dimensional vector,

followed by PCA to obtain a 50-dimensional feature vector.

This feature vector is directly used for GMM-HMM systems

while an augmented version of 7 frames is fed to DNN-

HMM systems.

For GMM-HMM systems, each character class is modeled

by a left-to-right HMM with each state modeled by a GMM

with 40 Gaussian mixtures. For DNN-HMM systems, the

input size of DNN is 350. The mini-batch size is 256. The

initial step size is set to 0.008 which is halved after each

iteration if the loss of cross-validation set is reduced. 16

iterations are conducted.

As for language modeling, 3-gram is adopted and trained

with the transcriptions of both the CASIA database and

Table I
THE CER(%) COMPARISON OF HMM SYSTEMS WITH DIFFERENT

NUMBER SETTINGS OF TIED-STATES PER CHARACTER Ns .

Ns 5 4 3 2 1
GMM-HMM 20.04 19.94 21.94 24.92 30.34
GMM-PHMM - 19.41 18.83 18.14 18.49
DNN-HMM 6.73 6.80 7.11 8.21 11.09
DNN-PHMM - 6.37 6.31 6.48 7.15

other corpora including 208MB texts of Guangming Daily

between 1994 and 1998, 115MB texts of Peoples Daily

between 2000 and 2004, 129MB texts of other newspapers,

and 93MB texts of Sina News. The evaluation measure

is CER, which is the ratio between the total number of

substitution/insertion/deletion errors and the total number of

character samples in the evaluation set.

A. Experiments on different settings of tied-states

In this subsection, five conventional GMM-HMM sys-

tems are built with the fixed number of HMM states per

character from 1 to 5. Four parsimonious GMM-HMM

(denoted as GMM-PHMM) systems are generated based on

the state tying from 5-state GMM-HMM system, yielding

average tied-state per character from 1 to 4. Accordingly,

five conventional DNN-HMM systems are trained from five

conventional GMM-HMM systems while four parsimonious

DNN-HMM (denoted as DNN-PHMM) systems are trained

based on four GMM-PHMM systems. For DNN-HMM and

DNN-PHMM, 6 hidden layers with 2048 nodes for each

hidden layer are used and the number of neurons of DNN

output layer corresponding to the total number of states

varies from 3980 (1 tied-state per character) to 19900 (5

tied-states per character).

Table I listed a CER comparison of HMM systems on the

evaluation set with different number settings of tied-states

per character. Several observations could be made. First, for

both GMM-PHMM and DNN-PHMM with the decreasing

of the number of tied-states, the CERs first decreased and

then increased. This implied that too many states led to

the confusion increasing while too few states decreased the

discrimination among characters classes. Second, GMM-

PHMM/DNN-PHMM systems consistently and significantly

outperformed the corresponding GMM-HMM/DNN-HMM

systems with the same tied-state number, demonstrating

the effectiveness of the proposed state tying algorithm.

For example, for the most compact case, namely 1 tied-

state per character, GMM-PHMM yielded a relative CER

reduction of 39.1% over GMM-HMM while DNN-PHMM

achieved a relative CER reduction of 35.5% over DNN-

HMM. This indicated that the tied-state allocation for differ-

ent character classes could be much more reasonable after

state tying by fully utilizing the similarities among different

characters. Finally, in the best configured cases, a relative

CER reduction of 9.5% was achieved by GMM-PHMM
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Table II
THE CER(%) COMPARISON OF HMM SYSTEMS WITH DIFFERENT

NUMBER SETTINGS OF TIED-STATES PER CHARACTER Ns <1.

Ns 0.9 0.8 0.7 0.6 0.5

GMM-PHMM 18.66 19.17 19.92 21.28 22.54
DNN-PHMM 7.34 7.50 7.97 8.80 9.52

Table III
THE PERFORMANCE COMPARISON OF THE BEST CONFIGURED

DNN-HMM AND DNN-PHMM SYSTEMS WITH DIFFERENT DNN
STRUCTURES. (NU AND NL ARE THE NUMBERS OF HIDDEN UNITS AND
LAYERS, NM AND NT ARE THE MODEL SIZE AND RUN-TIME LATENCY

NORMALIZED BY DNN-HMM WITH NU=2048 AND NL=6.)

(NU, NL) (1024, 4) (1024, 6) (2048, 6)

DNN-HMM
CER 7.15 6.91 6.73
NM 0.38 0.42 1
NT 0.82 0.93 1

DNN-PHMM
CER 6.78 6.48 6.31
NM 0.25 0.27 0.74
NT 0.28 0.31 0.40

over GMM-HMM while a relative CER reduction of 6.2%

was achieved by DNN-PHMM over DNN-HMM. Moreover,

40% reduction of tied-states in total were obtained in DNN-

PHMM compared with DNN-HMM.

One more advantage of DNN-PHMM is that we can

achieve much more compact design by setting the number

of tied-states per character below 1, as shown in Table II.

However, for DNN-HMM, the minimum setting is 1 state

per character. We could observe from Table II that even

in such extreme settings, the recognition performance of

GMM-PHMM and DNN-PHMM was gradually declined,

not like the sharp decreasing of performance in GMM-HMM

and DNN-HMM from 2-state setting to 1-state setting from

Table I. With an average 0.5 tied-state per character setting,

the corresponding DNN-PHMM outperformed DNN-HMM

with 1-state setting and MDLSTM-RNN (with a CER of

10.6% in [12]), yielding the relative CER reductions of

14.2% and 10.2%, respectively.

B. Experiments on parsimonious modeling

In order to further address the practical issues such as

the demand of memory and computation, the performance

comparison of the best configured DNN-HMM and DNN-

PHMM systems with different DNN structures is listed

in Table III. Obviously, with the decrease of hidden units

and layers, DNN-PHMM could still maintain a competitive

performance while the corresponding model size and run-

time latency could be largely reduced. For example, DNN-

PHMM using (1024, 4) setting achieved a comparable CER

with DNN-HMM using (2048, 6) setting. However, 75% of

model size and 72% of run-time latency were reduced in

DNN-PHMM compared with DNN-HMM.

C. Results analysis

To explain the reason why the proposed parsimonious

HMMs are so effective in parsimonious modeling, we first

Left-right 

Top-bottom

Surround 

Left-surround 

Bottom-left-surround 

Top-surround 

Cross 

Top-right-surround 

 

Tied 
characters

Radical
structure

Similar
part

Figure 5. The examples of tied Chinese characters with different radicals
and spatial structures.

Ground Truth: 

DNN-HMM: 

Parsimonious DNN-HMM: 

Figure 6. The recognition results comparison between DNN-HMM and
DNN-PHMM.

show the examples of state-tying results in Fig. 5. The

first column shows the set of tied characters by the state-

tying from the first state to the fifth state of 5-state HMM

with different radicals structures and similarities described in

second and third columns. From these results, we observed

that although the vocabulary of Chinese characters could be

quite large (tens of thousands), most of them consisted of

basic radicals and spatial structures with only a few hundred

categories. Accordingly, the Chinese characters with the

same or similar radicals were easily tied using the proposed

algorithm. This is the reason that the proposed DNN-PHMM

with quite compact design can still maintain high recognition

performance as shown in Table II and III.

To give readers a better understanding why DNN-PHMM

could improve the recognition accuracy over DNN-HMM, a

recognition example is shown in Fig. 6, where DNN-HMM

generates one substitution error (marked red) while DNN-

PHMM generates the correct results as the ground truth.

This can be explained as: in DNN-HMM system, there are

too fewer training handwritten samples with the left radical

like the misclassified one in the red dashed box. However,

in DNN-PHMM, by state-tying, this unusual writing style of

the left radical can be shared from other handwritten Chinese

characters samples to train this specific character class.

V. CONCLUSION

In this paper, we present parsimonious DNN-HMMs to

reduce model redundancy and capture similarities among

different Chinese characters. Note that the model is left-
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to-right HMM and the features are extracted from left-to-

right, so the similarities captured by state tying are more on

left-to-right structure. In the future, we plan to investigate

the parsimonious modeling for 2D-HMM based HCTR to

capture more structure information.
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