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Abstract—Recently, many researches propose to employ at-
tention based encoder-decoder models to convert a sequence
of trajectory points into a LaTeX string for online handwrit-
ten mathematical expression recognition (OHMER), and the
recognition performance of these models critically relies on the
accuracy of the attention. In this paper, unlike previous methods
which basically employ a soft attention model, we propose to
employ a posterior attention model, which modifies the attention
probabilities after observing the output probabilities generated
by the soft attention model. In order to further improve the
posterior attention mechanism, we propose a stroke average
pooling layer to aggregate point-level features obtained from
the encoder into stroke-level features. We argue that posterior
attention is better to be implemented on stroke-level features
than point-level features as the output probabilities generated by
stroke is more convincing than generated by point, and we prove
that through experimental analysis. Validated on the CROHME
competition task, we demonstrate that stroke based posterior
attention achieves expression recognition rates of 54.26% on
CROHME 2014 and 51.75% on CROHME 2016. According to
attention visualization analysis, we empirically demonstrate that
the posterior attention mechanism can achieve better alignment
accuracy than the soft attention mechanism.

Index Terms—Posterior attention, Stroke, Online handwrit-
ten mathematical expression recognition, Sequence-to-sequence
learning;

I. INTRODUCTION

With the development of digital products and the promotion
of paperless office, online handwriting input has become a
popular input method. Online handwritten mathematical for-
mula plays an indispensable role in digital education, scientific
research, online testing and other scenarios. Although many
systems for online handwritten text recognition have been
mature with the help of deep neural networks, there is still
much room for improvement in online handwritten mathemat-
ical expression recognition (OHMER) [1], [2]. OHMER aims
to convert the coordinates of human handwritten trajectory
points into a format file that a computer can process [3],
such as LaTeX strings and inkml [4]. Compared with online
handwritten text recognition problems [5], OHMER faces
two distinctive challenges: complex two-dimensional spatial
structure and smaller open datasets.

For OHMER, we not only need to accurately recognize each
mathematical symbol, but also recognize the correct structural

relationship between the mathematical symbols, such as su-
perscript, subscript, etc. We can generally divide recognition
methods into two types by the number of pipelines: two-step
methods [6], [7] and end-to-end methods [2], [8], [9].

In two-step methods, the first pipeline is symbol recognition
that recognize trajectory points into mathematical symbols
and the second pipeline is structure recognition that parses
formula structure from given mathematical symbols. Symbol
recognition can be achieved by neural networks or traditional
methods [10]. Structure recognition can be analyzed by two-
dimensional context free grammar [11], [12]. The shortcom-
ings of the step-by-step recognition method are as follows:
First, prior knowledge of mathematics is required to write
complex algorithmic rules to parse complex mathematical ex-
pressions. Second, the structure recognition depends on the re-
sult of the symbol recognition, which means it can lead to error
accumulation. The end-to-end system performs both symbol
recognition and structure recognition in one single pipeline
[13]–[16]. These systems are usually based on the encoder-
decoder framework [17], [18], which can convert a sequence
of trajectory points into a LaTeX string for mathematical
expression recognition. One of the characteristics of the end-
to-end method is that its performance heavily depends on the
alignment information obtained by the attention mechanism.

In this study, we implement the proposed stroke based pos-
terior attention network on the previous state-of-the-art end-
to-end model, named Track, Attend and Parse (TAP) [2]. This
paper improves the TAP on the following two aspects. First,
we replace the soft attention mechanism with the posterior
attention mechanism [19]. In posterior attention mechanism,
at each decoding step, the soft attention probabilities of each
trajectory point are first computed. We then use each point
as the input of symbol classification so that we can get the
output probabilities of each point. The posterior attention are
computed by normalizing the soft attention probabilities of all
points and taking the output probabilities as the confidence
of each point. Therefore, posterior attention can get better
alignment than soft attention as it considers the posterior
information of each point. Although TAP proposes an attention
guider to enhance the soft attention mechanism, it needs
additional labelled alignment data to construct the guider
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and such alignment data is hard to be labelled. Besides,
the posterior attention mechanism can still improve the soft
attention even the attention model is trained with guider.

Second, we argue that the posterior attention mechanism has
a condition that the output posterior probabilities generated
by each point should be trustworthy, otherwise the posterior
information will not be accurate. However, for OHMER, one
math symbol is usually composed of tens or hundreds of
points, which means one point is not enough to describe one
math symbol. To solve this problem, we propose to compute
posterior attention on strokes other than points as stroke-
level features have more concentrated, richer information than
point-level features, and are more suitable for the posterior
attention mechanism. We aggregate the corresponding local
features of all points in the same stroke into the stroke-level
feature by using a stroke average pooling layer. We validate
the effectiveness of stroke based posterior attention through
experiments on the CROHME competition dataset [4], [10].

The main contributions are summarized as follows:
• We propose to use posterior attention mechanism for

OHMER, which can significantly improve the attention
alignment and the recognition performance than soft
attention.

• We aggregate the point-level features into the stroke-
level features, which are more suitable for the posterior
attention mechanism.

• We do detailed experimental analysis on the CROHME
competition dataset to analyze the advantages of posterior
attention compared to soft attention.

The rest of this paper is organized as follows. In Section II
we illustrate the structure of stroke based posterior attention in
detail. In Section III, we present and analyze the experimental
results. In Section IV, we conclude this study.

II. METHODOLOGY

In this section, we first introduce the overall framework of
the model: the encoder-decoder framework, which takes the
trajectory points as input and outputs a latex string. Then we
introduce the improvement in the encoder: the stroke average
pooling layer, which aggregate the features obtained by the
encoder module from the point level to the stroke level. Finally,
we introduce the improvement in the decoder: the posterior
attention mechanism, which is a statistically more reasonable
and accurate attention mechanism.

A. Encoder-Decoder Framework

As shown in Fig. 1, the architecture of our proposed stroke
based posterior attention includes two parts: GRU [20] encoder
with stroke average pooling and GRU decoder with posterior
attention. First, we represent the raw input as a sequence of
Np points.

Xraw = {p1,p2, · · · ,pNp
},pi = [xi, yi, si] (1)

Each point is composed of spatial coordinates (xi, yi) and a
stroke index si. The stroke index si indicates which stroke
the point belongs to. Then, a pre-processing process [21] is
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Fig. 1. Architecture of the stroke based posterior attention mechanism based
encoder-decoder model.

implemented to extract an 8-dimensional feature vector xi

from each point.

xi = [xi, yi,∆xi,∆yi,∆
′xi,∆

′yi, δi, δ̄i] (2)

X = {x1,x2, · · · ,xNp
} (3)

where ∆xi = xi+1 − xi,∆yi = yi+1 − yi,∆′xi = xi+2 −
xi,∆

′yi = yi+2−yi, δ = 1 when si = si+1 or otherwise 0 and
δ̄i = 1−δi. We use X as the input to the encoder. The encoder
consists of four Bi-GRU layers, two max pooling layers and a
stroke average pooling layer. The encoder will extract stroke-
level features from the input X, which are represented as S.

S = {s1, s2, · · · , sNs
}, si ∈ RD (4)

where si represents the feature of the ith stroke.
The decoder consists of two GRU layers and a posterior

attention mechanism. With S as input, the decoder outputs
the probabilities of each category P (yt|yt−1,S) at each step
t. The output tokens are represented by Y:

Y = {y1,y2, · · · ,yC},yi ∈ RK (5)
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where yi is a one-hot vector representing a symbol, K is the
number of categories of symbols and C is the length of output
string. Finally, Y is determined by the conditional distribution:

P (Y|X) =

C∏
t=1

P (yt|yt−1,S) (6)

B. Encoder With Stroke Average Pooling Layer

In our previous method TAP [2], features obtained by the
encoder can be expressed as P:

P = {p1,p2, · · · ,pNp/4},pi ∈ RD (7)

We call P as point-level features, because the number of
features and the number of trajectory points are of the same
order of magnitude. Because there are two pooling layers in
the encoder, the number of point features is Np/4. Point-level
features have two disadvantages: First, each point-level fea-
ture contains insufficient contextual information. Also, there
is a lot of redundant information between adjacent points.
Although the features obtained through GRU have contextual
information, the context information is insufficient when the
sequence is too long. Second, the length of the output sequence
is much less than that of point-level features. This is not
only detrimental to the alignment between input and output,
but more importantly, it is also not suitable for posterior
probability attention [19].

To solve this problem, we propose a stroke average pooling
layer to aggregate point-level features into stroke-level fea-
tures. Since the stroke information can be obtained directly
from the input device, this operation does not cause any
additional cost of data labeling process. As shown in Fig. 1,
we divide the trajectory points into strokes represented by
different colors. The point-level features P are aggregated into
the stroke-level features S through the stroke average pooling
layer according to the stroke information Xmask. The specific
parallel calculation is expressed by the following formula:

Xmask = { m1

||m1||1
,

m2

||m2||1
, · · · , mNs

||mNs ||1
},mi ∈ RNp/4

(8)
S = {s1, s2, · · · , sNs

} = XT
maskP (9)

where || · ||1 is L1-normalization and mi is a vector of length
Np/4, which indicates which point-level features are included
in the ith stroke. If the jth point-level feature belongs to the
ith stroke, the jth element in mi is set to 1, otherwise 0.

C. Decoder With Posterior Attention Mechanism

We denote the soft attention as At and posterior attention
as Ât at each time step t.

At = [at1, a
t
2, · · · , atNs

], ati ∈ R (10)

Ât = [ât1, â
t
2, · · · , âtNs

], âti ∈ R (11)

We call Ât as the posterior attention since Ât is the attention
distribution after observing the output label at the correspond-
ing step. We expect posterior attention Ât to be more accurate
than soft attention At that is computed without knowledge of
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Fig. 2. Simplified flowchart of soft attention mechanism (a) and posterior
attention mechanism (b)

the output label at the corresponding step. Intuitively, also it
makes sense because attention reflects an alignment of the
input and the output, and its distribution will improve if the
output is known.

Compared with the soft attention mechanism, there are three
changes in the posterior attention mechanism: First, At is
calculated based on Ât−1.

At = Fatt(ht−1, [yt−1, ĉt−1],

t−1∑
l=1

Âl,S) (12)

ĉt−1 =

Ns∑
i=1

ât−1i si (13)

where Fatt is the function [2] that calculates the soft attention
distribution and ht−1 denotes the previous hidden state of
decoder. ĉt−1 is the context vector at time step t−1 calculated
based on the posterior attention Ât−1 and is concatenated with
the previous target token yt−1 to get a new vector. All the
elements of Â0 are initialized to 0. Then the previous hidden
state ht−1 together with the concatenated vector [yt−1, ĉt−1]
are used to compute the query of the attention, and the stroke-
level features S denotes the key of the attention. Besides, we
append a coverage vector for attention mechanism, which is
computed with the summation of all past posterior attention
probabilities

∑t−1
l=1 Âl, to address the over-parsing or under-

parsing problems. Second, the place where attention performs
on is changed from the input to the output as shown in Fig. 2.
More specifically, At was used as a weight to sum P(yt|ht, si)
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to get the output probability distribution P(yt|yt−1,S), instead
of summing si to get the context vector ct:

P(yt|yt−1,S) =

Ns∑
i=1

atiP(yt|ht,yt−1, si) (14)

Third, the posterior attention distribution Ât propagated to the
next decoding step is conditioned on the output.

âti =
atiP(yt|ht, si)∑
k a

t
kP(yt|ht, sk)

(15)

The other calculation process in the decoder is the same as
TAP [2].

III. EXPERIMENTS

In order to verify the effectiveness of stroke based posterior
attention for OHMER, we conduct several sets of experiments
on the CROHME competition dataset [4], [10].

A. Datasets

We validated the proposed model on CROHME 2014 test set
[4] and CROHME 2016 test set [10]. The CROHME competi-
tion dataset is currently the most widely used public dataset for
online handwritten mathematical expression recognition. The
training set has 8,836 expressions including 101 math symbol
classes. The CROHME 2014 test set has 986 expressions and
the CROHME 2016 test set has 1,147 expressions.

B. Details of Training and inference

1) Model Parameters: To be fairly comparable, the pa-
rameters of the proposed model are the same as TAP [2].
Encoder consists of 4 bidirectional GRU layers and each GRU
layer contains 256 GRU units. The third and fourth layers are
followed by a max pooling operation with kernel of size 2×1.
In decoder, the embedding dimension and the GRU decoder
dimension are set to 256. The attention dimension is set to 500,
and the convolution used for processing the history of attention
has a kernel of 7× 1 with dimension 256. The dropout layers
[22] are adopted to alleviate the problem of overfitting with
drop ratio set to 0.2.

2) Loss Functions: Our goal is to maximize the conditional
distribution P (Y|X). Cross entropy criterion is selected as the
objective function to calculate the cost:

Op = −
C∑
t=1

log P(yt|yt−1,X) (16)

where yt is the ground truth token at time step t. When we use
attention guider [2] as a supervision of the posterior attention
mechanism, another loss function Oa needs to be added:

Oa =

C∑
t=1

Gt (17)

O = Op + λOa (18)

where Gt is the cost of attention guider at time step t and λ
is set to 0.2.

TABLE I
COMPARISON OF RECOGNITION PERFORMANCE (IN %) ON CROHME

2014 AND CROHME 2016 BETWEEN SYSTEM I TO IV

System Attention Feature CROHME 2014 CROHME 2016

Level WER ExpRate WER ExpRate

I soft point 13.34 50.71 14.67 45.95
II posterior point 11.97 51.28 13.21 47.28
III soft stroke 13.29 50.91 14.53 47.60
IV posterior stroke 10.44 54.26 12.68 51.75

3) Optimization and Inference Strategy: We adopted the
ADADELTA algorithm [23] as the optimizer and used the
weight noise [24] as the regularization. We set the weight
decay to 10-5, the learning rate to 1, the parameter ρ and ε of
the optimizer to 0.95 and 1e−8. During the training process,
we adopted an early-stopping training strategy. Whenever the
word error rate (WER) [25] of the validation set does not
decrease for 15 consecutive epochs, the learning rate will
decay to one tenth of the current. When the learning rate
decays three times, the model will stop training, and the weight
of the model with the lowest WER will be saved as the final
result. Beam search algorithm is employed to implement the
decoding procedure. Here, we maintained a set of 10 partial
hypotheses at each time step.

4) Metric: We use expression recognition rates (ExpRate)
and WER to evaluate our system. ExpRate is the percentage
of predicted mathematical expressions matching the ground
truth which is a stricter evaluation standard than WER. When
comparing with other systems, we also calculated ExpRates
with at most one to three symbol-level errors using official
tools [10].

C. Evaluation of Posterior Attention Mechanism

As shown in Table I, our reproduced system I (TAP)
achieves an ExpRate of 50.71% on CROHME 2014 test set
and an ExpRate of 45.95% on CROHME 2016 test set. System
II uses the posterior attention mechanism and only improves
the ExpRate by only 0.57% on CROHME 2014 test set and
1.33% on CROHME 2016 test compared with system I. This
proves that merely adding the posterior attention mechanism
does not bring a significant improvement. The reason is that
point-level features are not enough to describe math symbols,
thus the posterior information is not sufficient. Obviously the
point-level features are not suitable for the posterior attention
mechanism.

Then, we add the stroke average pooling layer to the encoder
in system I to build system III, which achieves an ExpRate
of 50.91% on CROHME 2014 test set and an ExpRate of
47.60% on CROHME 2016 test set. Compared with system
I, system III based on stroke-level features achieves slightly
better performance. System IV uses the stroke based posterior
attention mechanism and achieves an ExpRate of 54.26%
on CROHME 2014 test set and an ExpRate of 51.75% on
CROHME 2016 test set. Compared with the previous three
systems, system IV achieves the best results and improves the
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Fig. 3. Three examples of attention visualization with soft attention and posterior attention. The horizontal axis of the histogram represents the serial number
of the strokes, and the vertical axis represents the value of the attention weight.

ExpRate by 3.55% on CROHME 2014 test set and 5.80% on
CROHME 2016 test. It is evident that the stroke-level features
are more suitable for the posterior attention mechanism and the
proposed stroke based posterior attention can bring significant
improvements.

D. Attention Visualization

In order to better explain the superiority of the posterior
attention mechanism, we show three examples of attention
visualization with soft attention and posterior attention. As
shown in Fig. 3, we connect the track points and display them
on a white background. We use red to represent the attention
probabilities, where the darker color describes the higher
attention probabilities. In order to show the difference between
the two distributions of attention weights more intuitively, we
draw a histogram of each distribution. The horizontal axis of
the histogram represents the serial number of the strokes, and
the vertical axis represents the value of the attention weight.
As shown in Fig. 3 (a), the division sign “÷” is incorrectly
identified as a fraction sign “−” because the soft attention
weights are concentrated on the horizontal line of the division
sign. The posterior attention weights are evenly distributed
over the entire division sign, so the division sign is correctly
recognized. In Fig. 3 (b), the log symbol “log” is parsed
three times by the soft attention mechanism and recognized
as “logg”, which caused an insertion error. In stroke based
posterior attention, the log symbol is only parsed once by
the posterior attention mechanism and correctly recognized.
In Fig. 3 (c), the soft attention mechanism ignores the spatial
relationship between “C” and “x”, so the subscript sign “ ”
is not obtained during the decoding process. The posterior
attention mechanism pays attention to both “C” and “x”,
and recognizes the correct spatial relationship. These three
examples prove that the posterior attention mechanism can
learn more accurate and reasonable alignment information.

TABLE II
COMPARISON OF RECOGNITION PERFORMANCE (IN %) ON CROHME

2014 BETWEEN SYSTEM I TO IV WITHOUT ATTENTION GUIDER

System Attention Feature ExpRate

Level Without Guider With Guider

I soft point 48.24 50.71
II posterior point 50.24 51.28
III soft stroke 48.28 50.91
IV posterior stroke 53.85 54.26

E. Ablation Experiments of Attention Guider

Because the attention guider needs the ground truth of the
alignment information during the training process, which leads
to high cost of data labeling process. We hope that the posterior
attention mechanism can still perform well without attention
guider. As shown in Table II, we used the results of system I
in Section III-C as a baseline and run 4 experiments without
attention guider to compare. System I without attention guider
only achieves an ExpRate of 48.24% on CROHME 2014 test
set, which is 2.47% lower than the baseline. Same as system
I, ExpRates of both system II and system III decrease and are
lower than the baseline when the attention guider is not used.
However, the system IV without attention guider achieves an
ExpRate of 53.85% on CROHME 2014 test set, which is
only 0.41% lower than the system IV in Section III-C. It is
encouraging that the posterior attention mechanism can still
achieve excellent results without using attention guider. These
experiments prove that the proposed stroke based posterior
attention has better robustness and generality.

F. Comparison with State-of-the-arts

In order to prove that the stroke based posterior attention
can achieve state-of-the-art results, we compared our model
with other models on several test sets of CROHME [4],
[10]. For fair comparison, our model does not use additional
training sets and additional formula corpus. All experimental
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TABLE III
COMPARISON OF EXPRATE (IN %) ON CROHME 2014 AND CROHME 2016

System CROHME 2014 CROHME 2016

ExpRate ≤1 ≤2 ≤3 ExpRate ≤1 ≤2 ≤3

Wiris [10] - - - - 49.61 60.42 64.69 -
Tokyo [10] - - - - 43.94 50.91 53.70 -

Merge 9 [26] 29.91 39.94 44.96 50.15 27.03 35.48 42.46 -
PGS [27] 48.78 66.13 73.94 79.01 45.60 62.25 70.44 75.76

TAP 50.71 65.42 68.73 69.54 45.95 60.77 63.85 64.57
Res-BiRNN [28] 53.35 64.50 70.08 72.92 47.95 60.16 65.56 68.61

Ours 54.26 69.64 72.65 73.26 51.75 65.18 68.27 68.99

results of our model are obtained from a single model and
higher ExpRate can be achieved through an ensemble method
[29]. When comparing with other systems, we also calculated
ExpRates with at most one to three symbol-level errors using
official tools [10]. As shown in Table III, we chose two
systems that participated in CROHME 2016 competition [10]
and three recently published systems. The system Wiris is the
best system on CROHME 2016 competition using only official
training dataset. Note that it used a Wikipedia formula corpus,
consisting of more than 592,000 mathematical expressions,
to train a strong language model. The system Merge 9 [26]
is a tree-BLSTM-based recognition system. The system PGS
[27] uses pattern generation strategies to augment the training
data. The system Res-BiRNN [28] employ residual connection
in the BiRNN layers to improve feature extraction. Since the
results shown in [2] are the ensemble of three TAP models, we
show the results of System I in Section III-C. We can see that
our proposed system still achieves the best result with ExpRate
of 54.26% on CROHME 2014 and ExpRate of 51.75% on
CROHME 2016 without using additional corpus and data
augmentation strategies. It is evident that the proposed stroke
based posterior attention exhibits higher performance than
previous methods.

IV. CONCLUSION

In this study we introduce an end-to-end framework with
stroke average pooling layer and posterior attention mecha-
nism to recognize online handwritten mathematical expres-
sions. Through experimental analysis and attention visualiza-
tion, we demonstrate that the posterior attention mechanism
is better than soft attention mechanism and only stroke-level
posterior attention can perform well, proving the hypothesis
that only the feature vectors which contain enough classifica-
tion information can calculate posterior attention accurately.
In the future, we will continue to explore how to apply the
posterior attention mechanism in other handwritten recognition
problems and how to improve the attention mechanism.
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