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Abstract—In this paper, we investigate high-resolution mod-
eling units of deep neural networks (DNNs) from concrete to
abstract for acoustic scene classification based on Gaussian mix-
ture model (GMM) and ergodic hidden Markov model (HMM).
A direct modeling strategy for DNN to classify acoustic scenes
is to map each frame feature of an audio to one scene category.
However, all frames tagged with the same label may not be the
best choice because the representative pattern of an audio is
sparse. GMM is also often employed to model each acoustic scene
directly as a generative model. Because the multiple Gaussians
in a GMM model have different levels of contribution, and each
Gaussian can be seen as a subclass of the scene category, so
we can utilize the subclass of GMM as a bit abstract modeling
unit to adopt DNN-GMM system. When single scene category is
subdivided into various subclasses, prior scores for each subclass
calculated from training set are stored as one part of model to
response the sparseness of representative pattern. Ergodic HMM
should be more appropriate to model the acoustic scenes than
GMM due to the uncertain structure of scene audio. Using HMM
states as modeling units, we build DNN-HMM hybrid system. By
comparison, we find high-resolution modeling units are more
effective than direct modeling. The final system is obtained
by performing system combination to take advantage of the
complementarity of different-level modeling units. Experiments
on acoustic scene classification task of DCASE2016 challenge
show that our final system yields 25.9% relative error rate
reduction compared with a GMM baseline on evaluation set.

I. INTRODUCTION

Sounds carry a large amount of information about our

everyday environment and physical events that take place in

it. Humans can perceive the sound scene we are within (busy

street, office, etc.), and recognize individual sound sources (car

passing by, footsteps, etc.). This process is called auditory

scene analysis [1]. The research field studying this process

is called computational auditory scene analysis (CASA) [2].

The computational algorithms attempt to automatically make

sense of the environment through the analysis of sounds using

signal processing and machine-learning methods. The task is

the so-called acoustic scene classification [3], and the goal is

to classify a test recording into one of predefined classes that

characterizes the environment in which it was recorded – for

example ”bus”, ”office”, ”home” as shown in Fig. 1.

Over the last few years, acoustic scene classification has

been gradually receiving attention in the field of audio sig-

Fig. 1. Overview of acoustic scene classification system [4].

nal processing and machine learning. Substantial progress

has been made by several important challenges, such as

DCASE2013 (Detection and Classification of Acoustic Scenes

and Events) [5], [6] and DCASE2016 [4]. Many techniques

have been widely investigated, including the aspects of fea-

tures, statistical models, decision criteria and meta-algorithms.

Several categories of audio features have been employed

in acoustic scene classification systems, such as low-level

time-based and frequency-based audio descriptors [7], [8],

frequency-band energy features (energy/frequency) [7], audi-

tory filter banks (Gammatone, Mel filters), cepstral features

(MFCC), spatial features (ITD: interaural time difference, ILD:

interaural level difference) [9], voicing features (fundamental

frequency f0) [10] and i-vector [11]. The features described

here can be further processed to derive new quantities that are

used either in place or as an addition to the original features,

like PCA and time derivatives [12].

Once the features are extracted from the audio samples, the

next stage is learning statistical models of the distribution of

the features. Statistical models can be divided into generative

and discriminative methods. When working with generative
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models, feature vectors are interpreted as being generated from

one of a set of underlying statistical distributions. During the

training stage, the parameters of the distributions are optimized

based on the statistics of the training data. In the test phase,

a decision criterion is defined to determine the most likely

model that generated a particular observed example. One

classical generative model for acoustic scene classification is

the Gaussian mixture models (GMM) [13] where features are

interpreted as being generated by a sum of Gaussian distribu-

tions. MFCC features and maximum likelihood criterion are

used for GMM training and testing. Hidden Markov models

(HMM) [14] is also used in several systems [7], [15] to

account for the temporal unfolding of events within complex

soundscapes.

As for discriminative models, SVM is a popular discrimina-

tive classifiers for acoustic scene classification [9], [10]. The

model output from an SVM determines a set of hyperplanes

that optimally separate features associated to different classes

in the training set (according to a maximum-margin criterion).

An SVM can only discriminate between two classes. When the

classification problem includes more than two categories, mul-

tiple SVMs can be combined to determine a decision criterion

that allows for discrimination between multiple classes.

The recent breakthrough of deep learning [16], [17], [18],

and the applications of deep neural networks (DNNs) in

classification tasks [19], [20], [21], creates a new direction of

acoustic scene classification. A straightforward way of deep

learning to classify acoustic scenes is to map each frame

feature of an audio to one scene category directly. Followed

with the direct modeling, post-processing is employed to

decide which scene category the audio belonged to. In [22],

[23], the deploy of DNN was investigated for acoustic scene

classification. The input of DNN is acoustic features like

MFCC or Mel-filterbank. The learning target of each frame

feature is pre-defined scene category. Recently, convolutional

neural networks (CNN) [24] was also employed to classify

acoustic scenes directly.

In this paper, we focus on the exploration of modeling units

of DNN. We investigate high-resolution modeling units from

concrete to abstract for acoustic scene classification based on

GMM and ergodic HMM. Through the review of previous

work, we know a direct modeling unit of DNN to classify

acoustic scenes is scene category. For the direct modeling,

all frame features of an audio have the same label. However,

all frames tagged with one label may not be the best choice

because the representative pattern of an audio is sparse. We

know GMM is also often used to model each acoustic scene

directly as a generative model. The multiple Gaussians in

GMM have different levels of contribution. If we locate each

frame feature to a single Gaussian distribution with maximum

likelihood among all Gaussians in the GMM, we can use the

single Gaussian as a bit abstract modeling unit to adopt DNN-

GMM system. Each Gaussian in the GMM model can be

seen as a subclass of the scene category. When single scene

category is subdivided into various subclasses, the distribution

of labels is no longer uniform. Prior scores for each subclass

calculated from training set are stored as one part of model

to response the sparseness of representative pattern. Due to

the representative pattern of an audio for scene classification

is also unordered, ergodic HMM should be more appropriate

to model acoustic scenes than GMM. In paper [15], ergodic

HMM was proved to have better modeling capacity than

GMM for indefinite duration classes. The HMM states can

be explained as the results of automatic clustering for each

scene. Using states as modeling units, we build DNN-HMM

hybrid system, where DNN models the scaled observation

likelihood of all HMM states, and the ergodic HMM models

the sequential property of the observation. Finally, a system

combination method is performed to obtain the final system

from the multiple systems to take advantage of the comple-

mentarity of different-level modeling units. Experiments on

acoustic scene classification task of DCASE2016 challenge

indicate that the accuracy on evaluation set was improved from

77.2% for the GMM baseline system to 83.1% for our final

system, and to 83.3% for the best single system DNN-GMM.

The rest of the paper is organized as follows. In Section II,

we first give an overview of our proposed system. In Sec-

tion III, direct modeling of DNN and GMM are described in

detail. In Section IV and Section V, DNN-GMM and ergodic

DNN-HMM modeling are presented. In Section VI, we report

experimental results and analysis. Finally we summarize our

findings in Section VII.

II. SYSTEM OVERVIEW

The overall flowchart of our proposed system is illustrated

in Fig. 2. Our system has three parts with different-level

modeling units of DNN, including direct modeling, DNN-

GMM modeling and ergodic DNN-HMM modeling. Before

model training, the audio samples are processed to extract

MFCC and log Mel-filterbank (FBANK) features.

For direct modeling part, DNN is trained with FBANK

features as input and acoustic scene labels as learning target.

In the testing stage, the final decision for an audio is taken

by first averaging the output of the neural networks for each

input frame feature which forms the audio and next choosing

the scene class with the best result.

For DNN-GMM modeling part, GMM models are first

trained with MFCC features for each acoustic scenes. Then,

we locate each frame feature to a single Gaussian distribution

with maximum likelihood among all Gaussians in the GMM.

In this way, each frame feature of an audio can has a subclass

label, which is no longer a unified scene category label. We use

FBANK features as input and the subclass labels as learning

targets to train DNN-GMM.

For ergodic DNN-HMM modeling part, ergodic HMMs are

first trained using MFCC features per acoustic scene class, and

perform classification with maximum likelihood classification

scheme. Next, the state labels are generated from ergodic

HMM models by force alignment [14]. Based on FBANK

features as input and HMM states as learning targets, DNN is

trained to build ergodic DNN-HMM hybrid system.
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Fig. 2. System overview.

Finally, system combination is implemented to utilize the

complementarity of multiple systems. We use a voting strategy

at audio level to combine DNN, DNN-GMM and DNN-HMM

systems. The voting strategy follows majority decision. All

HMM-based and DNN-based experiments are implemented

by using Kaldi toolkit [25]. GMM system is provided by

DCASE2016 challenge [13].

III. DIRECT MODELING

In this section, we introduce the implementation of DNN

and GMM for acoustic scene classification using acoustic

scene labels as direct modeling units.

A. DNN

DNN is a popular neural network architecture which has

been employed for classification tasks successfully. More

precisely, when the objective is to classify a feature of interest

x among Q classes, a DNN estimates the probabilities pj ,

j ∈ {1...Q}, of each class given the input x. The input

features usually correspond to a time-frequency representation

of the input signal, such as MFCC, Mel-filterbank. To provide

acoustic context to the DNN, consecutive feature frames

are concatenated in a sliding window approach. A graphical

representation of DNN architecture for classification is given

in Fig. 3.

For a H-layer DNN, it computes a non-linear function

gW (x) = gH (WHgH (Wh−1 · · · g1 (W1x))) , (1)

where x are the input features, gh, h = 1, . . . , H are activation
functions and Wh, h = 1, . . . , H are DNN weights. The layers

h2

3W

h3

1W

h1

2W

4W
Fine-tuning

Input

Input features

Output
1p jp

Fig. 3. A DNN for classification is described by an input, a given number
of hidden layers and an output which describes the class probabilities.

with index h = 1, . . . , H − 1 are called hidden layers, so that

the DNN from (1) is said to have H − 1 hidden layers. The

hidden layer activations in this paper are sigmoid functions.

The layer with index H is called output layer with activations

gH . For classification task, the output is computed via the

softmax activation function.

The DNN weights of a DNN are trained by minimizing
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Cross-Entropy cost function:

C = −
Q∑

j=1

qj log pj (2)

where C denotes Cross-Entropy cost function, pj is the output

of the softmax, and qj is the corresponding target.

B. GMM

GMM is also often adopted as a generative model for

acoustic scene classification. A GMM-based baseline system

is provided as the official benchmark of DCASE2016 chal-

lenge, which consists of MFCC features and GMM based

classifier [3], [13]. GMMs are used to infer global statistical

properties of the features from local features vectors, which are

interpreted as realizations of a generative stochastic process.

For each acoustic scene, a GMM class model with Ng Gaus-

sians is trained based on MFCC features using expectation-

maximization (EM) algorithm.

Once the GMMs have been trained from the training data,

and features have been extracted from an unlabeled audio,

maximum likelihood decision is employed to evaluate which

GMM class is statistically most likely to generate the observed

features, hence determining the scene classification.

IV. DNN-GMM MODELING

A. Training for DNN-GMM

A GMM class model with Ng Gaussians in Section III-B

is trained for each acoustic scene. The Ng Gaussians have

different level of contribution to each frame feature. If we

locate each frame feature to a single Gaussian distribution

with maximum likelihood among all Gaussians in the GMM,

we can use the single Gaussian as a new subclass label to

replace original scene label as follow,

Sj
i∗(x) = argmax

i
Lj
i (x) (3)

where, Sj
i∗(x) is the subclass label of input training feature x,

i∗ is the index of Gaussian with maximum likelihood in the

GMM model, j is the index of scene class, and Lj
i (x) is the

likelihood of ith Gaussian in jth scene class. The number of

total subclasses is Q ∗ Ng , where Q is the number of scene

category.

In this work, we use neural networks to predict GMM

subclasses. Neural networks are trained to discriminate the

total Q ∗ Ng subclasses (S1
1 , . . . , S

j
i , . . . , S

Q
Ng

) with FBANK

features as input, resulting to DNN-GMM model.

When single scene category is subdivided into various

subclasses, the distribution of labels is no longer uniform.

Because the representative pattern of an audio is sparse, so

prior scores for each subclass calculated from training set

are stored as one part of model to further improve system

performance. We first calculate a prior score for each subclass

at the level of audio. We assume that subclass Sj
i with the

largest number of frames is the dominant subclass of the

training audio Xn. The prior score of Sj
i for audio Xn is

defined as follow,

p(Sj
i ,Xn) =

{
N j

i (Xn)/Nf , Sj
i is dominant subclass

0, else
(4)

where, Xn is an audio in the training set, N j
i (Xn) and Nf

representing the number of frames of dominant subclass Sj
i

and of audio Xn, respectively. Then the prior score for each

subclass at the training set level is calculated as follow,

p(Sj
i ) =

1

Nt

Nt∑

n=1

p(Sj
i ,Xn) (5)

where, p(Sj
i ) is the prior score of subclass Sj

i in the training

set, Nt is the number of training audios whose p(Sj
i ,Xn) is

non-zero.

B. Decoding for DNN-GMM

When a testing frame feature x is fed to the well trained

neural networks, posterior probabilities of subclasses are gen-

erated. We reset each value to 1 or 0 with a threshold to get rid

of distractions. p(Sj
i |x) is used to represent the scaled posterior

probabilities. Next, we multiply scaled posterior probability by

corresponding prior score as follow,

d(Sj
i |x) = p(Sj

i )p(S
j
i |x) (6)

where d(Sj
i |x) is the decision score of subclass Sj

i given x.

The scene category which the input frame x belonged to is

determined as follow,

q̂(x) = argmax
j

Ng∑

i=1

d(Sj
i |x) (7)

where q̂(x) is the frame-level scene decision. Finally, the scene

category of the whole testing audio is determined by using

majority decision method based on frame-level results.

In this work, the system which used prior score in the testing

stage is denoted as DNN-GMM, and the system which didn’t

use prior score is denoted as DNN-GMM-NP.

V. ERGODIC DNN-HMM MODELING

A. Ergodic HMM

HMM is an effective parametric representation for a time-

series of observations, such as feature vectors measured from

natural sounds. Left-to-right HMM has been successfully used

for speech recognition. Ergodic HMM is more suitable for

scene classification due to the uncertain structure of scene

audio [7], [15]. In this work, ergodic HMMs are used for

classification by training an ergodic GMM-HMM for each

scene class with MFCC features. Each ergodic GMM-HMM

with a set of states represents one scene class. The parameters

of GMM-HMMs for all classes are learned according to the

maximum likelihood estimation (MLE). By adopting the EM

and Baum-Welch algorithms, the state prior probabilities, tran-

sition probabilities of HMMs, and the weight/mean/covariance

parameters of GMMs, can be effectively estimated in an
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Fig. 4. Architecture of ergodic DNN-HMM hybrid system. The ergodic HMM
models the sequential property of the observation, and the DNN models the
scaled observation likelihood of all HMM states.

iterative manner and the Gaussian mixtures of all scene classes

can be progressively learned and increased from scratch [25].

In the testing stage, Viterbi algorithm is employed for decoding

HMM state sequences.

B. Training for DNN-HMM

DNN-HMM hybrid system [20] has been adopted for speech

recognition in recent years. The hybrid system takes advantage

of DNN’s strong representation learning power and HMM’s

sequential modeling ability, and outperforms conventional

GMM-HMM systems significantly. In this work, we train

DNN-HMM hybrid system based on ergodic HMMs for scene

classification as shown in Fig. 4. In the framework, the

dynamics of the audio are modeled with ergodic HMMs, and

the observation probabilities are estimated by DNNs. For the

GMM-HMM training, the frame-level labels are not necessary

as an embedded re-estimation procedure could be applied with

the scene labels. However, for the DNN-HMM system, the

state labels should be prepared for the subsequent training of

DNN model. The procedure for the parameter learning via the

Cross-Entropy criterion is as follow,

• Step1: DNN-HMM Initialization
A set of ergodic GMM-HMMs for all scene classes

learned using MLE criterion as in Section V-A are

prepared. The HMM topology of DNN-HMM system

is directly copied from that of GMM-HMM system,

including the corresponding state prior probabilities and

transition probabilities.

• Step2: Forced-Alignment
The main purpose of forced-alignment here is to gen-

erate the frame-level state labels by matching an audio

against the corresponding scene label via a general-

purpose Viterbi recognizer with GMM-HMMs [14]. After

applying to all training samples, the underlying state

labels are derived as the learning targets of the DNN

output layer.

Fig. 5. Dataset partitioning into training and evaluation sets [13].

• Step3: DNN Cross-Entropy Training
As shown in Fig. 4, each output neuron of the DNN is

trained to estimate the posterior probability of continuous

density HMM’s state given the observations. The Cross-

Entropy training procedure can be found in Section III-A.

C. Decoding for DNN-HMM

In the testing stage, after the decoding of DNN, posterior

probabilities of states given the observations are generated.

Since the HMM require the likelihood instead of the posterior

probability during the decoding process, we first convert the

posterior probability to the likelihood [20]. Viterbi algorithm

is then employed for decoding HMM state sequences.

VI. EXPERIMENTS

A. Experiment Setup

Our experiments are done on the task 1 of DCASE2016

challenge. DCASE2016 is an official IEEE Audio and Acous-

tic Signal Processing (AASP) challenge for acoustic scene

classification and sound event detection within a scene tasks.

TUT Acoustic scenes 2016 dataset [13] is used for acoustic

scene classification task. The dataset consists of recordings

from various acoustic scenes, all having distinct recording

locations. There are 15 acoustic scenes for the task:

• Bus - traveling by bus in the city (vehicle)

• Cafe/Restaurant- small cafe/restaurant (indoor)

• Car - driving or traveling as a passenger, in the city

(vehicle)

• City center - (outdoor)

• Forest path - (outdoor)

• Grocery store - medium size grocery store (indoor)

• Home - (indoor)

• Lakeside beach - (outdoor)

• Library - (indoor)

• Metro station - (indoor)

• Office - multiple persons, typical work day (indoor)

• Residential area - (outdoor)

• Train - (traveling, vehicle)

• Tram - (traveling, vehicle)

• Urban park - (outdoor)
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The dataset was split into development set and evaluation

set, such that the evaluation set consists of approximately

30% of the total amount. The development set was further

partitioned into 4 folds of training and testing sets to be used

for cross-validation during system development. This process

is illustrated in Fig. 5. For each acoustic scene, 78 segments

were included in the development set and 26 segments were

kept for evaluation.

As for front-end, the binaural audio signals from

DCASE2016 are converted to a single channel by averaging

and then is mixed with the left and right channel audios

to form training dataset. In the testing stage, only averaged

audios are used. MFCC features were calculated using 40 ms

frames with Hamming window and 50% overlap and 40 mel

bands. The first 20 coefficients were kept, including the 0th

order coefficient. Delta and acceleration coefficients were also

calculated using a window length of 9 frames, resulting in a

frame-based feature vector of dimension 60. FBANK features

were calculated using 40 ms frames with Hamming window

and 50% overlap and 40 Mel bands. Delta and acceleration

coefficients were also calculated using a window length of 9

frames, resulting in a frame-based feature vector of dimension

120.

For GMM system, a GMM model with 16 components

was trained for each scene based on MFCC features using

expectation maximization algorithm. For GMM-HMM system,

there are 7 emitting states per ergodic HMM to represent each

scene class, all GMMs share 3000 Gaussian mixtures. The

Baum-Welch iterations are set to a maximum of 40 for all

HMMs, yielding good convergence of the likelihoods.

The detailed architecture of DNN in this paper is 1320

(120*11)-512-512-T , where, 1320 (120*11) denotes 120-

dimension FBANK feature with 11 frames context informa-

tion, 512-512 denotes two hidden layers with 512 neurons,

and T denotes the number of neurons at output layer. For

direct modeling, T is the number of scene classes 15. For

DNN-GMM, T is 240 (15*16), and T is 105 (15*7) for DNN-

HMM. The Kaldi toolkit was adopted for DNN training. The

mini-batch size was 256. The learning rate of Cross-Entropy

training was set to 0.001 for the first 10 iterations and then

halved after every epoch. Total number of epoch is 20.

For evaluation, the scoring of acoustic scene classification

will be based on classification accuracy: the number of cor-

rectly classified segments among the total number of segments.

Each segment is considered an independent test sample. All

the model configuration tunings were done on development

dataset.

B. Results and analysis

Table I gives system performances for four folds on devel-

opment dataset. The systems include GMM baseline provided

by DCASE2016 challenge, DNN with direct modeling, DNN-

GMM-NP, DNN-GMM, ergodic HMM and DNN-HMM. The

performances on four folds were different. For example, the

accuracy of GMM ranged from 67.2% to 81.9%. This indicates

the dataset is not homogeneous. The change trend of other

TABLE I
ACOUSTIC SCENE CLASSIFICATION PERFORMANCE FOR FOUR FOLDS ON

DEVELOPMENT DATASET.

Accuracy
System Fold1 Fold2 Fold3 Fold4

Direct modeling
GMM [13] 67.2% 68.9% 72.3% 81.9%

DNN 77.0% 74.6% 71.2% 72.5%

DNN-GMM modeling
DNN-GMM-NP 78.7% 73.0% 71.9% 72.5%

DNN-GMM 80.7% 74.5% 73.5% 73.4%

Ergodic HMM modeling
GMM-HMM 75.2% 66.2% 68.3% 79.0%
DNN-HMM 80.2% 73.0% 70.6% 77.3%

TABLE II
ACOUSTIC SCENE CLASSIFICATION RESULTS OF DIFFERENT SYSTEMS ON

DEVELOPMENT DATASET AND EVALUATION DATASET (SYSTEMS WITH *
SIGN ARE USED TO DO SYSTEM FUSION).

System
Accuracy

(Development dataset)
Accuracy

(Evaluation dataset)

Direct modeling
GMM [13] 72.6% 77.2%

DNN* 73.8% 80.3%

DNN-GMM modeling
DNN-GMM-NP 74.0% 82.1%

DNN-GMM* 75.5% 83.3%
Ergodic HMM modeling

GMM-HMM 72.2% 79.2%
DNN-HMM* 75.3% 81.8%

System combination
Fusion 76.4% 83.1%

systems on development dataset were basically consistent ex-

cept Fold4, where there are no better performance than GMM

baseline on this fold. Considering the systems’ generalization,

we didn’t adjust configurations more for Fold4. For DNN-

GMM modeling, we can observe that DNN-GMM outper-

formed DNN-GMM-NP on four folds which indicates that

prior scores of subclasses are useful. For ergodic HMM-based

modeling, hybrid system DNN-HMM achieved improvement

on three folds compared with GMM-HMM.

Table II lists the accuracies of different systems for acoustic

scene classification on development dataset and evaluation

dataset. The accuracies on development dataset were averaged

over four folds. DNN with direct modeling yielded accuracy

improvement on both development and evaluation dataset.

When subclasses of GMM were applied as learning targets,

DNN could further improve accuracy. The comparison of

DNN-GMM-NP and DNN-GMM reveals the power of prior

score. DNN-GMM with prior score obtained 83.3% accuracy

on evaluation dataset which is the best performance of single

system. For ergodic HMM modeling, the performance of

GMM-HMM was good than GMM on evaluation dataset.

When HMM states were employed as the learning targets

of DNN, DNN-HMM could achieve better performance than

DNN with direct modeling. DNN-HMM yielded almost the

same accuracy with DNN-GMM on development dataset.
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Fig. 6. Confusion matrix of Fusion system on evaluation dataset in Table II.

However, this difference has expanded rapidly on evaluation

dataset from 81.8% to 83.3%. This indicates that subclasses

incorporated with prior score have a better generalization

ability than HMM states.

DNN, DNN-GMM and DNN-HMM were chosen to do

system combination using voting strategy at audio level. The

accuracy is seen on development dataset to improve from

72.6% for the GMM baseline system to 76.4% for the final

Fusion system. On evaluation dataset, the final Fusion system

yielded 25.9% relative error rate reduction compared with

GMM, and the accuracy was almost the same with the best

single system DNN-GMM. The large difference between DNN

and DNN-GMM’s performance (80.3% to 83.3%) may be the

reason why system combination couldn’t bring improvement

on evaluation dataset. The corresponding confusion matrix of

Fusion system on evaluation dataset is shown in Fig. 6. There

are 3 scenes are all correct while scene Train has the lowest

accuracy. 23.1% percent test samples of scene Train were

assigned to the wrong scene Tram. How to classify the scenes

with high similarity is still an open problem.

VII. CONCLUSION

In this paper, we have investigated high-resolution modeling

units of DNN for acoustic scene classification based on GMM

and ergodic HMM. Scene category, subclass of GMM and

ergodic HMM state are employed from concrete to abstract

to train DNN-based systems. Scene label is a straightforward

choice for DNN to classify acoustic scenes. However, all

frames tagged with the same label is not the best choice

because the representative pattern of an audio is sparse. GMM

is a generative model for acoustic scene classification. The

multiple Gaussians in GMM can be seen as a subclass of

the scene. We use the subclass as a bit abstract modeling

unit of DNN. Ergodic HMM is more appropriate to model

acoustic scenes than GMM. Using HMM states as modeling

units, hybrid systems can be built. By comparison, we find

high-resolution modeling units are more effective than scene

category. Finally, a system combination method is employed to

take advantage of the complementarity of different-level mod-

eling units. The final system yields 25.9% relative error rate

reduction compared with a GMM baseline on the evaluation

dataset of DCASE2016 challenge.
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