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Abstract—Recently, a novel radical analysis network (RAN)
has the capability of effectively recognizing unseen Chinese
character classes and largely reducing the requirement of train-
ing data by treating a Chinese character as a hierarchical
composition of radicals rather than a single character class.
However, when dealing with more challenging issues, such as the
recognition of complicated characters, low-frequency character
categories, and characters in natural scenes, RAN still has a
lot of room for improvement. In this paper, we explore options
to further improve the structure generalization and robustness
capability of RAN with the Transformer architecture, which has
achieved start-of-the-art results for many sequence-to-sequence
tasks. More specifically, we propose to replace the original
attention module in RAN with the transformer decoder, which is
named as a transformer-based radical analysis network (RTN).
The experimental results show that the proposed approach can
significantly outperform the RAN on both printed Chinese char-
acter database and natural scene Chinese character database.
Meanwhile, further analysis proves that RTN can be better
generalized to complex samples and low-frequency characters,
and has better robustness in recognizing Chinese characters with
different attributes.

Index Terms—Chinese characters, Transformer network,
Encoder-decoder, Attention

I. INTRODUCTION

Chinese character recognition (CCR) is an important task
in computer vision with numerous applications. Benefited
from the development of deep learning technologies [1], great
progress has been made for OCR in recent years.

As for the recent researches, we can roughly divide them
into two categories: character-based methods and radical-based
methods. The character-based methods [2], [3] take the charac-
ter input as a single image and try to learn a congruent relation-
ship between the input image and a pre-defined class, which
do not consider the similarity and internal structures among
different characters. Thus, these methods can only perform
well on common Chinese characters but perform poorly when
handling complex characters with complicated 2D structures
between radicals. In contrast, radical-based methods allow
Chinese characters to be decomposed into a composition
of radicals and spatial structures, which is more similar to
human learning behavior for recognizing characters and enable
models to be more generative and flexible. [4] was the first
attempt to detect separate radicals and employed a hierarchical
radical matching method for recognizing a Chinese character.

[5] studied how to obtain position-dependent radicals with
multi-labeled learning. Unfortunately, these approaches still
have difficulty in dealing with the unseen or newly created
characters because they do not take full advantage of the
hierarchical information in Chinese characters.

To address the above issues, [6] proposed a novel radi-
cal analysis network by adopting a coverage based spatial
attention model under the encoder-decoder architecture [7].
Benefited from the effective attention mechanism, RAN can
adaptively focus on the most relevant component of a Chinese
character to describe a radical. Meanwhile, it can also detect
the relative spatial relationships among radicals. Hence, RAN
has the ability to recognize unseen Chinese characters and
largely reduces the size of vocabulary. However, to recognize
more complicated radical structures or learn the composition
rules of low-frequency samples, RAN still has a lot of room
for improvement. Intuitively, the Transformer architecture [8]
as the first sequence transduction model based entirely on self-
attention has the potential to further improve the capability of
RAN. Recently, several studies [9], [10] have been proposed
to scene text recognition task by adopting transformer network
and achieved start-of-the-art results. Different from them,
our work focuses on recognizing Chinese characters, which
contain more complicated spatial structures and more diversity
than English words. Furthermore, we attempt to figure out the
distinct properties of the Transformer for Chinese character
recognition.

Compared with RNN-based attention model that is used
in RAN, we believe that the Transformer architecture can
generate double effects for Chinese character recognition. On
the one hand, different from RNN which relies on the recurrent
connection from the previous hidden state to the current hidden
state to propagate contextual information, the Transformer
based on self-attention allows each element within the input
sequence to make a connection and find out where they should
pay more attention to, which means that the detailed internal
pattern and long-range dependencies within the sequence can
be captured easily. Therefore, the Transformer can better learn
the internal composition rules than RAN as many internal
radical structures are shared among different Chinese charac-
ters. On the other hand, RNN-based attention model usually
just learns the alignment between the source input and the
target output once, which leads to the problem of lacking deep
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interaction. However, the Transformer is composed of stacked
blocks and aggregates the input context for each block, which
naturally provides us with more hierarchical representations
corresponding to the hierarchical radical structures in the Chi-
nese characters. Accordingly, the Transformer has the potential
to improve the alignment of attention.

Insights from the above ideas, we proposed a simple yet
effective Transformer-based radical analysis network (RTN),
which is an improved version of RAN. For encoder, we
employ a fully convolutional network to extract high-level
visual features. For decoder, we substitute the transformer
decoder for the coverage-based attention model of RAN. The
contributions of this paper are as follows:
• We explore the option to improve the capability of RAN

by employing the Transformer architecture.
• The proposed model achieves significant performance

improvements on both printed Chinese character database
and natural scene Chinese character database.

• Further analysis proves that RTN is more effective and
robust than RAN for recognizing complicated and low-
frequency samples.

• Attention analysis with the proposed model shows the
advantages of RTN in learning the alignment between
the input image and the output symbols.

II. THE PROPOSED APPROACH

In this section, we will describe the architecture of our RTN
model in detail. As illustrated in Fig. 1, it contains two com-
ponents: (1) a dense encoder which takes the image as input
to produce a fixed-length context vector; (2) a transformer
decoder which takes the context vector as input to generate a
variable-length symbol sequence.

A. Dense encoder

We first employ dense convolutional network (DenseNet)
[11] as the encoder to extract high-level visual features from
images, which is widely adopted in a variety of computer
vision tasks. Although some works [12], [13] probed the
ability of applying self-attention to process the pixel-level
input, the actual performance and computational efficiency
could not strongly exceed advanced CNN-based networks.
Instead of adding a fully connected layer after the final con-
voluation layer, the dense encoder contains only convolution,
pooling and activation layers. Therefore, we can obtain a three-
dimensional tensor of size D × H × W . Then we reshape
the array to a two-dimensional tensor of size D × L, where
L = H × W , followed by a linear transformation. Each
element in array is a D-dimensional vector that corresponds
to a local region of the image:

A = {a1, . . . ,aL} ,al ∈ RD (1)

B. Transformer-based decoder

1) Multi-Head Attention: Before presenting our decoder
network, we first introduce the multi-head attention mecha-
nism based on the scaled dot-product function, which is one of
the core ideas of the Transformer. Generally, we can describe

Fig. 1. Architecture of the transformer-based radical analysis network (RTN)
for Chinese character recognition. ×N means a stack of N identical blocks.

an attention function as mapping a query and a set of key-value
pairs to an output, where the query, keys, values, and output
are all vectors. In particular, the scaled dot-product function
is defined as:

Attn(q,K,V) = softmax
(
qKT

√
dk

)
V (2)

where q ∈ R1×dk , K ∈ Rm×dk and V ∈ Rm×dv . We
calculate the dot products of each query with m keys, divide
each by

√
dk and apply a softmax function to obtain the

attention weights on the values as the attended feature. For
simplicity, dk and dv are usually set to the same number d.

To further enhance the representation capacity of the at-
tended features, multi-head attention (MA) is introduced as
an extension of the single self-attention, which consists of h
paralleled “head”. Each head corresponds to an independent
scaled dot-product attention function. Therefore. the multi-
head attention can be expressed in the same notation as
Equation 2:

MA (q,K,V) = [head1, head2, . . . , headh]WO (3)

where headj = Attn
(
qWQ

j ,KWK
j ,VWV

j

)
(4)

where Wq
j ,W

K
j ,W

V
j ∈ Rd×dh are the projection matrices

for the jth head, and WO ∈ Rh∗dh×d. dh is the dimensionality
of the output features from each head, which is usually set to
dh = d/h, and [∗] is the concatenation operation.
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2) Decoder: To be specific, the transformer decoder is
composed of stacked identical blocks. Each block contains
three layers: (a) decoder self-attention layer; (b) encoder-
decoder attention layer; (c) feed-forward layer. This hybrid
neural network will analyze the internal hierarchical radical
structures of Chinese characters and generate a corresponding
sequence of spatial structures and radicals. We can denote the
target sequence as Y, which is a sequence of one-hot vectors.

Y = {y1, . . . ,yT } ,yi ∈ RK (5)

where K is the number of total words in the vocabulary which
includes the basic radicals and spatial structures, and T is the
length of the target sequence.

Given a source image X and a target sequence Y, our model
can be defined as the following conditional probability:

P(Y|X) =

|Y|∏
i=1

P (yi|Y<i,X) =

|Y|∏
i=1

P
(
yi|cNi

)
(6)

where Y<i = {y1, . . . ,yi−1} denotes a prefix of Y with
length i− 1, cNi denotes the N th block context in the decoder
with N blocks which is obtained from the representation of
Y<i and A. Then, we will describe how to produce the output
cni for each block by the above mentioned layers.

The first two layers both rely on multi-head attention
mechanism. In decoder self-attention, all of the keys, values
and queries come from the output of the previous decoder
layer. It performs as correlation calculations between the
internal elements of the target sequence. We define this inter-
interaction result at the ith position of nth block as sni ∈ R1×d:

sni = MA(cn−1i ,Cn−1
<i ,Cn−1

<i ) (7)

where cn−1i ∈ R1×d and Cn−1
<i =

{
cn−11 , cn−12 , · · · , cn−1i−1

}
correspond to q, K/V respectively. In particular , C0

<i is word
embedding of Y<i. And a triangular mask matrix with −∞
entries on the disabled position and 0 otherwise, is used to
preserve the auto-regressive property.

Different from the decoder self-attention, encoder-decoder
attention receives the output of the encoder, i.e., the fixed-
length context vector A as the keys/values and the query
is sni instead. It aims to capture complex relationships and
dependencies between the source and target sequence.

zni = MA(sni ,A,A) (8)

where sni ∈ R1×d and A correspond to q, K/V respectively.
Then, the feed-forward layer projects the input dimension d

to another feature space dff and then back to d for learning
better feature representation.

cni = max (0,Wn
1 z

n
i + bn

1 )W
n
2 + bn

1 (9)

where Wn
1 ∈ Rd×dff ,Wn

2 ∈ Rdff×1 .
Besides, since the self-attention ignores the order informa-

tion of a sequence, a positional embedding PE is used to
represent the positional information.

PE(p,2k) = sin
(
p/100002k/d

)
(10)

PE(p,2k+1) = cos
(
p/100002k/d

)
(11)

where p is the position and k is the dimension. To better
optimize the deep network, the entire network uses a residual
connection and applies “Add & Norm” to the layer [14], [15].

Finally, we also apply a fully connected layer and a softmax
activation to predict the target symbol.

III. EXPERIMENTS

In order to make a comprehensive comparison between
RAN and RTN, we conduct experiments on both printed Chi-
nese character dataset and natural scene dataset by answering
the following questions:
• Is the RTN more effective and robust in recognizing

unseen printed Chinese characters?
• Is the RTN more effective and robust in recognizing

Chinese characters in the wild?
• What are the advantages of the attention mechanism of

RTN?

A. Training and testing details

The training model used in all experiments has the same
configuration as follows. For the dense encoder, we first em-
ploy a 7× 7 convolution layer with 48 output channels before
entering the first dense block. Each DenseBlock contains 22
1×1 convolution layers and 22 3×3 convolution layers. Then,
we use 1× 1 convolution followed by 2× 2 average pooling
as transition layer to reduce the feature maps by half between
every two DenseBlocks. And the growth rate is 24. We also
use batch normalization [16] after each convolution layer and
the activation function is ReLU. To perform a fair comparison,
the encoder of our implemented RAN also employs the dense
encoder instead of VGG [17] encoder.

For the Transformer decoder, it consists of 6-layer with
256 embedding/hidden size and 512 feed-forward intermediate
size, i.e., d = 256, dff = 512. The multi-head number is set
to 8 both in decoder self-attention block and encoder-decoder
attention block. For optimization, we use the cross entropy loss
and the AdaDelta algorithm [18] with the hyperparameters
of lrate = 0.1, ρ = 0.95 and ε = 10−4. Following the
implementation of tensor2tensor1, we put layer normalization
inside the residual connection in practice, which is considered
to be more conducive to model convergence. The experiments
are all implemented with Pytorch 1.2.0 and an NVIDIA Tesla
1080Ti 11G GPU.

B. Experiments on single-font printed Chinese characters

In this section, we show the effectiveness and robustness
of RTN on printed Chinese characters dataset. We choose
27,533 Chinese characters in the GB18030 standard with four
common used font style (Song, Fangsong, Hei and Kaiti) as
dataset, which are composed of 500 radicals and 12 spatial
structures. And all characters are annotation in the ideographic
description sequence (IDS) format. For dataset splitting, we
choose 10,000 characters as the training set, 2,000 characters

1https://github.com/tensorflow/tensor2tensor
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Comparison of accuracy rate bewteen RTN and RAN with different caption
lengths on different font-style unseen Chinese characters respectively.

Font Style RAN(%) RTN(%)

ALL ≤ 6 > 6 ALL ≤ 6 > 6

Song 92.21 93.65 90.78 94.54 94.93 94.16
FangSong 91.04 91.98 90.11 94.21 94.84 93.57

Hei 90.41 91.34 89.50 92.79 92.41 93.11
Kaiti 88.57 90.59 86.58 91.31 92.96 89.67

as the validation set and the remaining 15,533 characters as
the testing set. A test character is considered as successfully
recognized only when its predicted caption exactly matches
the ground-truth. The input image size is set to 32× 32. Note
that our dictionary and dataset splitting are different with [6],
which lead to the results being not fully comparable.

1) Accuracy versus caption lengths: In order to figure out
whether the RTN model is more robust than RAN for recog-
nizing complicated samples, we divide the original test set into
three parts by the length of caption, i.e., the length of the IDS
sequence, represented by ALL, ≤ 6 and > 6 in Table III-B.
≤ 6 indicates the caption length of characters are less than or
equal to 6; > 6 indicates the caption length of characters are
greater than 6; and ALL includes all characters in the testing
set. We choose 6 as the boundary so that both sections contain
approximately 7,760 samples. Since the longer IDS sequences
are usually related to more complicated structures and radicals,
the difficulty of recognition is increasing. However, we achieve
the highest accuracy improvement on > 6 sub-set for all
datasets with different font styles. At the same time, RTN
also can consistently outperform RAN on the other two sub-
set. Here we employ the ensemble method to sustain stable
performance during testing procedure followed by [6].

2) Experiments on low-frequency radical categories: Al-
though RAN effectively alleviated the problem of recognizing
low-frequency Chinese characters by a compact set of radicals
and spatial structures learned in the training stage, some low-
frequency radicals still yield the dramatic decline of the recog-
nition accuracies for few-/zero-shot learning. Thus, in order to
evaluate the generalization ability on recognizing characters
with low-frequency radicals, we generate five testing sub-set
according to the number of times that a certain radical appears
in the training set and approximately 100 radical categories
are included in each sub-set. As shown in Fig. 2, when the
appearance frequency of radicals is greater than 10 times, the
recognition accuracy gaps between RTN and RAN are 1.35%,
1.67%, 2.42%, 2.44% respectively. When the appearance fre-
quency of radicals is lower than 10 times, the performance
of RTN still maintains a high accuracy (92.27%), whereas the
accuracy of RAN has decreased to 82.60%. Therefore, we can
believe that the self-attention mechanism improves the ability
of the model to learn the rules of composing characters with
low-frequency radicals during the training phase.

C. Experiment on natural scene Chinese characters

In this section, we evaluate our model in a natural scene
dataset, namely Chinese Text in the Wild (CTW) [19], which

92.27 %
94.25 % 94.29 % 94.91 % 94.59 

82.60 %

92.90 % 92.62 % 92.43% 92.15%

75.00

80.00

85.00

90.00

95.00

100.00

1-20 20-40 40-80 80-300 300+

Frequency of radicals

Accuracy(in %) RTN RAN

Fig. 2. Comparison of character-level accuracy between RTN and RAN with
respect to the frequency of radicals. Approximately 100 radical categories are
included in each range.

TABLE I
COMPARISON OF THE RECOGNITION PERFORMANCE OF RTN AND RAN

WITH DIFFERENT CAPTION LENGTHS ON THE CTW VALID DATABASE

Model Caption length

ALL ≤ 4 > 4

RAN 85.95% 89.33% 82.31%
RTN 87.51% 90.02% 84.80%

Accuracy↑ 1.56% 0.69% 2.49%

contains about 1 million Chinese characters in over 30,000
street view images. Compared with the printed Chinese char-
acter dataset, CTW dataset is more challenging due to its
diversity and complexity, which is beneficial for reflecting the
difference in robustness between RAN and RTN. Following
the official dataset splitting, we use 3,580 Chinese character
categories with 760,107 instances for training, 2,015 Chinese
character categories with 52,765 instances for validation and
103,519 instances for testing. Because the official testing set
is not released, some analysis are conducted on validation set.
Note that all input images are first resized to 32×32 resolution.

1) Accuracy versus caption lengths: Similar to the exper-
iment of Section III-B1, we also demonstrate the accuracies
of RAN and RTN with different caption lengths in Table I.
As for the caption length is lower than 4, the improvement is
only 0.69%. The majority of performance gains come from the
> 4 part, which indicates that RTN is also more effective than
RAN to recognize complicated characters in natural scenes.

2) Experiment on low-frequency character categories: In
this subsection, we compare the performance of the RTN and
RAN in overcoming the sample sparsity problem. Different
from the Section III-B2, here we are concerned with the
effects of character-level frequency in recognition. Specifi-
cally, we divide all testing Chinese character categories into
4 subsets based on the appearance frequency in the training
set. In Table II, < 20 indicates character categories that
appear fewer than 20 times while < 50 and < 100 indicate
character categories that appear fewer than 50 and 100 times
respectively; HF means high frequency and includes character
categories that appear more than 100 times; and ALL includes
all character categories in the testing set. The results show that

3717

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on August 16,2021 at 08:34:05 UTC from IEEE Xplore.  Restrictions apply. 



TABLE II
COMPARISON OF THE PERFORMANCE OF RAN AND RTN WITH THE

DIFFERENT APPEARANCE FREQUENCY OF CHARACTER-LEVEL
CATEGORIES.

Frequency ≤ 20 ≤ 50 ≤ 100 HF ALL
Categories 398 511 335 1044 2015
Samples 1128 1229 1663 48745 52765

RAN 25.88% 47.92% 65.12% 89.01% 85.95%
RTN 41.84% 61.51% 71.67% 89.76% 87.51%

distorted

occuled

raised

background

wordart handwritten

Fig. 3. Examples with 6 different attributes in the CTW database.

RTN is much better than RAN to deal with low-frequency
characters (< 20 and < 50), which both achieve over 14%
absolute increase on recognition accuracy. By contrast, the
improvement in the high frequency characters set is only
0.75%. The results of this experiment support the idea that
RTN can further enhance the few-/zero-shot learning ability
of RAN in natural scenes.

3) Analysis of robustness: To demonstrate the robustness
of RAN in natural scenes, Table III shows the performance
of RTN and RAN with respect to 6 attributes: occluded, com-
plex background, distorted, 3D raised, wordart characters and
handwritten characters. Character examples of each attribute
are illustrated in Fig. 3. We can observe that the recognition
accuracies of RTN are much better than RAN for all attributes,
especially in occluded, distorted and handwritten. The oc-
clusion attribute indicates whether the character is occluded
by other objects. To successfully identify characters with
occlusion attribute, the ability to predict the missing radicals
just relying on the potential language model is required. We
can believe that the ability of the decoder self-attention to
pay attention to every available caption symbol offers the
improvement. The distortion attribute indicates whether the
character is distorted, rotated or frontal. The considerable
improvement on recognizing distorted characters shows that
the transformer decoder is powerful to realize the spatial
attention, despite that no explicit spatial transformer module
is equipped in network unlike [20]. The handwritten attribute
is one of the most difficult categories to recognize due to
the confusion between similar characters, distinct handwriting

TABLE III
COMPARISON OF THE RECOGNITION PERFORMANCE OF RAN AND RTN

WITH RESPECT TO 6 ATTRIBUTES ON THE CTW TEST DATASET; ALL
INCLUDES ALL CHARACTERS ON THE TEST DATABASE.

Attributes Training Samples RAN(%) RTN(%)

All 760107 85.56 87.31
occluded 101393 71.55 73.94

background 218560 82.84 84.57
distorted 192481 71.55 83.60
3D raised 199066 76.17 78.06
wordart 65983 87.11 84.25

handwritten 6661 63.58 66.70

styles and missing internal structures. Nevertheless, RTN can
improve the recognition accuracy of handwritten characters by
nearly 12%. Thus, the stronger structure generalization and
robustness capability of RTN is proved.

D. Visualization analysis

In this section, we illustrate how the proposed model further
improves the ability of RAN through attention visualization.
Although the coverage-based attention model [21]–[23] used
in RAN is already very effective to address the over-parsing
and under-parsing problems for Chinese character recognition,
it is still difficult to parse all the radicals correctly for some ex-
tremely complicated characters. In Fig. 4, we demonstrate the
learning process of RAN and RTN to recognize a complicated
unseen Chinese character step by step, where the red color
represents the encoder-decoder attention probability in the
attention maps. We can observe that RAN only predicts two
radicals wrong in step 7-8 where the two same radicals have
different spatial locations, but in fact, there are several other
alignment errors existing between the image and the internal
radicals. Benefited from the powerful attention mechanism of
the Transformer, RTN can fully identify the correct character
caption and aligns the most relevant visual areas accurately.
In addition, misjudging the internal spatial structures among
the radicals is also one of the main reasons that why RAN
fails to predict caption exactly when dealing with complex
samples. We also use a case study to show this phenomenon
in Fig. 5. To detect the detailed spatial structures such as the
top-left-surround structure, RTN performs better than RAN.

IV. CONCLUSION

In this paper, we propose a transformer-based radical
analysis network to recognize Chinese characters. From the
quantitative results, we achieve significant improvements on
both printed Chinese character database and natural scene
database compared with RAN. Furthermore, by analyzing the
variation of recognition accuracy with complicated and low-
frequency character categories, we prove that RTN obtains
stronger generalization and robustness. In future work, we
plan to evaluate the zero-shot ability of recognizing scene
text or handwritten characters and investigate RTN’s ability
for Chinese text line recognition. We will also explore the
options to design more task-specific transformer-based model
and provide more interpretability for attention mechanism.
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Fig. 4. Attention visualization of recognizing a complicated Chinese character
step by step; the above is the process of RAN and the below is the process
of RTN; symbols below the images are the predicted radicals or structures.

Fig. 5. Comparison of RAN and RTN on aligning the internal spatial
structures; the above is the partial process of RAN and the below is the
partial process of RTN.
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