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Abstract

In this paper, a novel deep neural network (DNN) architecture
is proposed to generate the speech features of both the target
speaker and interferer for speech separation without using any
prior information about the interfering speaker. DNN is adopt-
ed here to directly model the highly nonlinear relationship be-
tween speech features of the mixed signals and the two compet-
ing speakers. Experimental results on a monaural speech sep-
aration and recognition challenge task show that the proposed
DNN framework enhances the separation performance in terms
of different objective measures under the semi-supervised mode
where the training data of the target speaker is provided while
the unseen interferer in the separation stage is predicted by us-
ing multiple interfering speakers mixed with the target speaker
in the training stage. Furthermore, as a preprocessing step in
the testing stage for robust speech recognition, our speech sep-
aration approach can achieve significant improvements of the
recognition accuracy over the baseline system with no source
separation.
Index Terms: single-channel speech separation, robust speech
recognition, deep neural networks, semi-supervised mode

1. Introduction
Speech separation aims at separating the voice of each speaker
when multiple speakers talk simultaneously. It is important for
many applications, such as speech communication and automat-
ic speech recognition. In this study, we focus on separating two
competing voices from a single mixture, namely single-channel
(or co-channel) speech separation. Based on the information
used the algorithms can be classified into two categories: unsu-
pervised and supervised modes. In the former, speaker identi-
ties and the reference speech of each speaker are not available in
the training stage, while the information of both the target and
the interfering speakers is provided in the supervised modes.

One broad class of single-channel speech separation is the
so-called computational auditory scene analysis (CASA) [1],
usually in an unsupervised mode. CASA-based approaches [2]-
[6], use the psychoacoustic cues, such as pitch, onset/offset,
temporal continuity, harmonic structures, and modulation corre-
lation, and segregate a voice of interest by masking the interfer-
ing sources. For example, in [5], pitch and amplitude modula-
tion were adopted to separate the voiced portions of co-channel
speech. In [6], unsupervised clustering was used to separate
speech regions into two speaker groups by maximizing the ra-
tio of between-cluster and within-cluster distances. Recently, a
data-driven approach [7] separates the underlying clean speech
segments by matching each mixed speech segment against a
composite training segment.

In the supervised approaches, speech separation is often

formulated as an estimation problem based on:

xm = xt + xi (1)

where xm, xt, xi are speech signals of the mixture, target speak-
er, and interfering speaker, respectively. To solve this under-
determined equation, a general strategy is to represent the s-
peakers by two models, and use a certain criterion to recon-
struct the sources given the single mixture. An early study in [8]
adopted a factorial hidden Markov model (FHMM) to describe a
speaker, and the estimated sources are used to generate a binary
mask. To further impose temporal constraints on speech signal-
s for separation, the work in [10] investigates the phone-level
dynamics using HMMs [9]. For FHMM-based speech separa-
tion, 2-D Viterbi algorithms and approximations have been used
to perform the inference [11]. In [12], FHMM was adopted to
model vocal tract characteristics for detecting pitch to recon-
struct speech sources. In [13, 14, 15] Gaussian mixture models
(GMMs) were employed to model speakers, and the minimum
mean squared error (MMSE) or maximum a posteriori (MAP)
estimator is used to recover the speech signals. The factorial-
max vector quantization model (MAXVQ) was also used to in-
fer the mask signals in [16]. Other popular approaches include
nonnegative matrix factorization (NMF) based models [17].

One recent work [18] uses deep neural networks (DNNs) to
solve the separation problem in Eq. (1) in an alternative way.
DNN was adopted to directly model the highly nonlinear re-
lationship between speech features of a target speaker and the
mixed signals. Eq. (1) plays the role of simulating a large
amount of the mixed speech and target speech pairs for DNN
training, given the speech sources of the target speaker and in-
terfering speaker. In this paper, we propose a novel architec-
ture of DNN which is designed to predict the speech features of
both the target speaker and interferer. This proposed frame-
work avoids specifying the difficult relationship based on E-
q. (1) using complex models for both the target and interfering
speakers and significantly outperforms the GMM-based separa-
tion in [15] due to the powerful modeling capability of DNN.
With this newly defined objective function aiming at minimiz-
ing the mean squared error between the DNN output and the
reference clean features of both speakers, the proposed dual-
output objective function leads to an improved generalization
capacity to unseen interferers for separating the target speech
signals. Meanwhile, without any prior information from the in-
terferer, the interference speech can also be well separated for
developing new algorithms and applications. For evaluating our
proposed approach, both speech separation and recognition ex-
periments were conducted on a monaural speech separation and
recognition challenge task initiated in 2006 [19, 20, 21], and
very promising separation results and improved recognition ac-
curacies were achieved with the proposed DNN approach.
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Figure 1: Development flow for speech separation system.

Figure 2: Development flow for speech recognition system.

The remainder of the paper is organized as follows. In Sec-
tion 2, we give a system overview. In Section 3, we introduce
DNN-based speech separation. In Section 4, we report experi-
mental results. Finally we conclude our findings in Section 5.

2. System Overview
In this section, both speech separation system and recognition
system are introduced. First, an overall flowchart of our pro-
posed speech separation system is illustrated in Fig. 1. In the
training stage, the DNN as a regression model is trained by us-
ing log-power spectral features from pairs of mixed signal and
the sources. Note that in this work there are only two speakers in
the mixed signal, namely the target speaker and the interfering
speaker. In the separation stage, the log-power spectral features
of the mixture utterance are processed by the well-trained DNN
model to predict the speech feature of the target speaker. Then
the reconstructed spectra could be obtained using the estimated
log-power spectra from DNN and the original phase of mixed
speech. Finally, an overlap add method is used to synthesize the
waveform of the estimated target speech [22]. Meanwhile, in
Fig. 2, the development flow of the speech recognition system is
given. In the training stage, the acoustic model using Gaussian
mixture continuous density HMMs (denoted as GMM-HMMs)
is trained from the clean speech using Mel-frequency cepstral
coefficients (MFCCs) under the maximum likelihood (ML) cri-
terion. In the recognition stage, the mixture utterance is first
preprocessed by the DNN model to extract the speech wavefor-
m of the target speaker. Then the normal feature extraction and
recognition is conducted. In the next section, the detail of two
types of DNN architectures are elaborated.

3. DNN-based Speech Separation
3.1. DNN-1 for predicting the target

In [18], DNN was adopted as a regression model to predict the
log-power spectral features of the target speaker given the in-
put log-power spectral features of mixed speech with acoustic
context as shown in Fig. 3. These spectral features provide per-

Figure 3: DNN-1 architecture.

ceptually relevant parameters. The acoustic context informa-
tion along both time axis (with multiple neighboring frames)
and frequency axis (with full frequency bins) can be fully u-
tilized by DNN to improve the continuity of estimated clean
speech while the conventional GMM-based approach do not
effectively model the temporal dynamics of speech. As train-
ing of this regression DNN requires a large amount of time-
synchronized stereo-data with target and mixed speech pairs,
the mixed speech utterances are synthesized by corrupting the
clean speech utterances of the target speaker with interferers at
different signal-to-noise (SNR) levels (here we consider inter-
fering speech as noise) based on Eq. (1). Note that the gener-
alization to different SNR levels in the separation stage can be
well addressed by a full coverage of a large number of the SNR
levels in the training stage.

Training of DNN consists of unsupervised pre-training and
supervised fine-tuning. Pre-training treats each consecutive pair
of layers as a restricted Boltzmann machine (RBM) [23] while
the parameters of RBM are trained layer by layer with the ap-
proximate contrastive divergence algorithm [24]. For super-
vised fine-tuning, we aim at minimizing the mean squared error
between the DNN output and the reference clean features of the
target speaker:

E1 =
1

N

N∑
n=1

∥x̂t
n(x

m
n±τ ,W , b)− xt

n∥22 (2)

where x̂t
n and xt

n are the nth D-dimensional vectors of estimat-
ed and reference clean features of the target speaker, respective-
ly. xm

n±τ is a D(2τ + 1)-dimensional vector of input mixed
features with neighbouring left and right τ frames as the acous-
tic context. W and b denote all the weight and bias parameter-
s. The objective function is optimized using back-propagation
with a stochastic gradient descent method in mini-batch mod-
e of N sample frames. As this DNN only predicts the target
speech features in the output layer, we denote it as DNN-1.
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Figure 4: DNN-2 architecture.

3.2. DNN-2 for predicting both the target and interference

Next we designed a new DNN architecture for speech separa-
tion which is illustrated in Fig. 4. The main difference from
Fig. 3 is that the new DNN can predict both the target and in-
terference in the output layer which is denoted as DNN-2. Pre-
training of DNN-2 was exactly the same as that of DNN-1 while
the supervised fine-tuning was conducted by jointly minimizing
the mean squared error between the DNN output and the refer-
ence clean features of both the target and interference:

E2 =
1

N

N∑
n=1

(∥x̂t
n − xt

n∥22 + ∥x̂i
n − xi

n∥22) (3)

where x̂i
n and xi

n are the nth D-dimensional vectors of estimat-
ed and reference clean features of the interference, respectively.
The second term of Eq. (3) can be considered as a regularization
term for Eq. (2), which leads to better generalization capacity
for separating the target speaker. Another benefit from DNN-2
is the inference can also be separated as a by-product for devel-
oping new algorithms and other applications.

3.3. Semi-supervised mode

In the conventional supervised approaches for speech separa-
tion, e.g., GMM-based method [15], both the target and inter-
ference in the separation stage should be well modeled by GM-
M with the corresponding speech data in the training stage. In
[18], it is already demonstrated that DNN-1 can achieve con-
sistent and significant improvements over the GMM-based ap-
proach in the supervised mode. In this paper, we mainly focus
on speech separation of a target speaker in a semi-supervised
mode for both DNN-1 and DNN-2, where the interferer in the
separation stage is excluded in the training stage. Obviously,
GMM cannot be easily applied here. On the other hand for the
DNN-based approach, multiple interfering speakers mixed with
a target speaker in the training stage can well predict unseen
interferers in the separation stage [18].

4. Experiments
Experiments were conducted on the SSC (Speech Separation
Challenge) corpus [19] for recognizing a few keywords from
simple target sentences when presented with a simultaneous
masker sentence with a very similar structure [20]. All the train-
ing and test materials were drawn from the GRID corpus [25].
There are 34 speakers for both training and test, including 18
males and 16 females. For the training set, 500 utterances were
randomly selected from the GRID corpus for each speaker. The
test set of the SSC corpus consists of two-speaker mixtures at a
range of target-to-masker ratios (TMRs) from -9dB to 6dB with
an increment of 3dB. For training DNNs, all the utterances of
the target speakers in the training set were used while the corre-
sponding mixtures were generated by adding randomly selected
interferers to the target speech at SNRs ranging from -10 dB to
10 dB with an increment of 1 dB.

As for signal analysis, all waveforms were down-sampled
from 25kHz to 16kHz, and the frame length was set to 512
samples (or 32 msec) with a frame shift of 256 samples. A
short-time Fourier transform was used to compute the discrete
Fourier transfore (DFT) of each overlapping windowed frame.
Then 257-dimensional log-power spectra features were used to
train DNNs. The separation performance was evaluated using
two measures, namely a short-time objective intelligibility (S-
TOI) [26], and perceptual evaluation of speech quality (PESQ)
[27]. STOI is shown to be highly correlated to human speech
intelligibility while PESQ has a high correlation with subjective
listening scores.

The DNN architecture used in all experiments was 1799-
2048-2048-2048-K, which denoted that the sizes were 1799
(257*7, τ=3) for the input layer, 2048 for three hidden layer-
s, and K for the output layer. K is 257 for DNN-1 and 514 for
DNN-2, respectively. The number of epoch for each layer of
RBM pre-training was 20 while the learning rate of pre-training
was 0.0005. For fine-tuning, the learning rate was set at 0.1 for
the first 10 epochs, then decreased by 10% after every epoch.
The total number of epoch was 50 and the mini-batch size was
set to 128. Input features of DNNs were globally normalized to
zero mean and unit variance. Other parameter settings can be
found in [28].

As for the recognition system, the feature vector consists of
39-dimensional MFCCs, i.e., 12 Mel-cepstral coefficients and
the logarithmic energy plus the corresponding first and second
order derivatives. Each word was modeled by a whole-word
left-to-right HMMs with 32 Gaussian mixtures per state. The
number of states for each word can be referred to [20].

4.1. Experiments on speech separation

Fig. 5 shows a STOI comparison of DNN-1 and DNN-2 for
one male (M) or female (F) target speaker under different input
SNRs in the semi-supervised mode. The number of interfering
speakers in the training stage was set to 27. The data amount
of mixed speech synthesized as the training set was about 140
hours for each DNN of the target speaker. All the mixtures with
those two targets on the test set were used for evaluation. The
performances of DNN-2 were consistently better than those of
DNN-1 at all SNR levels, which confirms that DNN-2 has better
generalization capacity than DNN-1.

Fig. 6 lists a STOI comparison of different approaches av-
eraged across all 34 target speakers on the test set. The number
of interfering speakers in the training stage was set to 10, which
resulted in about 50 hours of mixed speech for each target s-
peaker. Totally 34 DNNs were trained for all target speakers.
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Figure 5: Separation performance (STOI) comparison of DNN-
1 and DNN-2 for one male (M) and one female (F) target speak-
er under different SNRs in semi-supervised mode.

Figure 6: Separation performance (STOI) comparison of differ-
ent approaches averaged across all 34 testing target speakers.

Noted that both seen and unseen interfering speakers (compared
with those in the training set) were included on the test set for
evaluation. The method in [15], denoted as “GMM” approach,
was adopted for a performance comparison with our DNN ap-
proach. Obviously, DNN-2 yielded a very significant improve-
ments of STOI performance over both the unprocessed input
mixture and GMM approach. The performance gaps among d-
ifferent input SNRs for DNN-2 was much smaller than those in
the GMM approach, which indicates that the DNN-2 approach
is more effective under lower SNRs. For example, the STOI im-
provement from 0.69 to 0.8 was observed from GMM to DNN-2
at SNR=-6dB while the increment was only from 0.88 to 0.91 at
SNR=6dB. The corresponding PESQ performance comparison
given in Fig. 7 can also draw similar observations.

4.2. Experiments on robust speech recognition

Finally, the effectiveness of the proposed DNN-based separa-
tion approach is further verified for speech recognition. The
same configurations for DNN training as in Fig. 6 were adopt-
ed. In Table 1, we report the performance (word accuracy in %)
comparison of the baseline system and the DNN-2 preprocessed
system averaged across all female and male target speakers on
the test set. Very promising results were achieved using DNN-2
preprocessing under different SNRs for both female and male
target speakers, e.g., the relative word error rate reduction was
up to 83% at SNR=6dB and at least 54% at SNR=-9dB.

Figure 7: Separation performance (PESQ) comparison of dif-
ferent approaches averaged across all 34 testing target speakers.

Table 1: Performance (word accuracy in %) comparison of
baseline system and DNN-2 preprocessed system averaged
across all female and male target speakers on the test set.

Baseline DNN-2
Input SNR (dB) Female Male Female Male

6 45.69 52.20 90.48 92.11
3 31.03 36.83 83.93 86.56
0 21.26 24.39 78.57 82.11
-3 11.78 15.61 71.43 73.68
-6 9.20 11.22 65.48 65.43
-9 7.47 8.54 57.14 59.04

5. Conclusion and Future Work

In this paper, we have presented a novel architecture of DNN for
separating speech of both the target and the interfering speaker.
With the additional requirements of predicting the sppech fea-
ture of the interesting speaker we believe the proposed DNN-2
is more powerful than the baseline DNN-1 in speech separa-
tion. In the semi-supervised mode, it demonstrates a better gen-
eralization capacity for separating the target speaker while the
separated interference can be used for developing other algo-
rithm and applications. Our proposed approach also shows the
effectiveness for robust speech recognition as a preprocessing
step. Our ongoing research includes extending to single mix-
tures with more than two speakers, separating multiple target
speakers using one or more DNNs, and further improving the
recognition accuracy with other techniques.
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