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a b s t r a c t 

Visual question answering (VQA) is a well-known problem in computer vision. Recently, Text-based VQA 

tasks are getting more and more attention because text information is very important for image under- 

standing. The key to this task is to make good use of text information in the image. In this work, we 

propose an attention-based encoder-decoder network that combines the multimodal information of vi- 

sual, linguistic, and location features together. By using the attention mechanism to focus on key features 

to the question, our multimodal feature fusion can provide more accurate information to improve the 

performance. Furthermore, we present a decoder with attention map loss, which can not only predict 

complex answers but also deal with a dynamic vocabulary to reduce the decoding space. Compared with 

softmax-based cross entropy loss which can only handle a fixed-length vocabulary, the attention map 

loss significantly improves the accuracy and efficiency. Our method achieved the first place of all three 

tasks in the ICDAR2019 robust reading challenge on scene text visual question answering (ST-VQA). 

© 2021 Elsevier Ltd. All rights reserved. 
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. Introduction 

Visual question answering (VQA) [1] is an emerging research 

roblem at the intersection of computer vision and natural lan- 

uage processing. It has become a hot topic recently since there 

re many applications in practice such as education of young chil- 

ren and assisting blind people [2] . The performance of VQA has 

een substantially improved in three important aspects. Firstly, 

eep learning improves feature representation [3] significantly and 

etter visual and language feature representations [4] are the core 

arts for boosting VQA performance. Secondly, attention mecha- 

isms [5] make model focus on salient image regions conditioned 

n question which can improve the accuracy of obtaining informa- 

ion related to the question. Thirdly, multimodal learning [6,7] can 

apture the high-level interactions between language and visual 

eatures. 

Many datasets [1,8,9] and methods [10–13] are related to VQA, 

owever most of them only focus on visual part of the scene. 

f there is text on an image, which is more informative in most 

ases, one can’t answer the question without understanding the 

ext in the image, see Fig. 1 . For the above reasons, new VQA 
∗ Corresponding author. 
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atasets [14–16] have been recently proposed with questions that 

equire understanding the text in the image and the new task is 

alled textVQA. 

The textVQA task aims to infer answer over multi-modalities 

nd a few methods [15–17] are presented to solve it. For exam- 

le, the method introduced in [15] uses a text detector to get text 

n the image, then fuses text embedding and text visual feature 

hrough feedforward neural network and predicts answer with a 

oftmax-based classifier. Obviously, there are some limitations in 

his method. First, it does not take more comprehensive modalities 

nto consideration, lacking important information such as the ob- 

ect in the image and the location of text. Second, the answer to 

he question is generally related to certain key areas, and the way 

f feature fusion through DNN can’t focus on the salient parts. Fi- 

ally, the method treats answer prediction as a single-step classi- 

cation problem, making it difficult to generate complex answers. 

In this study, we address the above limitations by proposing a 

ovel encoder-decoder framework to particularly predict complex 

nswers. For getting the most relevant features to the question, we 

pply the attention mechanism [5] which can select features ac- 

ording to the question. Furthermore, to make better use of mul- 

imodal information, we employ a multilayer perceptrons to fuse 

ultimodal features, including text embedding, visual embedding 

nd position embedding to improve the model accuracy. On the 

ther hand, we find that the answer in textVQA is often in the 

https://doi.org/10.1016/j.patcog.2021.108214
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patcog
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patcog.2021.108214&domain=pdf
mailto:jundu@ustc.edu.cn
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Fig. 1. Some examples of ST-VQA. 
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ext of the image and the task often provides candidate answers 

uch as the task 1 in ST-VQA [18] . Therefore, the attention map loss

s introduced to deal with the dynamic vocabulary problem and 

argely reduces the search space, which significantly improves the 

erformance in terms of accuracy and efficiency, especially when 

he task provides the candidate answers. 

We summarize the main contributions of this study as: 

• We present an encoder-decoder framework for textVQA task 

which can generate complex answers. 
• We fully utilize the multimodal features to improve model ac- 

curacy with attention mechanism. 
• We introduce attention map loss which can address the dy- 

namic vocabulary problem. 

The rest of this paper is organized as follows: Section 2 intro- 

uces the related works. Section 3 describes the proposed frame- 

ork of the whole system. Section 4 and Section 5 report the ex- 

erimental results, and Section 6 presents concluding remarks and 

uture work. 

. Related works 

In this section, we describe the previous work related to 

extVQA, including object/text detection, text recognition, VQA 

ased methods and decoding with dynamic vocabulary. 

.1. Object/text detection and text recognition 

The earliest object detection method based on deep learn- 

ng adopts R-CNN [19] to generate proposal boxes through se- 

ected search and further classify using neural network and SVM. 

ext, Fast R-CNN [20] and Faster R-CNN [21] extend this method 

n order to speed up the model. Nowadays, many detection 

ethods [22,23] are based on Faster R-CNN, which are usually 

alled two-stage methods. There are also one-stage methods like 

24,25] that are often faster than two-stage methods with a little 

acrifice of detection accuracy. 
2 
Text detection methods [26,27] usually adopt similar ideas as 

n general object detection methods. However, there are still some 

ifferences between them. For example, the shape of an object box 

s often rectangular while the shape of a text box can be arbitrary. 

n order to handle arbitrary shapes, approaches based on semantic 

egmentation are applied to text detection [28–30] which usually 

chieve good results. 

Early text recognition methods were based on over segmen- 

ation, and then merged segments through character models and 

anguage models. Since segmentation is inaccurate in complex 

ackgrounds and handwriting scene, the state of the art meth- 

ds are often segmentation-free. The key of the segmentation-free 

ethod is how to align the feature sequence and label sequence. 

he CTC-based method [31] makes use of CTC loss to align them, 

CE [32] uses aggregate cross entropy to align them and meth- 

ds based on encoder-decoder framework [33] apply the attention 

echanism to align feature sequence and label sequence. Recently, 

here are quite a few research efforts on irregular text recogni- 

ion [34,35] and structured modeling [36,37] . 

.2. VQA-based method for TextVQA 

A large number of attention-based deep neural networks have 

een proposed for VQA [10,38] . These methods apply attention 

echanism to select salient image regions conditioned on ques- 

ion. As VQA is essentially a vision-and-language task, multimodal 

earning which learns to fuse vision and language features is im- 

ortant in this task. Recently, BERT [4] as an extractor for text em- 

edding is widely used in natural language tasks and self-attention 

echanism [39] is found to be a better way to extract features. 

ccordingly, many researchers also deal with multimodal learning 

hrough self-attention mechanism [39] and BERT [4] . 

As for solving the textVQA problem, a few VQA-based meth- 

ds [15–18] have been proposed. OCR-VQA [15] fuses all OCR to- 

en features and question embedding features using a feedforward 

eural network, which is followed by a softmax-based classifier 

o predict answers directly. LoRRA [16] extends OCR-VQA by se- 

ecting proper OCR token features through attention mechanism 
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onditioned on the question. In addition, a few other approaches 

uch as [18] are based on the bottom-up and top-down attention 

odel architecture [10] which is dedicated to improving the ac- 

uracy of attention mechanism. However, there are some draw- 

acks in existing methods such as a simple approach for multi- 

odal feature learning, lack of ability to predict complex answers 

nd the very large space of answers for the model to search. MM- 

NN [40] represents an image as a graph and updates the node 

eatures by using graph neural network, which aims to utilize the 

ich information in the image to help understand the meaning of 

cene texts. M4C model [17] uses a multimodal transformer archi- 

ecture to capture the semantic interactions over all the inputs and 

ecodes the answer by choosing words from either the OCR tokens 

r the fixed vocabulary. 

.3. Decoding with dynamic vocabulary 

Text tokens in image usually contain answers to the question 

n textVQA task. Recent works [15,16] have proposed to add text 

okens to classifier vocabulary. The main problem of these ap- 

roaches is that a large pre-defined vocabulary is required, which 

s quite challenging for model to predict answers, especially when 

he training data is limited. Therefore it is important to apply a 

ynamic vocabulary only related to the current image for textVQA 

ask. Prior works such as pointer network [41] address the dy- 

amic vocabulary problem by treating inputs as a vocabulary. But 

n textVQA, the vocabulary should be determined not only by text 

okens in current image but also by fixed high-frequency words in 

raining set. In this study, we introduce attention map loss to han- 

le this problem. 

. Proposed method 

In this section, we illustrate the main architecture of our 

ethod, including three modules. The first one is the encoder 

odule which extracts the tokens in the image and question. The 

econd module selects proper tokens which are related to the 

uestion and the last one is the decoder module which predicts 

he answer word by word. In Section 3.1 , we introduce the ex- 

raction of the multimodal embedding from an image as the input 

n detail. In Section 3.2 , we elaborate the attention mechanism to 

ocate context features related to the question. In Section 3.3 , we 

resent the decoder with a dynamic vocabulary by using attention 

ap loss. 

.1. Multimodal embedding 

To fully utilize the multimodal information, we design the em- 

edding of three different modalities from vision, sentence and po- 

ition as the feature extraction as shown in the left part of Fig. 2 . 

The embedding of vision. We first use Mask R-CNN [22] based 

ext detection model to generate the bounding box of text 

n the image and then produce recognition results through 

RNN [31] based text recognition model. Similarly, we employ 

aster R-CNN [21] to get the bounding box of object in the image. 

ext, the detected text and object are resized to 224 × 224 as input 

f pretrained model at ImageNet [42] as illustrated in Fig. 3 . We 

ake the global pooling feature of the last layer in the pretrained 

esnet model as the visual embedding of text and objects, which 

an be denoted as V = { v 1 , v 2 , . . . , v N } , v i ∈ R 

d v . 

The embedding of sentence. After text/object detection and 

ecognition, we obtain text recognition results and object enti- 

ies. To generate the embedding of text recognition results and 

bject entities as shown in Fig. 4 , we adopt the pretrained 

ERT [4] model, which is widely used in many natural language 

nd multimodal tasks. First, the input sentence is segmented into 
3 
okens through tokenizer. After that, token embedding, segment 

mbedding and position embedding are concatenated as input of 

retrained BERT model. Finally, the representation of each token is 

xtracted from the output of the last layer. In practice, we use the 

ERT representation to produce the embedding of recognition re- 

ults and object entities W = { w 1 , w 2 , . . . , w N } , w i ∈ R 

d w . The em- 

edding of the question sentence q ∈ R 

d w is corresponding to the 

eature of the special element [CLS]. 

The embedding of location. Considering that image regions 

ack a natural ordering, we encode the location embedding for 

ach region via a 4-dimensional vector: 

 i = 

(
x i 1 + x i 2 

W 

, 
y i 1 + y i 2 

H 

, 
x i 2 − x i 1 

W 

, 
y i 2 − y i 1 

H 

)
(1) 

here (x i 
1 
, y i 

1 
) and (x i 

2 
, y i 

2 
) denote the coordinate of the bottom-

eft and top-right corner while W and H are the width and height 

f the input image. We use P = { p 1 , p 2 , . . . , p N } , p i ∈ R 

d p to repre-

ent the set of location features. 

.2. Multimodal fusion with attention 

As shown in Fig. 2 , we concatenate the embedding of visual, 

entence and location to generate the input of subsequent mod- 

les. After obtaining the concatenated features, a two layer MLP is 

pplied to transform the features. 

 = RELU ( W 2 RELU ( W 1 [ V , W , P ] ) ) (2) 

here W 1 ∈ R 

d f ×(d v + d w + d p ) and W 2 ∈ R 

d×d f are learnable parame- 

ers, and the fusion feature F = { f 1 , f 2 , . . . , f N } , f i ∈ R 

d . N is the to-

al number of texts and objects in the image and d is the feature 

imension. In order to speed up convergence, the weight normal- 

zation is used after each linear layer. 

Then, an attention module takes the question sentence embed- 

ing as query and the fusion features as key-value pairs to obtain 

he attention weights on the values as the context feature: 

i = softmax ( W 5 ( ( W 4 q ) � ( W 3 f i ) ) ) (3) 

 = 

N ∑ 

i 

αi f i (4) 

here W 3 and W 4 ∈ R 

d h ×d , W 5 ∈ R 

1 ×d h , d h means the hidden dim

f the linear projection, � is element wise product. We set the di- 

ension d to be the same as the dimension d w 

. 

In addition, we suppose the attention module output contains 

ost of the information related to the answer. Therefore, we can 

inimize L2 loss between the context feature vector and the sen- 

ence embedding vector of the answer to make the context fea- 

ures close to the answer embedding, which is demonstrated in 

ig. 2 . 

.3. Decoder with dynamic vocabulary 

Based on the context features via the attention mechanism, we 

redict the answer to the question through a LSTM [43] . We de- 

ode the answer word by word for a total of T steps until the end

ymbol is generated, where each decoded word is contained in our 

ocabulary. The vocabulary consists of frequent answer words in 

raining set, text tokens and object names in current image. Sim- 

lar to machine translation, we add < begin > and < end > to the 

ocabulary. < begin > is used as the first input to LSTM decoder 

nd the decoding process stops after < end > is predicted. Since 

exts and objects in images are different, our vocabulary varies for 

ach training/testing sample. 

As shown in Fig. 5 , the embedding of each word in our vocab- 

lary is extracted by BERT [4] and denoted as a , a , . . . , a . In the
1 2 M 
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Fig. 2. A system overview of the proposed method, including multimodal embedding, multimodal fusion with attention, and decoder with dynamic vocabulary. 

Fig. 3. Visual embedding through pretrained model. The backbone of pretrained model is ResNet101, ROI of image is cropped out and resized to 224 × 224 as input to 

ResNet101. ‘ 7 × 7 conv, 64, /2’ means the size of the convolution kernel is 7 × 7 , the number of output channels is 64 and stride is 2. 
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th step, the LSTM decoder receives context features and previous 

utput as input to produce a feature vector in Eq. (5) , which is

enoted as h t . Then, we calculate the similarity between h t and 

 1 , a 2 , . . . , a M 

as: 

 t = LSTM ( y t , h t−1 , c t−1 ) (5) 

im (h t , a j ) = 

h 

� 
t a j 

‖ h t ‖‖ a j ‖ 

(6) 

t, j = softmax 
(
Sim (h t , a j ) 

)
(7) 

ext, we use softmax function to get normalized attention weights 

enoted as βt, 1 , βt, 2 , . . . , βt,M 

. After step T , we obtain matrix A
4 
ith element A t, j = βt, j and we call this matrix attention map. The 

round-truth attention map is denoted as G with element G t, j = 1 

f the tth word in the answer is the jth word in our vocabulary and

lse = 0 . We make A close to G by minimizing the cross entropy

oss between each row of A and G . Finally, given a ground truth 

equence y ∗1: T and a VQA model with parameters θ , we minimize 

he L2 loss and the cross entropy(CE) loss jointly: 

 (θ ) = 

B ∑ 

k =1 

( 

T ∑ 

i =1 

( CE 

(
A 

k 
i, : , G 

k 
i, : 

)
+ 

∥∥c k − a ∗k 
∥∥2 

2 

) 

(8) 

here B is the batch size, c k and a ∗
k 

represent the context feature 

nd the ground-truth embedding in the k th sample respectively. 
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Fig. 4. Sentence embedding through BERT. First the sentence is split into words through tokenizer, each word is embedded via three modules which are token embedding 

(TE), segment embedding (SE) and position embedding (PE). Then the outputs are concatenated as input of BERT. Finally, the feature of the first token [CLS] is chosen as 

sentence embedding of the whole sentence. 

Fig. 5. Attention map loss with dynamic vocabulary. First, the embedding vector 

of each word in dynamic vocabulary is obtained through BERT [4] . Then attention 

weights are calculated between LSTM output and embedding vectors through (6) . 

After that, we use softmax function to get normalized attention weights which are 

attention distribution. Ground truth distribution is one hot vector. At last, we make 

the two distributions(attention coefficients distribution and ground truth distribu- 

tion) close through cross entropy loss. 

I

a

o

b

h

i

i  

c

p

T

t

i

t

4

4

i

l

w

t

a

o

t

a

p

t

o

f the ground-truth contains multiple words, we will use the sum 

verage of multiple word embeddings as regression targets. 
5 
There are three advantages of using attention map loss. The first 

ne is it can deal with variable-length vocabulary unlike softmax- 

ased cross entropy loss used in OCR-VQA [15] which can only 

andle fixed-length vocabulary. This can greatly reduce the decod- 

ng space, therefore improve accuracy and we will show the details 

n Section 4 . The second one is that it can make the training pro-

ess more stable when the training data is insufficient since the 

arameters are initialized by BERT [4] and fixed during training. 

he last one is that it can build dynamic vocabulary based on text 

okens in current image and fixed high-frequency words in train- 

ng set at the same time, unlike pointer network [41] which only 

reats dynamic inputs as a vocabulary. 

. Experiments 

.1. Training and testing details 

In the training stage, we supervise the model at each decod- 

ng step according to the answer label. Similar to machine trans- 

ation, teacher forcing method in [44] is used to train our model 

hich employs ground-truth inputs to the decoder. In particular, 

he previous ground-truth word of answer and context features 

re adopted as inputs to LSTM decoder to predict the next word 

f answer. For multimodal embedding, we use a Faster R-CNN de- 

ector [21] trained on the Visual Genome dataset to detect objects 

nd keep 20 top-scoring objects per image. We extract the global 

ooling feature vector from pretrained model at ImageNet [42] as 

he visual embedding of object. Similarly, a text detector based 

n Mask R-CNN [22] trained on LSVT [45] is employed to detect 
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Table 1 

Comparison of different methods on the ST-VQA compe- 

tition set with the metric ANLS. 

Method Task 1 Task 2 Task 3 

USTB-TQA [18] 0.455 0.173 0.170 

USTB-TVQA [18] 0.124 0.093 0.095 

Focus [18] 0.295 0.080 0.088 

VQA-DML [18] 0.141 - - 

TMT [18] 0.055 - - 

QAQ [18] - - 0.256 

Clova AI OCR [18] - - 0.215 

SAN + STR [14] - - 0.135 

STR [54] 0.130 0.118 0.128 

Scene Image OCR [55] 0.145 0.132 0.140 

Our method 0.506 0.279 0.282 

Table 2 

Comparison of different methods on 

TextVQA with the metric accuracy. 

Method 

Accuracy 

Val Test 

OCR Max [16] 0.0976 0.116 

BAN [38] 0.123 - 

LoRRA [16] 0.2656 0.2763 

Our method 0.2842 0.289 

s
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T

d

a

1 Since the test data of task2 and task3 are different, the performance of them 

have slight change. 
ext and 2048-dimensional global pooling feature vector from pre- 

rained model at ImageNet [42] is extracted as the visual embed- 

ing of text. We adopt BERT [4] to generate a 768-dimensional fea- 

ure vector of text and object name for sentence embedding. We 

se Eq. (1) to get a 4-dimensional feature vector of text and object 

ounding box for location embedding. The dimensions of d, d f and 

 h are set to 768, 1536 and 384 respectively. The LSTM decoder 

imension is set to 1536. 

In the training stage, the vocabulary consists of task 1 vocab- 

lary, 50 most frequent words in the training set, recognized OCR 

esults and object names for each training sample. The model is 

rained using the Adamax optimizer for 50 epochs. The learning 

ate is set to 1e-3 initially and the minimum learning rate is set to 

e-6. We use a cosine annealing decay learning rate schedule. The 

est model is selected using the validation set accuracy. 

In the test stage, after getting the context feature through at- 

ention module, the context features and last decoded word are 

ent to LSTM as inputs in each decoding step. Then we calculate 

he similarity between the LSTM output and embedding of each 

ord in vocabulary according to the Eq. (6) and the most similar 

ord to LSTM output is the decoded result at this time step. The 

ocabulary varies for each task accordingly. In task 2/3, we only 

se recognized OCR results and object names as vocabulary. The 

aximum decoding step T is set to 10. 

.2. Dataset and metric 

The experiments are conducted on ST-VQA dataset [18] and 

extVQA dataset [16] , which are widely used public datasets for 

he task.The ST-VQA dataset comprises images from seven different 

ublic datasets: ICDAR 2013 [46] , ICDAR2015 [47] , ImageNet [42] , 

izWiz [2] , IIIT Scene Text Retriev [48] , Visual Genome [49] and 

OCO-Text [50] . The final version of the dataset consists of 23038 

mages and 31791 question/answer pairs. The dataset involves 

hree tasks, namely task 1, task 2 and task 3. Task 1 provides 

or each image a different vocabulary of 100 words that includes 

he correct answer. In task 2, a global vocabulary of 30,0 0 0 words 

or all images is given. In task 3, no vocabulary is provided and 

he open vocabulary task is the most generic and challenging one 

mong all the three tasks. The TextVQA dataset [16] contains about 

8k images from the Open Images dataset [51] , and is split into the

raining set (about 22k images and 34k QA pairs), the validation 

et (about 3k images and 5k QA pairs) and the test set (about 3k 

mages and 5k QA pairs). Each question in the TextVQA dataset has 

0 human annotated answers, and the final accuracy is measured 

ia soft voting of the 10 answers, see Eq. (10) . 

The ST-VQA dataset adopts Average Normalized Levenshtein 

imilarity (ANLS) [52] as an evaluation metric: 

NLS = 

1 

N 

N ∑ 

i =0 

(
max 

j∈{ 0 , ... ,M} 
s 

(
a 

gt 
i j 

, a 
pred 

i 

))
(9) 

 (a 
gt 
i j 

, a 
pred 

i 
) = 

{ 

1 − NL (a 
gt 
i j 

, a 
pred 

i 
) if NL (a 

gt 
i j 

, a 
pred 

i 
) < τ

0 if NL (a 
gt 
i j 

, a 
pred 

i 
) ≥ τ

here NL (a 
gt 
i j 

, a 
pred 

i 
) is the Normalized Levenshtein distance be- 

ween the ground truth string a 
gt 
i j 

and the predicted string a 
pred 

i 
, 

is the total number of questions, M is the number of ground 

ruth answers per question. The threshold τ is set to 0.5. 

The evaluation metric in TextVQA is the same as the VQA accu- 

acy metric [53] : 

ccuracy (ans ) = min { # humans that said ans 
, 1 } (10) 
3 

6 
Comparing the two metrics, ANLS is less strict than Accuracy, 

ince ANLS takes into account the similarity between the predicted 

tring and the ground truth string and Accuracy requires the two 

tring to be exactly the same. 

. Results and analysis 

In this section we will show the effectiveness of our proposed 

ethod on the ST-VQA and TextVQA datasets. 

.1. Comparison on the ST-VQA dataset 

Table 1 compares the performance of different methods for 

hree tasks on the ST-VQA competition set. The first block con- 

ists of 7 submitted systems to ST-VQA competition [18] , namely 

rom “USTB-TQA” to “Clova AI OCR” while the second block in- 

ludes other three state of the art methods. Among them, “Fo- 

us” uses an algorithm similar to BUTD [10] with open-ended 

nswer generation, “TMT” adopts a model similar to Dynamic 

etworks [56] and “Clova-AI OCR” employs a method similar 

o MAC network [57] with BERT [4] and pointing mechanism. 

SAN+STR” [14] combines SAN for VQA and Scene Text Retrieval 

or answer vocabulary retrieval. “STR” is based on the scene text 

etrieval method presented in [54] , which jointly predicts word 

ounding boxes and a compact text representation of words given 

n a PHOC [58] encoding. “Scene Image OCR” [55] employs a state 

f the art end-to-end scene text spotting model. From the table, 

bviously our method achieves higher ANLS (0.506 for task 1, 0.279 

or task 2, and 0.282 for task 3 1 ) than these methods on all three

asks. 

.2. Comparison on the TextVQA Dataset 

Table 2 compares the performance of different methods on the 

extVQA dataset. OCR Max [16] is a heuristic method which pre- 

icts the OCR token that is detected maximum times in the image 

s answer. BAN [38] is a VQA state-of-the-art method that does 
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Table 3 

The ablation experiment of the proposed method on the task 1 of ST-VQA with the metric 

ANLS. 

multimodal embedding question L2 attention 

ANLS speed(ms) 
position visual sentence embedding loss map 

� � 0.4087 25.36 

� � 0.4415 27.04 

� � 0.4495 29.64 

� � � � 0.4571 31.01 

� � � � � 0.4938 31.01 

� � � � � � 0.5049 33.14 

� � � � � × 0.0693 32.86 

Fig. 6. Histogram of training and validation set. 
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Table 4 

The ablation experiment of the proposed method on the task 2/3 of ST-VQA with 

the metric ANLS. 

multimodal embedding question embedding L2 loss ANLS 

position visual sentence 

� � 0.0791 

� � 0.1632 

� � 0.2555 

� � � � 0.2639 

� � � � � 0.2821 

fi

t

i

c

c

b

t

p

c

i

t

p

t

t

w

v

m

m

p

i

ot use image text information. LoRRA [16] adopts the same ar- 

hitecture of the VQA components for getting fused OCR-question 

eatures and image-question features which use text information in 

he image at the same time. From the table, obviously our method 

chieves higher accuracy than these methods. 

.3. Ablation study 

As the ST-VQA dataset does not have an official split for train- 

ng and validation, we randomly select 16,921 images as the train- 

ng set and use the remaining 2,0 0 0 images as the validation set. 

able 3 shows the performance of the proposed method and its 

blations on validation set of task 1. To evaluate the effect of mul- 

imodal embedding, we first test the effect of each modality sep- 

rately. The ANLS of using position embedding, visual embedding, 

nd sentence embedding is 0.4087, 0.4415 and 0.4495 respectively. 

y using the embeddings of all three modalities together, the ANLS 

s increased to 0.4571, demonstrating the complementarity among 

ifferent embeddings. We then test the effect of question embed- 

ing and it is worth noting that the ANLS will achieve 0.4938 if the 

uestion embedding is added as input to the decoder. After that, 

he ANLS will further increase to 0.5049 if the L2 loss is applied to 

idden layer. Finally, to demonstrate the effectiveness of attention 

ap loss, we compare it with softmax-based classifier, i.e. do not 

se the attention map module. We take the vocabulary provided 

y task 2 for the softmax classifier. 

The ANLS of using softmax classifier is only 0.0693 which is 

ignificantly lower than that of using attention map loss. To give 

 better explanation, histograms of training set and validation set 

re shown in Fig. 6 . It is observed that for both the training set

nd validation set, the sample number of the most commonly used 

ords is less than 10. Therefore, it is difficult to train the model 

hen vocabulary is large and the classification parameters are ini- 

ialized randomly. However, if the attention map loss is applied, 

he size of dynamic vocabulary is much smaller, meanwhile classi- 
7 
cation parameters are pretrained from BERT [4] and fixed during 

raining. These have greatly reduced the difficulty of model learn- 

ng. We also test the average running time of an image in different 

onfigurations on Nvidia Tesla M40 GPU. From the table, we can 

learly see that, multimodal embeddings bring a little time cost 

ut with significant performance improvement (ANLS from 0.4087 

o 0.5049). 

Similarly, we can draw consistent conclusions from the com- 

arison experiment on task 2 and task 3. Please note that we use 

ontext vector to predict the answer directly on task 2 and task 3 

n ST-VQA competition, leading to the same results for these two 

asks. The reason is the dictionary provided by the task 2 is com- 

osed of 30,0 0 0 words, which is hard to train the model under 

he design of attention map module as mentioned above, while 

he task 3 does not give any vocabulary information. From Table 4 , 

e can see that using the multimodal information including both 

isual and linguistic features can significantly improve the perfor- 

ance compared with the system using the single modality infor- 

ation (e.g., position embedding or visual embedding) as the in- 

ut. And we also find that the sentence embedding is the most 

mportant one in solving the problem of visual question answer- 
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Fig. 7. Successful examples analysis. The detected OCR texts are bounded by the green boxes and the red box corresponds to the maximum attention weight. 

Table 5 

The ablation experiment of the proposed method on TextVQA validation set with 

the metric accuracy. 

multimodal embedding question L2 attention 

Accuracy 
position visual sentence embedding loss map 

� � 0.1837 

� � 0.2045 

� � 0.2275 

� � � � 0.2471 

� � � � � 0.2814 

� � � � � � 0.2842 

� � � � � × 0.0088 
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Table 6 

The percentage of different error types on the 

eyeball set. 

Error Type Percentage 

w/o visual grounding 30.65% 

w/o numerical reasoning 14.52% 

w/o commonsense reasoning 12.90% 

long answer 16.13% 

OCR failure 8.06% 

others 17.74% 

i

ng, which can achieve 0.2555 ANLS which is much better than the 

ther two. 

We also run ablation experiments on TextVQA validation set 

nd the conclusion is basically the same as ST-VQA. From Table 5 , 

e see that the accuracy is increased to 0.2471 by using the em- 

eddings of all three modalities together. Question embedding and 

2 loss also help improve the accuracy to 0.2842. Finally, attention 

ap brings a huge performance improvement(0.0088 to 0.2842) 

han softmax classifier. 

.4. Qualitative analysis 

In Fig. 7 , we show some successful cases for our model on 

T-VQA dataset. The proposed system obtains the correct answer 

long with reasonable attention results when utilizing the multi- 

odal contexts. The predicted OCR result is bounded in a green 

ox. 

In Table 6 , we sample 200 image-question pairs randomly from 

he wrong predictions of the task l validation set as the eyeball 

et, and then analyze the percentage of different failure reasons. 

nd in Fig. 8 , we show some typical failure cases of our model to

etter illustrate the reasons. We can summarize these reasons or 

rror types into five broad categories: 
8 
1. w/o visual grounding: our model lacks the capability of vi- 

sual grounding, which aims to ground a natural language query 

(phrase or sentence) about an image onto a correct region of 

the image. Most errors (30.65%) are caused by the model not 

establishing a good relationship between the keywords in the 

sentence (entity, attribute, location, etc.) and the image regions. 

2. w/o reasoning: numerical reasoning and commonsense reason- 

ing are vital to complete some hard questions. To alleviate this 

problem, we need to equip the model with a numerically-aware 

module or commonsense-aware module. 

3. w/o generating long answers: our decoder often generates only 

a fraction of the answer, which means that the decoder does 

not pay attention to the different areas of the image dynami- 

cally in each step or is not sensitive to the semantic relevance 

of the text of the long answer. 

4. OCR failures: OCR failures can result in various mistakes, a por- 

tion of examples can be correctly answered with correct OCR 

recognition. As shown in Fig. 8 , our model attends to the right 

position, but the OCR system result is wrong. 

5. Others: this category includes question ambiguity, difficult to 

answer even by human and so on, which depends on the an- 

notation of the dataset. 

All in all, to build a more effective textVQA system, we need to 

mprove in these aspects. Besides, how to effectively and practica- 
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Fig. 8. Failure examples analysis. The detected OCR texts are bounded by the green boxes and the red box corresponds to the maximum attention weight. 
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ility construct dynamic vocabulary is also an important issue to 

mprove system performance. 

. Conclusion and future work 

In this study, we propose a novel framework for textVQA. This 

ramework improves model accuracy through fusion of multimodal 

nformation, attention mechanism and attention map loss. It makes 

se of attention mechanism to get the most relevant features re- 

ated to question and a LSTM decoder to predict complex answer 

ord by word. In addition, we introduce attention map loss which 

an deal with dynamic vocabulary to greatly reduce the decoding 

pace and significantly improve the model performance compared 

ith softmax-based cross entropy loss. As for future work, we will 

robe the solutions to handle the dynamic vocabulary under the 

etting of task 2 and task 3. Besides, we will explore the more ef- 

ective fusion mechanism to make better use of the complemen- 

arities among different modalities. 
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