
A Progressive Deep Learning Approach to Child Speech Separation

Xin Wang1, Jun Du1, Lei Sun1, Qing Wang1, Chin-Hui Lee2

1University of Science and Technology of China, Hefei, Anhui, China
2Georgia Institute of Technology, Atlanta, Georgia, USA

wx0304@mail.ustc.edu.cn, jundu@ustc.edu.cn, sunlei17@mail.ustc.edu.cn,
xiaosong@mail.ustc.edu.cn, chl@ece.gatech.edu

Abstract
We propose a progressive learning approach to separating child
speech from signals with mixed adult speech in a speaker-
independent manner based on a densely connected long short-
term memory (LSTM) architecture to deal with limited train-
ing data issue in child speech. First, by measuring the speech
dissimilarities between children and adults using i-vectors, we
demonstrate that distances between child and adult speech are
large enough to warrant a possible separation through establish-
ing child and adult speech groups. Accordingly, we present a
novel LSTM design with densely connected hidden layers and
stacked inputs containing progressively obtained intermediate
targets that are learnt via multiple-target learning for speech
separation between child and adult groups. Experimental re-
sults on a simulation corpus show that the proposed framework
can yield consistent and significant gains of objective measures
over the LSTM baseline for child speech separation. Further-
more, our preliminary results on the SeedLing corpus with re-
alistic recordings for child language acquisition show that our
approach can achieve better overall separation performances
than LSTM baseline when comparing spectrograms of separat-
ed speech, implying a potential for speaker diarization involving
child speech.

Index Terms: speaker dissimilarity measure, long short-term
memory, densely connected nextworks, progressive learning,
multi-task learning, source separation, child speech separation

1. Introduction
Speech separation [1] aims at segregating mixed speech into
voices of individual speakers. Child speech separation, refer-
ring to separating child speech from the utterances mixed up
with adult speech, potentially has a variety of important appli-
cations, such as child speech recognition [2] and child-involved
speaker diarization [3]. Acoustic and linguistic characteris-
tics of child speech are quite different from those of adults.
For instance, child speech is characterized by higher pitch and
formant frequencies with respect to adult speech [4]. Several
techniques, e.g., Gaussian mixture models (GMMs) [5] and i-
vectors [6], have been proposed to classify or identify speech
of children and adults in the past [7], [8]. However, it is dif-
ficult for these techniques to deal with overlapped speech that
children and adults speak at the same time.

Many techniques focusing on speech separation between
adults have been proposed in the past. For example, Roweis
[9] employs factorial hidden Markov models (FHMMs) to learn
the information of a speaker and then separates the speech mix-
ture through computing a mask function. Another popular ap-
proach is non-negative matrix factorization (NMF) [10] which
decomposes the signal into sets of bases and weight matrices. A
non-negative back-propagation algorithm was proposed in [11]

to build a deep network with non-negative parameters. Howev-
er, these aforementioned supervised methods are not always ap-
plicable to practical scenarios due to a lack of prior knowledge
of speakers. Therefore in an unsupervised methods, computa-
tional auditory scene analysis (CASA) [12] , inspired by the
ability of human auditory perception to recover signals of in-
terest from background distractions, is widely adopted without
assuming any knowledge about mixing speakers. Unsupervised
clustering for sequential grouping is adopted to convert simul-
taneous streams to two clusters in [13] by maximizing the ratio
of between-cluster and within-cluster distances.

Recently, deep neural networks (DNNs) [14], [15] have
been utilized in many speech processing areas, such as speech
enhancement [16], [17], and speech dereverberation [18], [19],
which proves a new direction for speech separation. In [20],
long short-term memory recurrent neural network (LSTM-
RNN) was used. In [21, 22], ideal ratio masks (IRMs) were
used to make binary classification on time-frequency (T-F) unit-
s. In [23], Gao et al. proposed DNN-based progressive learning
(PL) which aimed at decomposing complicated regression into
a series of subproblems. To increase the modeling capability, in
[24], Sun et al. adopted LSTM-RNN with multiple-target learn-
ing [25] of both log-power spectra (LPS) and IRM to capture the
long-term contextual information. DNN-based semi-supervised
speech separation had also been proposed in [26]. DNN-based
unsupervised speech separation had also been studied in [27].
Both studies dealt only with adult speech separation. However
research in child speech separation was still quite limited in the
literature.

In this paper, we present a novel LSTM design with densely
connected hidden layers and stacked inputs containing progres-
sively obtained intermediate targets that are learnt via multiple-
target learning for speech separation between child and adult
groups in a speaker-independent manner, extending from [27]
in which separation of adult speaker groups was considered. By
measuring the dissimilarities, we found that segregating child
speech mixed with adult speech should be the easiest among
separation tasks because i-vector based distance between child
and adult speech is the largest among all mixed speaker group-
s to guarantee a possible separation. However, it is not easy
to collect a large set of good-quality training utterances from
young children aged between 2 and 5 because they don’t fol-
low specific recording instructions as well as adults. Based on
such restrictions, we propose a progressive learning framework
to generate intermediate target outputs and stack them together
with the original limited-sized mixed input feature vectors to in-
crease the amount of effective training samples. Multiple-target
learning is also employed to improve modeling effectiveness for
speech separation [25]. Experimental results on simulation data
using adult speech from WSJ0 [28] and child speech from Phon-
Bank [29] demonstrate that the proposed approach can yield
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Table 1: The average distances across all speaker pairs for different combinations.

Combination C-A
C-C A-A

All M-F M-M F-F All M-F M-M F-F

Distance 224.54 215.87 223.15 211.92 191.54 172.82 184.76 184.73 129.98

consistent gains in common objective measures over our LSTM
baseline for child speech separation. Our model is also robust
to different ages of children. Furthermore, our preliminary re-
sults on SeedLing corpus [3] with realistic recordings for child
language acquisition show that the proposed approach outper-
forms the LSTM baseline based on observing spectrograms of
separated speech, implying a potential for speaker diarization
applications, involving child speech.

2. Child-Adult Speech Dissimilarity
Based on our previous studies, speaker separability can be tied
to distances between speaker groups [30] by adopting i-vectors
[6] represent each speare and the Euclidean distance is then u-
tilized to measure a speaker dissimilarity between the i-th and
j-th speakers as follows:

D(i, j) = ‖vi − vj‖2 (1)

where vi and vj are 100-dimensional i-vectors of two speakers
in the training dataset described in Section 4.

In terms of the combination of child and adult, a mixture of
two speakers generally belongs to three cases, namely mixing
of child-adult (C-A), child-child (C-C), and adult-adult (A-A)
speaker groups. For the C-C and A-A cases, we can further
divide each case into three subclasses, namely mixing of male-
female (M-F), male-male (M-M), and female-female (F-F) s-
peaker groups. Table 1 gives the averaged distances across all
speaker pairs for each of the nine combinations corresponding
to the above mentioned nine input mixture cases. We use 81
adult speakers and 128 child speakers in the training set. First,
the C-A combination yields the largest distance among C-A, C-
C and A-A cases, which implies that the mixtures of child and
adult should have a better separability than the mixtures of C-C
and A-A. By considering that many studies for speech separa-
tion in A-A case have been explored, speech separation in C-A
should be also feasible. Second, for the C-C and A-A mixtures,
the case of mixtures from different genders yields larger dis-
tance than that of the same-gender mixtures, which implies that
the different-gender mixtures should have a better separability
than the same-gender mixtures. Moreover, the F-F combination
seems to be more challenging. In this study, we just focus on
the separation of child speech from the speech mixed up with
adult speech (C-A case), ignoring the gender influence.

To visualize the similarity between two individual object-
s in a low-dimensional space, each object to be studied can be
represented by a point and the points are elaborately arranged
in order to approximate the distances between pairs of objects.
We adopted multidimensional scaling (MDS) [31] to graphical-
ly describe the relationship conveyed by aforementioned dis-
tance measurements. The MDS graphs of i-vector based dis-
tance matrices for the 81 adult speakers and 129 child speakers
are shown in Figure 1. In this figure, the blue and red points rep-
resent the adult and child speakers, respectively. Figure 1 con-
firms that the child and the adult groups could be well separated
in two clusters for most cases, which motivates our proposed
LSTM-based approach in the next section.

Figure 1: Multidimensional scaling graph of the i-vector dis-
tances among all the speakers in the training set.

3. Proposed Densely Connected LSTM
Architecture for Chile Speech Separation

In training DNNs, temporal information is only utilized via
frame expansion. To model time sequences, RNN seems to
have an advantage with recursive structures between the pre-
vious frames and the current frame to capture the long-term
contextual information. However, the conventional RNN can-
not hold information for a long period and optimization of RN-
N parameters via back propagation through time (BPTT) faces
the problem of the vanishing and exploding gradients [32]. The
problems can be well alleviated by LSTM [33] which intro-
duces memory cells and a series of gates to dynamically control
the information flow.

To further improve the generalization capability of LSTM
architecture, the design of hidden layers via densely connected
progressive learning and output layer via multiple-target learn-
ing (MTL) is presented (denoted as LSTM PL MTL), as illus-
trated in Figure 2. This architecture is motivated by the previous
work [23,24] in speech enhancement. The overall LSTM archi-
tecture aims to predict the child LPS features given the input
mixed LPS features of child and adult progressively. All the tar-
get layers are designed to learn intermediate speech with higher
signal-to-interference ratios (SIRs) or target child speech. For
example, the input SIR of mixed speech is 0dB, then two inter-
mediate learning targets are 10dB and 20dB speech while the
final target is the child speech (infinity dB). For the input and
multiple learning targets, LSTM layers are used to link between
each other. This stacking style network can learn multiple tar-
gets progressively and efficiently. In order to make full use of
the rich set of information from the multiple learning targets,
we update the progressive learning in [23] with dense structures
[34] in which the input and the estimations of intermediate tar-
get are spliced together to learn next target. In the output layer,
besides the target child LPS features, the child IRM features are
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Figure 2: The proposed LSTM PL MTL architecture for child
speech separation.

also adopted as another learning target and defined as:

xIRM(t, f) =
C(t, f)

C(t, f) + A(t, f)
(2)

where C(t, f) and A(t, f) denote the energy of the child speech
and adult speech at time frame t and frequency bin f , respec-
tively. Then, a weighted minimum mean squared error (MMSE)
criterion in terms of multitask learning is designed to optimize
all network parameters randomly initialized with K target lay-
ers as follows:

J =
K∑

k=1

λkJk + JIRM (3)

Jk =
1

N

N∑

n=1

∥∥∥Fk(x̂
0
n, x̂1

n, ..., x̂k−1
n ,Λk)− xk

n

∥∥∥
2

2
(4)

JIRM =
1

N

N∑

n=1

∥∥∥FIRM(x̂
0
n, x̂1

n, ..., x̂K−1
n ,ΛIRM)− xIRM

n

∥∥∥
2

2

(5)
where Jk is the mean square error (MSE) corresponding to kth

target layer while JIRM is the MSE for MTL with IRM in the
final output layer. x̂k

n and xk
n are the nth D-dimentional vec-

tors of estimated and reference target LPS feature vectors for
kth (k > 0) target layer, respectively, with N representing the
mini-batch size. x̂0

n denotes the nth vector of input mixed LP-
S features with acoustic context. Fk(x̂

0
n, x̂1

n, ..., x̂k−1
n ,Λk) is

the neural network function for kth target with the dense struc-
ture using the previously learned intermediate targets from x̂0

n

to x̂k−1
n , and Λk represents the parameter set of the weight-

s and bias vectors before kth target layer, which are optimized
with gradient descent. xIRM

n , Fk(x̂
0
n, x̂1

n, ..., x̂K−1
n ,ΛIRM) and

ΛIRM are corresponding versions to IRM targets. λk is the
weighting factor for the kth target layer.

4. Experiments and Result Analysis
In our experiments, the adult speech data was derived from the
WSJ0 corpus [28]. 1000 utterances for 129 children from 2
years old to 5 years old were adopted as child speech derived
from PhonBank project [29]. The whole 7138 utterances (about
12 hours speech) from 83 speakers, denoted as SI-84 training

Table 2: Average performance comparison of different SNRs on
the test set between LSTM Baseline and LSTM PL MTL.

SNRs Systems SSNR PESQ STOI

-10dB
LSTM Baseline 0.47 1.76 0.55
LSTM PL MTL 0.50 2.02 0.61

-5dB
LSTM Baseline 1.16 1.93 0.60
LSTM PL MTL 1.57 2.29 0.67

0dB
LSTM Baseline 1.93 2.09 0.65
LSTM PL MTL 3.71 2.54 0.73

5dB
LSTM Baseline 2.65 2.24 0.69
LSTM PL MTL 6.20 2.76 0.77

set, were mixed with the above mentioned 1000 child utterances
at three SNR levels (-5dB, 0dB and 5dB) to build a 36-hour
training set, consisting of pairs of child and mixed utterances.
The 330 utterances from 12 other adult speakers, namely the
Nov92 WSJ evaluation set, were used to construct the test set
for each combination of SNR levels (-10dB, -5dB, 0dB, 5dB)
with 235 utterances from 32 unseen children.

For signal analysis, speech was sampled at 16 kHz. A
512-point discrete Fourier transform (DFT) of each overlapping
windowed frame was computed. Then 257-dimensional LP-
S vectors normalized by global mean and variance were used
to train LSTMs. The phase required to reconstruct waveform
was directly extracted from the mixed speech [35] and the child
speech waveform was reconstructed from the estimated spec-
tral magnitude and the mixed speech phase with an overlap-add
method. The Microsoft Computational Network Toolkit (CN-
TK) [36] was used for training. For progressive learning sys-
tems, one LSTM layer was used to connect the input layer and
target layers. Each target SIR gain was 10dB. The 1-frame in-
put and the estimations of intermediate target are spliced togeth-
er to learn next target. The number of LSTM memory cells in
each layer was 1024, and the parameter λk in Equation 3 was
all set to 0.1. The IRM output of LSTM PL MTL was used
to reconstruct the separated speech waveform. As a compari-
son, a direct mapping LSTM network in [24] with the architec-
ture 257-1024-1024-1024-257, consisting of three LSTM layers
and 1024 memory cells for each LSTM layer, was built as our
baseline model (denoted as LSTM Baseline). The learning rate
of the two models for the fine-tuning was set to 0.001 for the
first 20 epochs and 0.0001 for the next 30 epochs. Segmen-
tal signal-to-noise ratio (SSNR in dB), perceptual evaluation of
speech quality (PESQ) [37], and short-time objective intelligi-
bility (STOI) [38] were adopted to evaluate the performances of
separated speech.

Table 2 shows the average SSNR, PESQ and STOI on the
whole test set between LSTM Baseline and LSTM PL MTL.
Clearly, the proposed LSTM PL MTL approach yielded con-
sistent and significant improvements over the LSTM Baseline
approach for all different SNRs of the mixed speech, e.g., a SS-
NR gain of 1.78 dB, a PESQ gain of 0.45, a STOI gain of 0.08 at
0dB. Figure 3 shows the spectrograms of an utterance example
at -5dB. The LSTM Baseline achieved a good interference re-
duction but with severe child speech distortion and child speech
loss. Meanwhile LSTM PL MTL generated the child speech
with less speech distortion as shown in the blue rectangles, e-
specially preserving the structure in the high frequency band.
All these results illustrated the superiority of the proposed LST-
M PL MTL approach over the conventional LSTM approach in
terms of separation capability.
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Table 3: Average performance comparison of different ages on
the test set between LSTM Baseline and LSTM PL MTL.

Age Systems SSNR PESQ STOI

2
LSTM Baseline 1.30 1.93 0.59
LSTM PL MTL 2.92 2.38 0.65

3
LSTM Baseline 1.82 2.15 0.64
LSTM PL MTL 3.75 2.52 0.72

4
LSTM Baseline 1.88 2.06 0.66
LSTM PL MTL 3.60 2.52 0.74

5
LSTM Baseline 1.88 1.97 0.62
LSTM PL MTL 3.69 2.40 0.70

(a) Mixed speech

(b) Target child speech

(c) LSTM Baseline separated child speech

(d) LSTM PL MTL separated child speech

Figure 3: Spectrograms of an utterance example at -5dB from
the simulated test set.

In addition, in order to show the robustness of the proposed
approach to different ages of children, we make a comparison
of average SSNR, PESQ and STOI across all SNR levels, as
shown in Table 3. For the ages from 2 years old to 5 years
old, the LSTM PL MTL consistently performed better than the
conventional LSTM in the child-adult speech separation task.

The above mentioned experiments well demonstrated the
effectiveness of the proposed child speech separation model on
the simulation data. However, the realistic audio recordings
in adverse acoustic environments should be much more chal-
lenging. Accordingly, we test our model on the real data from
SeedLing corpus [3] which is designed for child language ac-
quisition. As shown in Figure 4, the original utterance includes
not only the mixed speech of child and adult but also the back-
ground noises and reverberations. We marked the child speech
segments with red lines and adult speech segments with black
lines. Obviously, the LSTM Baseline could not well remove
both the adult speech and background noises due to its limit-
ed generalization capability. But our proposed LSTM PL MTL
model could well separate child speech from the quite noisy
mixed speech compared with LSTM Baseline, yielding much
better inference removal and child speech preservation especial-
ly in high frequency bands as shown in blue rectangles. The

Figure 4: Spectrograms of an utterance example from the real-
istic recordings of SeedLing corpus.

LSTM PL MTL result is amazing because both child and adult
speakers are unseen while the background noises and reverber-
ations are not considered in the current framework. So the only
reason should be the strong generalization capability from the
novel design of LSTM architecture.

5. Conclusions
In this study, we propose a novel LSTM design with dense-
ly connected hidden layers and stacked inputs containing pro-
gressively obtained intermediate targets that are learnt vi-
a multiple-target learning for child speech separation in a
speaker-independent manner in order to reduce the impact of
training data limitation because collecting a large set of train-
ing speech utterances from children aged 2 to 5 is not an easy
task. In a preliminary set of experiments, our approach could
yield a better performance and less speech distortions in child
speech when compared with the conventional LSTM. Even in
the quite noisy and challenging realistic conditions, our pro-
posed approach can achieve satisfying performances. Inspired
by the encouraging results, we will investigate to use the pro-
posed approach to address the issue of detecting overlapped
speech in speaker diarization involving child speech in future
studies.
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