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Abstract—Accurate steering vector estimation is the key point for
a beamformer which suppresses the background noise to improve the
noisy speech quality and intelligibility. Recently, time-frequency masking
approach, which estimates the steering vectors that are utilized for a
beamformer, is popular in this field. In particular, we have proposed
an iterative mask estimation (IME) approach to improve the complex
Gaussian mixture model (CGMM) based beamforming and yield the best
system for multi-channel ASR in CHiME-4 challenge [1]. And in [2], we
also demonstrated that our algorithm could improve the speech quality
(PESQ) and intelligibility (STOI) for multi-channel speech enhancement.
In this study, we focus on the online processing of our IME algorithm for
multi-channel speech enhancement and ASR, which achieves comparable
performance to the offline version. In addition, a regression long short-
term memory recurrent neural network (LSTM-RNN) for a multiple-
target joint learning is utilized, denoted as LSTM-MT, to replace two
separate models in [2]. Experiments on the CHiME-4 simulation data
show that the online IME algorithm can improve the enhancement
performance, e.g., PESQ from 2.18 to 2.58 and STOI from 86.85 to 94.51,
which is comparable to those obtained by offline IME. Furthermore,
the LSTM-MT based post-processing can achieve an additional PESQ
improvement from 2.58 to 2.71. And experiments on the CHiME-4 real
data show that the online IME approach outperforms the online CGMM-
based approach, with a relative word error reduction (WER) of 14.49%.

I. INSTRUCTIONS

Recently, hands-free speech communication is more and more
popular for many applications, such as multi-microphone portable
devices and automatic speech recognition (ASR) systems, due to the
provided convenience and flexibility. However, the speech signals
recorded by distant microphones are often corrupted by reverberation
and background noise, leading to considerable degradation in speech
quality, particularly at low signal-to-noise ratios (SNRs). The key
point of speech enhancement algorithms is to reduce noise without
large distortions to the target speech. For multi-channel speech
enhancement, representative algorithms include multi-channel Wiener
filtering [3], blind source separation [4], and beamforming [5], [6].
And beamforming is a popular approach, e.g., the minimum variance
distortionless response (MVDR) beamformer. How to construct a
steering vector that represents the acoustic propagation [7] is the
key to achieving a high-quality beamformer. Conventionally, some
a priori knowledge is used to construct the steering vector, e.g.,
the geometry of the microphone array and the direction of arrival
(DOA) information. But its robustness often becomes a problem in
real-life environments where the acoustic propagation information
is not known and difficult to be estimated accurately. In [6], the
authors provide a new form of using the time-frequency (T-F) masks
estimated by a complex Gaussian mixture model (CGMM) to steer
a beamformer, which is demonstrated to be quite effective for ASR
in real-life situation.

On the other hand, deep learning techniques are becoming increas-
ingly popular in speech recognition areas [8], [9]. Different deep

neural network (DNN) architectures have been adopted in single-
channel speech enhancement for ASR, and they have demonstrated
a significant increase in recognition performance [10], [11], [12],
[13]. Some preliminary studies on using deep learning approaches for
multi-channel speech enhancement have also been conducted. In [14],
[15], the signals obtained using multi-channel speech enhancement
algorithms were directly used as the input signals for neural-network-
based enhancement models. In [16], bidirectional long short-term
memory (BLSTM) [17] was adopted to estimate signal statistics to
steer the beamformer for multi-channel speech enhancement. It was
also demonstrated in [18] that DNN-based source spectra estimation
is helpful for steering a multi-channel filter. In [19], they proposed
multi-channel enhancement joint with acoustic modeling in a DNN
framework. The raw time-domain waveform was directly modeled
by beamforming, which leveraged upon differences in the fine time
structure of the signal at different microphones to filter energy
arriving from different directions. In [20], an end-to-end framework
was proposed by encompassing microphone array signal processing
for noise suppression within the acoustic encoding network, allowing
the beamforming components to be optimized jointly within the
recognition architecture.

In this study, we focus on the online processing of our iterative
mask estimation (IME) algorithm [1] for multi-channel speech en-
hancement and ASR. This work is comprehensively extended from
our recent paper [2] with new contributions listed as follows. First, a
regression long short-term memory recurrent neural network (LSTM-
RNN) for a multiple-target joint learning is utilized, denoted as
LSTM-MT, to replace two separate models in [2]. Second, for our
online algorithm, the estimated spatial correlation matrix of target
and noise of previous batch is adopted to steer the beamformer of
current batch frame by frame. Accordingly the beamformed speech
is obtained only with current frame plus three-frame delay, while
in [21], the online CGMM-based beamformed speech is obtained in a
manner of the batch delay with quite a few frames. Finally, the spatial
correlation matrix of target and noise at each batch is estimated by
the combination of CGMM-based and LSTM-based approach. The
experiments on the CHiME-4 real data sets show that the online
IME approach outperforms the online CGMM-based approach, with
a relative word error reduction (WER) of 14.92%.

The remainder of this paper is organized as follows. In Section II,
we present an overview of the related work. In Section III, a detailed
description of the proposed online IME approach and LSTM-based
post-processing is given. Section IV shows the enhancement and ASR
performance of our proposed approach on the CHiME-4 challenge.
Finally, we summarize our findings in Section V.
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II. RELATED WORK

As shown in Fig. 1, our proposed offline IME approach in [2] was
used for the multi-channel speech enhancement. At the training stage,
two LSTM-based regression models, denoted as LSTM-IRM and
LSTM-DM, were trained for the ideal ratio mask (IRM) estimation
and direct mapping of the clean speech, respectively. At the test stage,
the beamformed speech and T-F mask of the whole utterance were
estimated by CGMM-based beamforming. Then, the IRM estimated
by the trained LSTM-IRM model was utilized to improve the mask
estimation. Next, the improved mask was adopted to steer the
beamforming. Finally, the beamformed speech was processed by the
trained LSTM-DM model.

Fig. 1. A block diagram of the offline IME approach.

III. ONLINE IME-BASED BEAMFORMER AND LSTM-BASED

POST-PROCESSING

A. Mask-based beamforming

We use minimum variance distortionless response (MVDR) beam-
former which maximizes the SNR of the beamformer output in each
frequency bin k, leading to the beamformer coefficients:

w(k) =
R−1

nn(k)g(k)

gH(k)R−1
nn(k)g(k)

, (1)

where g(k) is the signal propagation vector, which is in the same
form as the so-called steering vector in the literature of array
beamforming [7]; Rxx(k) and Rnn(k) are the spatial correlation
matrix of target and noise, respectively. In [6], an approach using a
speech spectral model based on CGMM was proposed to estimate the
time-frequency masks, denoted as MCGMM(k, l). The parameters of
the CGMM are full-rank spatial correlation matrices, which provide
some flexibility to address the spatial fluctuation of the steering
vector.

B. Architecture of LSTM-MT model

Fig. 2 shows the architecture of the LSTM-based multi-target
learning, which can be trained to learn the complex transformation
from the noisy log-power spectra (LPS) features to clean LPS features
and IRM, denoted as LSTM-MT. Acoustic context information along

Fig. 2. The architecture of LSTM-MT.

both the time axis and frequency axis (with full frequency bins) can
be fully exploited by the LSTM to obtain a good mask estimation in
adverse environments. The estimated IRMs are restricted to be in the
range between zero and one, which can be directly used to represent
the speech presence probability. The IRM as the learning target is
defined as follows.

Mref(k, l) = SPS(k, l)/ [SPS(k, l) +NPS(k, l)] , (2)

where SPS(k, l) and NPS(k, l) are clean and noise versions of power
spectral features at the T-F unit (k, l).

Because the training of this LSTM-MT model requires a large
amount of time-synchronized stereo-data with the IRM and LPS
of training data pairs, the training data are synthesized by adding
different types of noise to the clean speech utterances with different
SNR levels. Note that the specified SNR levels in the training stage
are expected to address the problem of SNR variation in the test stage
with real speech data. To train the LSTM-MT model, supervised fine-
tuning is used to minimize the mean squared error (MSE) between
both of the LSTM-LPS output X̂LPS(k, l) and the reference LPS
Xref(k, l), and the LSTM-IRM output M̂IRM(k, l) and the reference
IRM Mref(k, l), which is defined as

EMT =
∑
k,l

[
(X̂LPS(k, l)−Xref(k, l))

2

+(M̂IRM(k, l)−Mref(k, l))
2
]
.

(3)

This MSE is optimized using the stochastic gradient descent based
back-propagation method in a mini-batch mode.
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Fig. 3. The illustration of online and offline IME algorithm.

C. Online LSTM-MT based IME

In [21], the CGMM-based beamforming was extend to online
version for ASR, but the beamformed speech was obtained after
a batch time-delay. To solve this problem, we give a new form of
our proposed online LSTM-based IME algorithm for multi-channel
speech enhancement frame by frame. For an observed signal, we
consider its previous frames as a sequence of block-batches as show
in Fig. 3. n = 1, 2, , N is the batch index, and l = 1, 2, , L
is the frame index. In the beginning of each utterance, the first
batch (B1) usually contains more frames than the successive batches
to make sure this batch contains target speech, and the offline
IME algorithm [1] is utilized to estimate the initial Rxx(k, 1) and
Rnn(k, 1) with LSTM-MT. To avoid the delay, the noisy speech at
B1 is processed by LSTM-MT model with direct mapping output.
For the n-th (n > 1) batch Bn, the Rxx(k, n) and Rnn(k, n) are
recursively obtained by Rxx(k, n−1) and Rnn(k, n−1) according
to Eq. (5) and Eq. (6). And the M(k, l) is obtained by the LSTM-MT
model with IRM output. α is set to 0.75. Accordingly, the estimated
Rxx(k, n) and Rnn(k, n) in the current batch is mainly dependent
on Rxx(k, n − 1) and Rnn(k, n − 1) in the previous batch due
to the continuity of speech. Finally, the beamformed speech in the
(n+ 1)-th batch is obtained based on the estimated Rxx(k, n) and
Rnn(k, n) frame by frame.

β = α+ (1− α)M(k, l) (4)

Rxx(k, n) =βRxx(k, n− 1)

+ (1− β)
∑
l∈Bn

M(k, l)y(k, l)yH(k, l) (5)

Rnn(k, n) =βRnn(k, n− 1)

+ (1− β)
∑
l∈Bn

(1−M(k, l))y(k, l)yH(k, l) (6)

D. LSTM-MT based post-processing

In this section, we discuss the LSTM-based post-processing for
beamformed speech. For the beamformer, the original purpose is
to improve the SNR without destroying the target speech, and it
is difficult to completely eliminate the background noise. While for
the LSTM-MT based regression model with direct mapping output,
it can eliminate the background noise well, but the target speech
maybe destroyed at low SNR situations. So, in this study, the direct
mapping output of LSTM-MT is used for post-processing. And in
the following Section IV, the experiments can well confirm the above
analysis. The whole procedure of our proposed approach is presented
as Algorithm 1.

IV. EXPERIMENTAL EVALUATION

We conduct the experimental evaluation of our proposed approach
using the CHiME-4 data [22], which was designed to investigate real-
world scenarios where a person was talking to a mobile tablet device

Algorithm 1 Online iterative mask estimation and post-processing
Input: Multi-channel noisy speech, denoted as X(k, l).
Output: Online IME based beamformed speech X̂IME(k, l) for ASR

or post-processing speech X̂PP(k, l) for enhancement.
1: for all short-time frames l = 1, 2, ..., N do
2: for all frequency bins k = 1, 2, ..., F do
3: if l ∈ B1 then
4: Feed X(k, l) into LSTM-MT and obtain estimated speech

X̂PP(k, l) and IRM M̂IRM(k, l).
5: if l is the last frame of B1 then
6: Compute the initial Rxx(k, 1) and Rnn(k, 1) using

the M̂IRM(k, l) with offline IME algorithm.
7: end if
8: end if
9: if l ∈ Bn (n > 1) then

10: Use estimated Rxx(k, n−1) and Rnn(k, n−1) to obtain
the beamformed speech X̂IME(k, l) for ASR.

11: Feed X̂IME(k, l) into LSTM-MT and obtain post-
processing speech X̂PP(k, l) for enhancement.

12: if l is the last frame of Bn then
13: Obtain Rxx(k, n) and Rnn(k, n) according to Eq. (5)

and Eq. (6).
14: end if
15: end if
16: end for
17: end for

equipped with 6 microphones in a variety of adverse environments.
Four conditions were selected: café (CAF), street junction (STR),
public transport (BUS), and pedestrian area (PED). For each case, two
types of noisy speech data were provided: RealData and SimData.
RealData were collected from speakers reading the same sentences
from the WSJ0 corpus [23] in the four conditions. SimData were
constructed by mixing clean utterances with environmental noise
recordings using the techniques described in [24]. CHiME-4 offers
three tasks (1-channel, 2-channel, and 6-channel) with different
testing scenarios. In this paper, we focus only on the 6-channel case
to make the paper concise. The readers can refer to [22] for more
detailed information regarding CHiME-4.

For front-end configurations, speech waveform is sampled at 16
kHz, and the corresponding frame length is set to 512 samples (or
32 msec) with a frame shift of 128 samples. A short-time Fourier
transform (STFT) analysis is used to compute the DFT of each
overlapping windowed frame. To train the LSTM-MT model, the
257-dimensional feature vector was used for both LPS and IRM
targets. The PyTorch tools [25] was used for training. The LSTM-
MT architecture is 257-1024*2-514, namely 257 dimension for LPS
input features, 2 LSTM layers with 1024 cells for each layer, and
514 nodes for the output T-F LPS and IRM, respectively. The model
parameters were randomly initialized. The learning rate for the first
ten epochs was initialized as 0.01, then decreased by 0.9 after each
epoch, and the number of epochs was 30. To build the training data,
clean speech was derived from the WSJ0 corpus [23], and the 4
type noise provided by CHiME-4 in [26] were selected as our noise
database. 7138 utterances (about 12 hours of reading style speech)
from 83 speakers, were corrupted with the above mentioned 4 noise
types at three SNR levels (-5dB, 0dB and 5dB) to build a 36-hour
training set, consisting of pairs of clean speech and noisy speech
utterances.
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A. Enhancement experiments

In this section, we evaluated the online IME algorithm for speech
enhancement task. The size was set to 1000 ms for the first batch
and 320 ms for the succeeding batches to ensure that the first batch
contained the target speech signal. Specifically, the enhanced speech
at the first batch was obtained by LSTM-MT with direct mapping
output, so we could obtain the enhanced speech signal only with a
32 ms delay, while for the online CGMM-based beamformer in [21],
the delay of the algorithm was 1000 ms in this configuration.

TABLE I
THE AVERAGE PESQ AND STOI COMPARISON OF DIFFERENT SYSTEMS

ON THE TEST SETS OF SIMDATA.

Measure Methods BUS CAF PED STR AVG

PESQ

CH5 2.32 2.09 2.13 2.19 2.18
Online CGMM batch 2.78 2.53 2.63 2.59 2.63
Online CGMM frame 2.75 2.49 2.60 2.56 2.60

Offline IME 2.74 2.50 2.61 2.54 2.59
Online IME 2.73 2.48 2.60 2.52 2.58
Online +PP 2.81 2.59 2.76 2.69 2.71

STOI(%)

CH5 88.35 88.49 87.23 86.33 86.85
Online CGMM batch 96.63 93.84 94.26 92.91 94.41
Online CGMM frame 96.57 93.77 94.16 92.87 94.34

Offline IME 97.01 94.43 94.65 93.24 94.83
Online IME 96.77 93.98 94.29 93.02 94.51
Online +PP 95.41 93.74 94.06 92.71 93.98

Table I presents the performance comparison of online and offline
beamformers on the test sets of SimData. First, “CH5” denotes the
original speech from channel 5. “Online CGMM batch” denotes
the online CGMM-based beamformer reproduced according to [21],
which the beamformed speech is obtained with a batch delay. “On-
line CGMM frame” denotes the online CGMM-based beamformer
described in Section III, which the beamformed speech is obtained
with a frame delay. We could observe that “Online CGMM frame”
approach improved the performance, e.g., PESQ from 2.18 to 2.60
and STOI from 86.85 to 94.34 in average, compared to “CH5”.
Also, the performance of “Online CGMM frame” was comparable
to that of “Online CGMM batch”, while our proposed algorithm
was with a smaller delay. Second, “Offline IME” denotes the offline
IME beamformer in [2] and “Online IME” denotes the online IME
beamformer proposed in Section III. The proposed online IME
beamformer could obtain the comparable performance to offline IME
beamforer, e.g., PESQ from 2.59 to 2.58 and STOI from 94.83 to
94.51. Furthermore, the LSTM-based post-processing (“+PP”) could
achieve an additional PESQ improvement from 2.58 to 2.71 over the
online IME approach across all test sets, which demonstrated the
effectiveness of LSTM-based post-processing.

B. ASR experiments

In this section, we evaluated the online IME algorithm for ASR
task. The baseline ASR system officially provided in [22] was used
to evaluate the different beamformers on the test sets of RealData.
The acoustic model is a DNN-HMM discriminatively trained with
the sMBR criterion [27]. The input of the DNN-HMM is a 440-
dimensional feature vector extracted from channel 5, consisting of
a 40-dimensional fMLLR [28] with an 11-frame expansion. The
language models are 5-gram with Kneser-Ney (KN) smoothing [29]
for the first-pass decoding and the simple RNN-based language
model [30] for rescoring.

Table II presents the WER comparison of different beamformers
averaged on the test sets of RealData. First, we could observe
that “Online CGMM batch” and “Online CGMM frame” approaches
improved the performance, e.g., the relative WER reductions were

63.03% and 62.22%, respectively, compared with “CH5”. Second,
although the “Online IME” approach generated an average PESQ
and STOI similar to that of the “Online CGMM frame” approach,
the online IME approach provided an additional 14.49% relative
WER reduction. This result indicates that our proposed online IME
approach is quite effective to ASR. Third, although the proposed
online IME underperformed offline IME for ASR with a relative
WER increase of 5.9%, the enhanced speech could be obtained in an
online manner, namely without the whole utterance provided. Finally,
although “+PP” could improve the PESQ performance, it degraded
the ASR performance, e.g., WER from 7.61% (“Online IME”) to
8.25% (“+PP”). The results also confirm our previous analysis in
Section III that direct mapping method suppresses the background
noise well, but destroys the target speech at low SNR situations.

TABLE II
WER (%) COMPARISON OF DIFFERENT BEAMFORMERS AVERAGED ON

THE TEST SETS OF REALDATA.

Measure Methods BUS CAF PED STR AVG

WER

CH5 36.10 24.45 19.39 14.29 23.56
Online CGMM batch 12.77 6.79 7.21 8.09 8.71
Online CGMM frame 12.94 6.97 7.55 8.15 8.90

Offline IME 10.12 6.08 6.32 6.15 7.16
Online IME 10.53 6.34 7.01 6.56 7.61

+PP 11.84 6.87 7.54 6.76 8.25

V. CONCLUSION

In this paper, we extend our offline IME approach and post-
processing based on two LSTM regression models, LSTM-IRM and
LSTM-DM, to online IME approach and post-processing based on
one LSTM-based multi-target learning regression model with two
output, denoted as LSTM-MT. First, the proposed approach utilizes
the estimated Rxx and Rnn at the previous batch to steer the
beamformer of current batch frame by frame. So the beamformered
speech is obtained only with current frame plus three frame shift
delay, while in [21], the beamformed speech is obtained with a
batch delay. Second, although the online IME approach generates an
average PESQ and STOI similar to those of the online CGMM-based
approach, the online IME approach can provide an additional 14.49%
relative WER reduction. Finally, because direct mapping method can
suppress the background noise well, but it may destroy the target
speech at low SNR situations. In the future, the detailed analysis of
the influence of initial batch size and successive batch size on the
online IME performance will be explored, and also more powerful
neural network regression models will be utilized, e.g., BLSTM and
convolutional neural network (CNN).
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