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Abstract—Recently, with the development of voice-print tech-
nology, such as x-vectors, the performance of speaker diarization
has made a great progress. However, the allocation of overlapping
speech segments is still a difficult problem. At the same time,
great results have been achieved in the field of speech separation,
especially the end-to-end time-domain audio separation network
(TasNet). Speaker diarization and speech separation have strong
similarities in task definition, one is to give the existence of each
speaker in the time dimension, and the other is to give separated
speech signals of different speakers. In this paper, we take advan-
tage of the complementarity between the two tasks and propose
a speech separation guided diarization (SSGD) approach. To our
knowledge, this is the first deep analysis about combining both
speaker diarization and speech separation methods. Moreover, we
compare the architectures of various common speech separation
models, and analyze the robustness and generalization ability of
the proposed method. By incorporating this method, the overall
system achieved the first place among all submitted systems in
the DIHARD-III challenge.

I. INTRODUCTION

The task of speaker diarization is to segment speaker
homogeneous regions given an arbitrary audio recording [1].
An ideal speaker diarization system should work without
any prior information, such as the number of speakers, the
dialog styles and environmental factors. To better evaluate the
performance and generalization of current diarization methods,
the DIHARD challenge [2], [3], [4] was proposed where
the datasets are well-designed and drawn from a diverse set
of challenging domains. The DIHARD dataset includes real-
world application scenarios, including free-form conversation
styles, noisy environments, various speaker numbers, and so
on. Generally, it places very strict requirements for the state-
of-the-art speaker diarization systems.

In recent years, the technology of speaker diarization has
become gradually mature under realistic conditions. For the
front-end processing, previous study [5] has shown that deep
learning based denoising method has stronger potentials in
coping with realistic noisy environments than traditional en-
hancement approaches. For the back-end system, the bottom-
up clustering based methods still take the majority. Pow-
erful speaker representations are extracted and prepared for
clustering, such as i-vectors [6], d-vectors [7] and x-vectors
[8], [9], [10] and etc. Recently, variational Bayesian hidden
Markov model was introduced with x-vectors (VBx) [11] , and
achieved the best performance in the DIHARD-II challenge
[3], [12].

However, conventional diarization techniques still cannot
well handle overlapping speech. There are many reasons,
for example, the speaker representations are trained with
single speaker speech and cannot generalize to multi-speaker
data. And the detection performance of overlapping speech
under realistic conditions yields little improvements. It can be
observed that almost all top teams [12], [13], [14] in DIHARD-
II challenge did not reduce the missed speech error rate in
Track 1 where all missed speech came only from overlapping
speech.

Speech separation is one of the most straight-forward ways
to deal with overlapping speech. Most speech separation
approaches have been formulated in the time-frequency (T-
F) domain. Such as models include feed-forward neural net-
works [15], recurrent neural networks (RNNs) [16], [17],
and generative adversarial networks (GANs) [18]. Recently,
time-domain based networks, such as fully-convolutional time-
domain audio separation network (Conv-TasNet) [19] and
dual-path RNN TasNet[20], have shown good results in speech
separation. To adopt speech separation techniques in speaker
diarization task, it can be used to separate source signals from
different speakers.

In this study1, we will introduce the proposed separation
guided diarization (SSGD) method, which was also mentioned
in the best system in DHARD-III[21], [22]. In Section IV,
besides general concepts, we will give deep analysis about
the robustness and universality of the proposed method. By
incorporating this method, the overall system achieved the
first place among all submitted systems in the DIHARD-III
challenge. In Section V and VI, we will discuss some unsolved
problems and the future work.

II. TASK OVERVIEW

To connect the two tasks, we firstly describe their defini-
tions, purposes, and current optimal systems.

A. Speaker Diarization

Most current speaker diarization systems use the bottom-
up approach, which adopts agglomerative hierarchical clus-
tering (AHC) as the main part. The whole recording is first
divided into smaller segments where each segment ideally
comes from only one speaker. Speaker representation features
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can be extracted on each short segment, such as traditional
acoustic features [1], i-vectors [23], [24], x-vectors [8] and
etc. Similar segments are clustered iteratively according to
some similarity measures, including Bayesian Information
Criterion (BIC) [25], probabilistic linear discriminant anal-
ysis (PLDA) [26], [27], cosine distance and so on. With
the development of deep learning based speaker representa-
tions, x-vectors have shown superior performance in speaker
recognition and diarization. Based on it, researchers in BUT
introduced Variational Bayes Hidden Markov Model (VB-
HMM) [11] to further refine the assignment of x-vectors to
speaker clusters, and got the best performance in DIHARD-II
challenge[12]. Besides, overlapped speech detection was often
used to assign the same speech region to different speakers
[28], [29]

B. Speech Separation

Supervised speech separation approaches have shown great
abilities. Most previous studies have explored it in time-
frequency domain [30], [31]. When separating multiple
sources, the permutation problem [32] causes great difficulty
in model training. Accordingly, permutation invariant training
(PIT)-based methods [32] were proposed to address the such
permutation problem.

Since end-to-end method has become one of the mainstream
approaches, lots of researches focus on time-domain speech
separation. In [33], researchers introduced an encoder-decoder
framework, namely time-domain audio separation network
(TasNet), to directly modeled the mixture waveform which
totally replaced traditional time-frequency manipulations. Tas-
Net based methods [19] not only achieved better performance
than Ideal Ratio Mask (IRM), but also improved the model
size and computation cost. In [34], dual-path recurrent neural
network (DPRNN) was used to model extremely long se-
quences without increasing model size. Since then, more and
more approaches have emerged following this encoder-decoder
framework, such as DPTNet [35], SepFormer [36] and etc.

Typically, a time domain end-to-end speech separation
model can be optimized directly by scale-invariant source-to-
noise ratio (Si-SNR):

Si-SNR = 10 log10
||starget||2

||̂s− starget||2
(1)

where starget =
<ŝ,s>s
||s||2 . ŝ and s are the estimates and targets

respectively. For multiple outputs, the overall loss is often
formed using permutation invariant training (PIT) based learn-
ing objective as:

L =
1

N

N∑
i=1

l(ŝi − sφ) (2)

where N is the number of speakers, l is the error between the
network output and the target, ŝi denotes the i-th predicted
speech, sφ denotes the reference speech with the permutation
φ that minimizes training objective L.

III. THE PROPOSED SPEECH SEPARATION GUIDED
DIARIZATION (SSGD) SYSTEM

By definition, the two tasks are highly complementary.
Speaker diarization is to give the existence of each speaker in
the time dimension, while speech separation yields separated
speech signals of different speakers. As illustrated in Figure
1, we show how the two tasks can help each other in a
conversation audio. The speaker number is set to 2.

Given a dialogue:
1) A conventional speaker diarization (CSD) system in-

cludes speech segmentation, x-vector extraction, AHC, and
VB-HMM resegmentation. The generated speaker distribution
shows regions where each speaker speaks, but does not include
overlapping part.

2) A speech separation (SS) system can process the audio
directly and output different channels, each representing an
unique speaker identity. Using the VAD system, speaker
distribution can also be generated, including information about
overlapping part.

3) The above two systems have their own pros and cons.
We propose a speech separation guided diarization (SSGD)
system to combine them together. The first CSD system per-
forms more stably, but is unable to process overlapping data.
The second SS system can process overlapping speech, but
the performance fluctuates greatly, especially under realistic
conditions. To combine those advantages, we difine a relative
DER between two system results, measuring the degree of
deviation between two systems:

DERRelative =

∑S
s=1 d(s) · (max(KCSD(s),KSS(s))− K(s))∑S

s=1 d(s) · KCSD(s)
(3)

where S is the number of speaker segments in which both
CSD results and SS results contain the same speaker (or
speakers), while d(s) correponds to the duration of a single
segment s. KCSD(s) and KSS(s) denote the speaker number in
speech segment s of CSD and SS results respectively. K(s)
means the number of speakers in speech segment s that are
correctly matched between CSD and SS results. This formula
is equivalent to DER [37] metric, the only difference is the
group truth is set to CSD results. If the value of relative
DER is smaller than a pre-defined threshod, SS results will
be selected. Otherwise, the selection is reversed. According
to our results, the proposed selection strategy can effectively
detect outrageous SS results on realistic data where the speech
sepration module fails.

4) To further enhance overall performance, the pre-trained
speech separation model in SSGD system can be fine-tuned
using speaker priors derived from CSD system. In this way,
the above selection strategy can be dispensed, and the results
from fine-tuned speech separation system can be used directly.

IV. EXPERIMENTS AND ANALYSIS

In this paper, we focus on two-speaker conversations, be-
cause speaker diarization and speech separation techniques are
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Fig. 1. The overall diagram of the speech separation guided speaker diarization.

well established for this kind of condition. For evaluation data,
we select the realistic conversational telephone speech (CTS)
dataset from both development set and evaluation set of the
DIHARD-III challenge [4], containing a total of 61 items.
Each utterance is spoken by two native English speakers and
lasts about 10 minutes. Statistically, the overall overlap ratio
is about 12%.

The conventional speaker diarization (CSD) system follows
both the official baseline [4] and the VBx system published
in [38]. The CSD results are taken as the baseline which rep-
resents the most mainstream system performance. Diarization
error rate (DER) [37] was used as evaluation metric in our
experiments, which consists of three parts, namely speaker
error, false alarm error and missed error. Oracle VAD was
used in our experiments, and no forgiveness collar was used
during evaluation.

For speech separation model training, we used the asteroid
toolkit [39] which brought lots of model variants. We used
Librispeech [40] dataset to simulate speaker mixtures. As for
VAD part, we chose WebRTC VAD module [41] to process
the separated audio data. In selection strategy, the threshold in
Eq.3 was set to 25 %.

A. The Effects of Speech Separation Model Architecture

In the field of speech separation, methods are evaluated
on simulated data, such as the commonly used WSJ0-2Mix
dataset [30]. As reported in [42], [34], the performance was
measured by SI-SNR improvement (SI-SNRi). The numbers
are listed in Table-I, all TasNet-based models are better than
IRM, which means the separated audio is basically clean and
complete.

Separation Methods Si-SDRi
IRM 12.2

BLSTM-TasNet 13.2
Conv-TasNet 15.3

DPRNN-TasNet 18.8

TABLE I
THE PERFORMANCE COMPARISON OF DIFFERENT SPEECH SEPARATION

METHODS ON WSJ0-2MIX DATASET[34], [42].

To migrate such conclusion in speaker diarization, we used
two representative model architectures, namely Conv-TasNet
and DPRNN-TasNet. We simulated 250 hours speech mixtures
to pre-train separation models. During training, all audios were

grouped into 3-second long segments, and the batch-size was
set to 6.

When testing, the entire utterance was directly processed
by the pre-trained model, generating two output channels. We
used WebRTC VAD to detect speech segments in each channel.
Then, all segments and their channel properties were combined
together to produce an entire RTTM file, namely SSGD result.
Compared with the CSD result, a final rttm was determined
by the procedures described in Section III.

Method Miss FA Spk Err DER
CSD-Baseline 12.0 0.0 4.2 16.22

SSGD(Conv-TasNet) 7.60 2.6 2.7 12.95
SSGD(DPRNN-TasNet) 11.4 0.4 4.1 15.91

TABLE II
THE DIARIZATION RESULTS COMPARISON OF DIFFERENT METHODS.

ORACLE VAD WAS USED.

As shown in Table II, the following points can be ob-
served. First, when using oracle VAD, the main component
of DER in CSD results comes from missed speech. Sec-
ond, because the separation models separate two speakers,
the SSGD methods can decrease the missed speech error.
Correspondingly, the false alarm error increases because many
regions are misclassified to overlapping speech. Third, relative
performance difference between different models in speech
separation does not keep the same in speaker diarization task.
For example, DPRNN-TasNet outperforms Conv-TasNet with
a obvious margin on simulated data in terms of SI-SNRi,
as listed in Table I. However, the conclusion is the exact
opposite in Table II. It indicates that there are huge mismatches
between simulated data and realistic data. DPRNN-TasNet has
stronger modeling capabilities than Conv-TasNet and produces
much better metrics on a limited-size dataset. But it does not
guarantee better performance under realistic conditions, and
may be limited to over-fitting. Finally, the SSGD system based
on Conv-TasNet yields a relative 20.16% reduction of DER,
from 16.22 to 12.95.

B. The Effects of The Proposed Selection Strategy

Ideally in two-speaker situations, a speech separation model
with a precise VAD module can be a perfect replacement
of a conventional speaker diarization system. Currently, the
generalization ability of separation models can not be fully
guaranteed for realistic speech dialogues. It’s the essential
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motivation why we design a selection strategy to eliminate
those outrageous cases produced by SSGD system. With the
selection strategy, we group all utterances into two categories
in Table III.

Model Selected(33/61) Others(28/61)
CSD-Baseline 16.26 16.12

Conv-TasNet+VAD 10.30 33.47
Conv-TasNet+Fine-tuning+VAD 9.47 9.84

TABLE III
THE PERFORMANCE COMPARISON BETWEEN TWO GROUPS WHICH ARE

DETERMINED BY THE PROPOSED SELECTION STRATEGY.

It can be seen that without the selection strategy, pure
results from Conv-TasNet+VAD vary a lot on different testing
cases, while the CSD-baseline maintains a stable performance
in both groups. It’s largely due to the pre-trained speech
separation model which lacks great stability. To fully utilize
all information, we used the speaker information generated
by the CSD system as speaker priors to fine-tune the speech
separation model. We randomly made 5,000 speech mixtures
by using pseudo speaker labels from the CSD system, and
conducted a very lightweight fine-tuning on the pre-trained
model. As shown in the bottom row in Table III, all results
improves a lot, especially for those outrageous cases, from
33.27 to 9.84. It demonstrates that speech separation is a
good solution for the speaker diarization task on overlapping
speech data, inferring that its generalization ability on different
speakers can be improved.

C. The Effects of Training Data

In this part, we explore the effects of training data in our
proposed SSGD diarization system. As listed in Table IV, we
use three different data size, including 50 hours, 100 hours and
250 hours. It’s clear that increasing training data size gradually
improves the overall performance.

It’s important to note that all simulated data are produced
with a 100% overlap ratio which is not always compatible
to real conversations. We made additive sparse mixtures for
several different amounts of speech overlap: from 0% to 80%,
following the method in [43]. The total amount of these sparse
data is about 160 hours. After adding them into training, the
DER slightly improves from 12.95 to 12.81.

Method Training Data Miss FA Spk Err DER

SSGD
(Conv-TasNet)

50h 9.1 2.0 3.2 14.28
100h 8.7 1.8 3.1 13.68
250h 7.6 2.6 2.7 12.95
250h

+sparse data 160h 7.7 2.4 2.7 12.81

TABLE IV
THE EFFECTS OF TRAINING DATA IN SPEECH SEPARATION.

V. DISCUSSIONS

Through utilizing the complementarities between speech
diarization and speaker diarization, we propose a speech

separation guided diarization system which shows great per-
formance in terms of DER reduction. However, there are still
some unsolved problems worth discussing.

A. Relationship with Other Methods

A similar analysis was carried out among speech separation,
diarization, and recognition in [44], here we only focused
on two of them and built a practical system. In essence, the
SSGD diarization system uses a VAD module to produce final
results, though the front separation model is trained by end-to-
end. Other methods like end-to-end neural speaker diarization
(EEND) based approaches [45], [46] neglect the explicit VAD
process by predicting classification directly. These methods
can benefit from the direct optimization of the final DER
metric, and also achieve great results. Compared with them,
the advantage of SSGD system is that the separated audios can
also be used for an ASR task like CHiME [47]. In our view,
joint optimization of the regression (separation) task and the
classification task will be a promising direction in the future.

B. The Problem of Generalization Ability

At present, there are still many problems about the ro-
bustness of the proposed algorithm, mainly including the
characteristics of speakers, the number of speakers, environ-
mental interference factors and so on. We have demonstrated
in Section IV-B that lightweight fine-tuning is very effective
in alleviating the mismatches. In the future, the following
directions can be considered as having potentials to solve
these problems, including more realistic data simulation, more
powerful model architecture design, multi-task training and so
on.

VI. CONCLUSIONS

In this paper, we demonstrate the effectiveness of the
proposed speech separation guided diarization system, which
effectively reduce the missed speech error rate on the realistic
DIHARD-III dataset. Moreover, we conduct a detailed analysis
of several aspects of the proposed method, including model
architecture, simulated training data and the generalization
ability. In the future, we will explore combining this method
with the EEND based methods, and include ASR task as a
part of overall evaluation.
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