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Abstract

We propose a novel speaker-dependent (SD) approach to
joint training of deep neural networks (DNNs) with an explicit
speech separation structure for multi-talker speech recognition
in a single-channel setting. First, a multi-condition training
strategy is designed for a SD-DNN recognizer in multi-talker
scenarios, which can significantly reduce the decoding runtime
and improve the recognition accuracy over the approaches that
use speaker-independent DNN models with a complicated joint
decoding framework. In addition, a SD regression DNN for
mapping the acoustic features of mixed speech to the speech
features of a target speaker is jointly trained with the SD recog-
nition DNN for acoustic modeling. Our experiments on the
Speech Separation Challenge (SSC) task show that the proposed
SD recognition system under multi-condition training achieves
an average word error rate (WER) of 3.8%, yielding a rela-
tive WER reduction of 65.1% from the proposed DNN pre-
processing approach under clean-condition training [1]. Fur-
thermore, the jointly trained DNN system generates a relative
WER reduction of 13.2% from the state-of-the-art systems un-
der multi-condition training.

Index Terms: multi-talker speech recognition, speaker-
dependent model, single-channel speech separation, deep neu-
ral networks, joint training

1. Introduction

In the mobile internet era, automatic speech recognition (ASR)
techniques are widely used in many speech-enabled applica-
tions. However, multi-talker ASR with a single microphone
is still quite challenging because of the coupled problems of
speech separation and ASR of poorly separated target speech.
Even with the availability of dual-microphone setting in most
of today’s mobile devices, the speech separation performance
is still unsatisfactory. As early as 2006, the monaural speech
separation and recognition challenge (SSC) [2] was launched
which aimed at recognizing speech of a target speaker given the
single-channel mixed speech corrupted by an interfering talker.
Historically, all the approaches to solving this problem could
be mainly divided into three categories. First, an interaction
between target and competing speech signals with their tem-
poral dynamics were modeled using factorial hidden Markov
model (FHMM) [3, 4, 5, 6] for separation, followed by a joint
decoding strategy for ASR. Second, non-negative matrix fac-
torization (NMF) [7, 8] was adopted for speech separation. Fi-
nally in [9, 10, 11], approaches based on computational auditory
scene analysis (CASA) to estimate a time-frequency mask of
each speaker have been proposed. Among all the submissions
to SSC, the IBM superhuman system [3], belonging to the first

978-1-5090-4294-4/16/$31.00 ©2016 IEEE

category, performed the best and even exceeded human listeners
on the challenge task.

Recent advances in deep learning [12, 13], especially deep
neural networks (DNN), have led to a great success in a num-
ber of speech processing areas. For example, the hybrid DNN-
HMM structure [14, 15, 16] was widely adopted in ASR sys-
tems for acoustic modeling in place of the traditional GMM-
HMM. In source separation, a series of DNN based approaches
[17, 18, 19] were also proposed to separate each target speaker
from mixed speech. Furthermore, for single-channel multi-
talk speech recognition, one remarkable work in [20] utilized a
novel DNN architecture to jointly model the two mixing speak-
ers with a weighted finite-state transducer (WFST) based de-
coder, which outperformed the IBM superhuman system.

However, both the state-of-the-art approaches in [3, 20]
use a joint decoding framework which requires an additional
computational complexity. Meanwhile, those methods cannot
be easily extended to scenarios with more than two competing
speakers. To alleviate these difficulties, we concentrate our at-
tention on extracting information of the target speaker which
is more relevant in source separation and ASR in multi-talker
scenarios. In [1], speaker-dependent (SD) DNN models were
designed for speech separation as a pre-processing module for
the subsequent speech recognition task using clean-condition
trained GMM-HMMs, yielding a better recognition accuracy
than the IBM system with a more efficient decoder. In this
study, we extend the speaker-dependent concept from speech
separation to multi-talker speech recognition.

Accordingly, a novel speaker-dependent DNN for joint
modeling of the front-end separation and back-end ASR is pro-
posed to separate and recognize the target speaker simultane-
ously. The main contributions are summarized as follows. First,
a multi-condition training strategy by synthesizing a large-scale
training set via very limited data from each speaker is adopted to
boost the speaker-dependent speech recognition performance in
the multi-talker scenario, achieving a significantly lower word
error rate (WER) and smaller runtime latency in comparison to
all the existing speaker-independent (SI) approaches on the SSC
task. Second, a speaker-dependent regression DNN for map-
ping the log mel-filterbank (LMFB) features of mixed speech
to speech of the target speaker is adopted as the front-end,
which is different from the proposed pre-processing DNN using
log-power spectra features [1]. Finally, the speaker-dependent
front-end DNN can be seamlessly concatenated and jointly
trained with the speaker-dependent back-end DNN for acoustic
modeling as a hybrid DNN architecture, which explicitly nor-
malizes the variability from other interfering speakers.

Experimental results on the SSC task show that our speaker-
dependent approach is quite robust to the interference of a com-
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Figure 1: SD recognition system in multi-talker scenarios.

peting speaker even in low target-to-masker ratio (TMR) condi-
tions. The best configured multi-condition system achieves an
average WER of 3.8% across different TMRs, yielding a rel-
ative WER reduction of 65.1% from the proposed DNN pre-
processing approach under clean-condition training [1]. Fur-
thermore, the jointly trained DNN system can generate a rel-
ative WER reduction of 13.2% from the state-of-the-art high-
performance systems under multi-condition traing.

2. System Overview

In Figure 1 we illustrate the proposed SD recognition sys-
tem in multi-talker scenarios. In the training stage, a speaker-
dependent multi-condition (SD-MC) training set is first de-
signed for a target speaker. Then the LMFB feature pairs of
mixed speakers and the target speaker are extracted from the
training data samples, which are used for joint training of the
speaker-dependent DNNs for speech separation and acoustic
modeling, denoted as SD-DNN-SS and SD-DNN-AM, respec-
tively, and finally a hybrid DNN (SD-DNN-JT) is generated.
In the recognition stage, as in the conventional procedure, the
LMFB features of the mixed speech are directly fed to the hy-
brid DNN, which internally extracts speech of the target speaker
using SD-DNN-SS and then recognizes its speech content ac-
cordingly. In the next section, the highlighted modules in Fig-
ure 1, namely the design of the SD-MC training set and the
proposed joint training procedure, will be elaborated.

3. Training of Speaker-Dependent DNNs
3.1. Design of a SD-MC Training Set

In the conventional SI ASR system, the multi-condition train-
ing strategy (e.g., [21]) is widely used to improve the robust-
ness in noisy environments. But for multi-talker scenarios, this
concept cannot be directly applicable because it is difficult to
differentiate the competing speakers. So in the IBM super-
human system, the clean-condition trained GMM-HMMs were
adopted with two streams of each speaker from the separation
module for subsequent joint decoding. Only in a recent work
[20], a DNN architecture to simultaneously model two speak-
ers at the output layer could accommodate the multi-condition
training strategy for SI recognition system. However, its flexi-
bility to more mixed speakers and runtime latency will still need
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Figure 2: Illustration of SD-DNN-SS.

to be addressed in real applications. In our proposed SD recog-
nition framework, as the ambiguity between speakers has been
reduced by focusing on the target speaker. The needed SD-MC
training set can be inherently designed with the following pro-
cedure: (i) In the time domain, the waveform of each target
speaker utterance is added with a time-synchronized segment of
different interfering speakers normalized by a specified TMR to
form a mixture utterance; (ii) By randomizing both the inter-
fering segments and the TMR levels, a large-scale SD-MC data
set can be synthesized even if only a very limited target speaker
data set is provided, e.g., about 15-minute training data for each
speaker for the SSC task.

For training of SD-DNN-AM with the synthesized SD-MC
training set, the labels of the mixture utterances are correspond-
ing to those of the underlying target speaker utterance. In this
way, the HMM s of the speech units are guided to learn the pho-
netic information of the target speaker while the speech seg-
ments of other interfering speakers are forced to be aligned to
the “non-speech” units, like the filler segments in keyword spot-
ting [22, 23]. With this SD recognizer, it can perform a "selec-
tive” recognition of speech segments corresponding to the target
speaker and ignore the segments of other competing speakers.

3.2. Training of Speech Separation DNNs

Although the SD-DNN-AM built with the SD-MC training data
can achieve a quite competitive recognition performance, the
interferences from other speakers as the irrelevant variabilities
are not explicitly addressed. Motivated by the pre-processing
approach to extract speech of the target speaker [1, 24], here
we adopt the DNN as a regression model to directly map the
features from the mixed speakers to the target. It can be consid-
ered as an irrelevant variability normalization step [25, 26] for
the SD recognizer. As shown in Figure 2, both the input and
output layers consist of multiple frames as the acoustic context.
And the estimated target LMFB features can be used to retrain
the SD-DNN-AM models.

For training SD-DNN-SS, the stereo set consisting of the
same SD-MC mixed data described in Section 3.1 with the un-
derlying target speaker data is adopted. We follow the proposed
approach in [24]. An unsupervised pre-training step via the re-



stricted Boltzmann machine (RBM) [27] is first conducted in
a layer-by-layer manner. Then with the pre-trained parame-
ters, supervised fine-tuning is performed with a minimum mean
squared error (MMSE) criterion between the DNN output and
the reference LMFB features of the target speaker:

N
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where 2”17 and 2”17 are the n™ D (27 + 1)-dimensional vec-
tors of estimated and reference LMFB features of the target
speaker, respectively. y” 17 is a D(27 + 1)-dimensional vec-
tor of input mixed speech features with neighbouring left and
right 7 frames as the acoustic context. W and b denote all the
weight and bias parameters. & is the regularization weighting
coefficient to avoid over-fitting. The objective function is op-
timized using back-propagation with a stochastic gradient de-
scent method in mini-batch mode of N sample frames.

3.3. Acoustic Modeling and Joint Training

To build the acoustic model SD-DNN-AM, we follow the recipe
in [14, 15, 28]. First, GMM-HMM s trained on clean utterances
of the target speaker are used to generate the frame-level senone
labels for the SD-MC data set. Then the layer-by-layer gener-
ative pre-training [15] followed by discriminative pre-training
[28] is conducted. Finally, the cross-entropy (CE) criterion is
adopted to update all the parameters.

So far, the SD-DNN-SS and SD-DNN-AM are separately
learned using different objective functions. However, the learn-
ing objective of SD-DNN-AM is closer to the recognition per-
formance. Meanwhile, the output layer of SD-DNN-SS can be
completely overlapped with the input layer of SD-DNN-AM. It
is straightforward to concatenate two DNNs to form a hybrid
DNN (SD-DNN-JT). And a joint training procedure as illus-
trated in Figure 3 can be described as follows.

Step 1: Train a SD-DNN-SS to eliminate the interferences of
other speakers. Meanwhile, the speech distortions of the
target speakers might be also generated.

Step 2: Train a SD-DNN-AM with the SD-MC training set as
an initial model. Then fine-tune all the parameters with
the SD-DNN-SS generated features.

Step 3: Concatenate SD-DNN-SS and SD-DNN-AM as one
SD-DNN-JT and fine-tune all the parameters of SD-
DNN-JT via the CE criterion. And the speech distortions
in Step 1 might be alleviated via this joint training step.

4. Experiments and Result Analysis

Our experiments were conducted on the SSC corpus [29]. The
challenge task was to recognize the keywords from simple tar-
get sentences when presented with a simultaneous masker sen-
tence with a very similar structure [2]. All the training and
test materials were drawn from the GRID corpus [30]. There
were 34 speakers for both the training and test sets, including
18 males and 16 females. For the training set, 500 clean utter-
ances were randomly selected from the GRID corpus for each
speaker. The test set of the SSC corpus consisted of two-speaker
mixtures at a range of TMRs from -9dB to 6dB with an incre-
ment of 3dB. The fixed grammar contains six parts: command,
color, preposition, letter (with W excluded), number, and ad-
verb. During the test phase, the speaker who uttered the color
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Figure 3: Illustration of the joint training procedure.

“white” was treated as the target speaker. The evaluation met-
ric was the WER on letters and numbers spoken by the target
speaker. Note that the recognition performances were evaluated
on the test mixture utterances, including combinations of the
same gender and different genders.

As for front-end and back-end processing, we follow most
of the configurations in [20]. First, 64-dimensional LMFB
features with a context window of 9 frames were adopted to
train both the SD-DNN-SS and SD-DNN-AM components.
The architecture of SD-DNN-SS was 576-2048-2048-2048-
576, which denote that the size was 576(64*9, 7=4) at the input
layer, 2048 for the 3 sigmoidal hidden layers, and 576 for the
output layer. Meanwhile, the SD-DNN-AM had 7 sigmoidal
hidden layers with 2048 hidden units in each layer and the fi-
nal soft-max output layer with 534 units corresponding to the
tied states of HMM. The mini-batch size was set to 256. Other
parameter settings can be referred to [24, 31, 32].

4.1. Experiments under Clean-condition Training

In the first set of experiments, both the performances of SI and
SD DNN-HMM systems on the test set of all 34 target speak-
ers under clean-condition training are compared in Table 1 as
the baselines. For the SI system, one set of DNN acoustic
model was trained using all 17,000 clean utterances from 34
target speakers. And for the SD system, 34 sets of DNNs were
separately trained using 500 clean utterances from each target
speaker. Obviously, it was a mismatch testing scenario under
clean-condition training. Although the SD system slightly out-
performed the SI system, both systems yielded very poor per-
formance, especially under low TMRs, which implied the ne-
cessity of multi-condition training.

4.2. Experiments under Multi-condition Training

In the following, 6 target speakers, including 3 males (IDs:
{9,15,32}) and 3 females (IDs: {11, 23,24}), were randomly
selected for training and testing, because training both SD-
DNN-SS and SD-DNN-AM with the SD-MC training set (typ-
ically more than 100-hour speech data) was time-consuming.



Table 1: WER comparison of SI and SD DNN-HMM systems
under clean-condition training on the test set of all 34 target
speakers with different TMRs.

[System | 6dB [ 3dB [ 0dB [ -3dB [ -6dB | -9dB |
SI 32.8 | 47.1 | 633 | 769 84.2 | 90.9
SD 315 | 456 | 59.1 | 72.8 82.3 89.8

Table 2: WER comparison of SD DNN-HMM systems under
clean-condition (Clean) and multi-condition (Multi) training on
the test set of 6 selected target speakers with different TMRs.

[System | 6dB | 3dB | 0dB | -3dB | -6dB | -9dB | Avg. |
Clean 323 | 472 | 619 | 783 85.2 | 923 | 66.2
Multi 19.7 | 239 | 254 | 282 | 31.7 394 | 28.1

We intend to complete experiments with all 34 speakers later.

Table 2 lists a WER comparison of the SD DNN-HMM sys-
tems under clean-condition and multi-condition training on the
test set of the 6 selected target speakers with different TMR lev-
els. For clean-condition training, 500 clean utterances of each
target speaker were used. Then each clean utterance was cor-
rupted with speech segments randomly selected from utterances
of other 33 interfering speakers normalized by a specified TMR
level. To cover the 6 TMR levels, ranging from -9 dB to 6 dB
with an increment of 3 dB, in the test set, 3000 (500 x6) mix-
ture utterances in total were adopted in multi-condition training
for each target speaker. First, the average WERSs of the 6 tar-
get speakers in different TMRs under clean-condition training
were similar to those of the SD system in Table 1, which show
the 6 randomly selected speakers have a good representation of
the set of 34 speakers, i.e., the results in the next three sub-
sections would represent the typical performances for the entire
34 speakers. Second, multi-condition training significantly re-
duced the average WER from 66.2% in clean-condition training
to 28.1%, yielding a relative WER reduction of 57.6%.

As described in Section 3.1, the design of the SD-MC train-
ing set can be scalable by using a huge amount of synthesized
mixture data. Table 3 shows a WER comparison of SD DNN-
HMM systems on the test set of the 6 selected target speakers
under multi-condition training with different amounts of train-
ing sets. Three multi-condition trained SD systems, S1, S2, and
S3, using different amounts of training data, respectively, were
compared. S1 was exactly the same as the Multi system in Ta-
ble 2. S2 was a modified version of S1, where each clean utter-
ance of the target speaker was repeatedly 34 times correspond-
ing to all 34 speakers giving a total of 102000 (500x34x6)
training utterances for training S2. In obtaining S3 we adopted
a different TMR setting from S2, namely ranging from -10
dB to 10 dB with an increment of 1 dB, generating a set of
357000 (50034 x21) training utterances approximately equal
to about 150 hours of speech data. To our surprise, WERs for all
TMRs were significantly reduced with the increase of training
data amounts in terms of the resolutions for interfering speak-
ers (from S1 to S2) and the TMR levels (from S2 to S3). the S3
system achieved an average WER of 3.8%, representing a rela-
tive WER reduction of 86.5% and most likely the best published
results so far in literature, from S1 with an WER of 28.1%.

4.3. Experiments with Jointly Trained DNN Models

Finally, on top of the high-performance S3 system, we examine
the effectiveness of our proposed jointly trained SD-DNN-JT

Table 3: WER comparisons of SD DNN-HMM systems on the
test set of 6 selected target speakers under multi-condition train-
ing with different amounts of training data ( 3000, 102000, and
357000 training utterances for S1, S2 and S3, respectively).

[System | 6dB | 3dB | 0dB | -3dB | -6dB | -9dB | Avg. |
S1 19.7 | 239 | 254 | 282 31.7 394 | 28.1
S2 6.3 7.1 9.1 9.8 10.6 11.2 9.1
S3 2.1 2.8 3.5 3.5 4.3 6.3 3.8

Table 4: WER comparison of the multi-condition trained SD-

DNN-AM system (Multi) and the jointly trained SD-DNN-JT

system (Joint) on the test set of 6 selected target speakers.

[ System | 6dB | 3dB | 0dB | -3dB | -6dB | -9dB | Avg. |

Muli [ 21 | 28 | 35 | 35 | 43 | 63 | 38
Joint 2.1 2.1 2.8 35 3.5 5.6 33
[1] 7 8.5 9.2 11.3 12.7 16.9 10.9

system as shown in Table 4. In most TMR levels, significant
performance gains could be observed from the SD-DNN-JT
system with an average WER of 3.3%, or a relative WER reduc-
tion of 13.2% from the multi-condition trained SD-DNN-AM
system. One more interesting observation was that the WERs
of the SD-DNN-JT system among the TMR range from -6 dB to
3 dB were exactly corresponding to the WERSs of the SD-DNN-
AM system from -3 dB to 6 dB, with an increment of 3 dB in
TMR, which indicated that the SD-DNN-JT could play the role
of improving the TMR of the input mixture utterances via the
SD-DNN-SS structure to reduce the impact of the interferences.
In comparison to a WER of 10.9% obtained with the proposed
pre-processing DNN approach in [1], a relative WER reduction
of 69.7% could be observed. Even the worst recognition per-
formance of SD-DNN-JT at -9 dB (a WER of 6.3%) was much
better than the best performance of the pre-processing DNN ap-
proach at 6 dB (a WER of 7%).

5. Conclusion and Future Work

In this paper, we have proposed a novel speaker-dependent ap-
proach to jointly performing speech separation and acoustic
modeling in one hybrid DNN architecture for single-channel au-
tomatic speech recognition of mixture speech in a multi-talker
scenario. Coupling with the multi-condition training strategy,
very promising speech recognition results on the SSC task were
achieved. As for future work, we will further verify the effec-
tiveness of the proposed framework on large vocabulary speech
recognition. Moreover, we will investigate more adverse envi-
ronments, including speaker interferences and background and
convolutional noises. Finally the feasibility of designing a SD
recognizer on portable devices will also be explored as one cus-
tomization example in the mobile internet era.
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