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A Multi-Target SNR-Progressive Learning Approach
to Regression Based Speech Enhancement

Yan-Hui Tu"”, Jun Du"”, Tian Gao

Abstract—We propose a multi-target, signal-to-noise-ratio
(SNR)-progressive learning (SNR-PL) framework for regression
based speech enhancement (SE). At low SNR levels, it is often not
easy to directly learn the complicated regression required in SE.
We therefore decompose the original SE problem of mapping noisy
to clean speech features, with a large SNR gap, into a series of sub-
problems, each with a small SNR increment and presumably easier
to learn. In our configurations, each hidden layer of the proposed
regression neural network is guided to explicitly learn an interme-
diate target with a specified but small SNR gain. Tested on both
deep neural network (DNN) and long short-term memory (LSTM)
architectures, SNR-PL consistently outperforms the conventional
“black box” DNN framework in terms of both objective measure
superiority and network model compactness. Furthermore, with
the best configured LSTM-based SNR-PL model, we often observe
that the performance is easily saturated or even degraded when
increasing the number of intermediate targets, due to the fact that
useful information is lost in dimension reduction when involving
more target layers. Accordingly, to address this information loss
issue, we explore densely connected networks on top of the LSTM
structure where the input and the preceding intermediate targets
are concatenated together to learn the next target. Finally, to fully
utilize the rich and complementary information of intermediate
targets, a simple post-processing strategy is adopted to further
improve the performance. Evaluated on the simulation speech data,
experimental results in unseen noises cases demonstrate that the
proposed approach consistently performs better than the conven-
tional LSTM approach in terms of objective speech enhancement
measures for speech intelligibility and quality. Furthermore, when
evaluated on real data provided by the CHIME-4 Challenge for
automatic speech recognition (ASR) of noisy microphone array
speech, we show that the proposed approach with intermediate
outputs can directly improve the ASR performance, while the
conventional LSTM approach increases the word error rate.

Index Terms—SNR-progressive learning, speech enhancement,
neural network, dense structure, post-processing.

I. INTRODUCTION

PEECH enhancement has been an open research problem
for a long time. A key goal of speech enhancement is to
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improve speech intelligibility and quality in the presence of
noise signal. The background noise can cause the performance
degradation of voice communication, speech recognition and
hearing aids [1]. Numerous algorithms have been proposed over
the past several decades to solve this problem. The conventional
algorithms include spectral subtraction [2], Wiener filtering
[3], minimum mean squared error (MMSE) estimation [4] and
optimally-modified log-spectral amplitude (OM-LSA) speech
estimator [5]. Spectral subtraction is one of the first algorithms
proposed for noise reduction. An estimate of the clean speech
spectrum can be obtained by subtracting an estimated of the
noise spectrum from the noisy speech spectrum. However, the re-
sulting enhanced speech often suffers from an annoying artifact
called musical noise [6]. OM-LSA utilizes a minima controlled
recursive averaging (MCRA) noise estimation [7] approach to
avoid the musical noise. One limitation of the conventional
speech enhancement algorithms is that they can improve the
quality of speech but often cannot effectively improve the speech
intelligibility [1], [8].

For learning based methods, nonnegative matrix factoriza-
tion (NMF) was investigated in supervised and unsupervised
manners for speech enhancement [9], [10]. The basic idea is
to decompose noisy speech into bases and weight matrices for
speech and noise, respectively. NMF based speech enhancement
assumes that the subspaces of speech and noise are almost
orthogonal with each other, which actually overlap and thus it
leads to degraded performances for the estimated speech or noise
components.

Recently, with the introduction of deep learning [11], speech
enhancement has made great progress. The supervised deep
learning approaches have been investigated from the aspects of
learning targets, neural network structures, input features, etc.
Xu et al. [12], [13] proposed a deep neural network (DNN)
based regression framework to predict clean log-power spectra
(LPS) features [ 14] from noisy LPS features. Such a mapping has
the advantage that it makes no assumptions about the statistical
properties of the signals, and it can also handle non-linear and
highly non-stationary noises effectively.

Besides direct mapping, masking techniques were used to
make classification on time-frequency (T-F) units for speech
enhancement [15], [16], such as estimating the ideal binary mask
(IBM) or smoothed ideal ratio mask (IRM). Speech enhance-
ment by binary masks can be formulated as a binary classifica-
tion task, where each time-frequency bin is to be classified as
to whether the desired source. The hard IBM target is effective
to improve speech intelligibility, but predicting the soft IRM
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target is especially beneficial for improving objective speech
quality. IRM is in the range of [0, 1], which can be considered
as a suppression gain at each time-frequency unit. The final
enhanced features are obtained as the element-wise product
of estimated IRM and noisy features. In addition to the direct
prediction of mask, Huang er al. [17], [18] investigated joint
optimization of masking functions and neural networks with
an extra masking layer. DNN is a very generic model and has
been applied successfully for speech enhancement. Due to the
sequential nature of speech, recurrent neural networks (RNNs)
with long short-term memory (LSTM) [19] have been verified
more suitable for speech enhancement [20]-[25]. In order to
utilize the structure information of speech, convolutional neural
networks (CNNs) [26] were investigated for speech enhance-
ment in the frequency domain [27], [28] and the time domain
[29]. Recently, WaveNet [30], [31] were proposed to model the
raw clean audio waveforms, and this method could avoid the
performance loss caused by the reconstruction of clean speech.

One key point of the deep learning approaches is the gen-
eralization capability to unseen noises, unseen speaking styles
and low SNR conditions. To enhance the capability, a set of
noise types and dynamic noise aware training approach were
investigated [13], [32]. Kim et al. aimed at a fine-tuning scheme
at the test stage to improve the performance of a well-trained
DNN [33]. Meanwhile, multi-task learning (MTL) has also
been adopted in speech enhancement. In [34], a multi-objective
framework was proposed to improve the generalization capa-
bility of regression DNN. Based on MTL method, Jiang et al.
[35] employed DNN-based speech denoising with IBM as the
targets at different time-frequency scales simultaneously and
collaboratively.

Focusing on the challenges of speech enhancement in low
SNR conditions, a joint framework combining speech enhance-
ment with voice activity detection (VAD) was proposed in [8],
[36] to increase the speech intelligibility. In this framework,
first two DNNs for speech enhancement were trained to process
speech segments and non-speech segments, respectively. Then
a VAD DNN was employed to integrate the results of two
sub-DNNs, which could be considered as an implementation
of ensemble learning. In [37], Zhang and Wang proposed a
deep ensemble network for monaural speech enhancement. They
used multi-context networks to integrate temporal information
at different resolutions. Multiple modules were stacked to con-
struct an ensemble, each performing multi-context masking or
mapping.

Similar to ensemble learning, another notable machine learn-
ing strategy is the curriculum learning [38] originated from cog-
nitive science. The basic idea s to start small, learn easier aspects
of the task or easier sub-tasks, and then gradually increase the
difficulty level. Curriculum learning is related to MTL where
the initial tasks are boosted to guide the learner for the better
achievement on the final task. However the motivation of MTL
is to improve the generalization of the target task by leveraging
on other tasks.

In this study, inspired by curriculum learning, we propose
a novel SNR-progressive learning (PL) framework to im-
prove the speech intelligibility of neural network based speech
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enhancement especially in low SNR environments. The whole
training process is decomposed into multiple sub-training stages
with different training targets corresponding to different SNRs.
At each sub-training stage, the new sub-network consists of an
input layer, a hidden layer and an output layer. The input of the
new sub-network are the training target in the preceding layer,
and the output is the training target in the current layer with a
specific SNR gain. The subproblem solving in each stage can
boost the subsequent learning of the next stage. We apply PL to
two commonly used neural networks DNN and LSTM for speech
enhancement, namely DNN-PL and LSTM-PL. It is observed
that PL consistently outperforms the conventional “black box”
framework in terms of both objective measure and compact
model design. Furthermore, on the best configured LSTM-PL
model, we observe that the performance is easily saturated or
even degraded by increasing the number of intermediate targets,
which can be explained as that the useful information is lost due
to the dimension reduction when involving more target layers.
Accordingly, we explore the densely connected structure on top
of LSTM-PL where the input and the preceding intermediate
targets are spliced together to learn the next target, which can
alleviate the information loss problem in original PL structure.
Finally, to fully utilize the rich and complementary information
of intermediate targets, a simple post-processing strategy is
adopted to further improve the performance. Evaluated on WSJO
corpus with read speech, experimental results on unseen noises
demonstrate that the proposed approach can consistently and
significantly outperform the conventional LSTM approach in
terms of objective measure for speech intelligibility, and also
yield remarkable gains for other measures. Moreover, we design
a highly mismatched test set involving the AMI corpus with
conversational speech, where the conventional LSTM approach
can even generate worse speech intelligibility performance than
the unprocessed noisy speech. Our approach shows the strong
and stable generalization ability.

This work is extended from our previously and recently dis-
closed versions [39], [40] with the new contributions as follows.
First, DNN-PL in [39] and LSTM-PL [40] are unified into a gen-
eral neural network framework and compared theoretically and
experimentally. Second, the motivations of SNR-progressive
learning, dense structure, and post-processing are elaborated in
more technical detail. Moreover, a compact version for densely
connected progress learning is newly proposed. Third, more
experimental analyses on why PL leads to good performances
and compact network structures are given. Finally, we design a
new set of experiments on a highly mismatched test set to show
the strong generalization capability of the proposed approach.

II. MULTI-TARGET SNR-PROGRESSIVE LEARNING

In this following, we describe neural network based SNR-
progressive learning in detail. As we all know, the purpose of
speech enhancement is to estimate clean speech signals from
the observed noisy speech signals. Specific to the deep learning
based algorithms, neural networks can be adopted to implement
this process [12]. As shown on the left of Fig. 1, neural networks
are usually guided to map the input noisy speech to the output
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Fig. 1. Anillustration of SNR-progressive learning.

clean speech, which is denoted as direct mapping. However,
the direct mapping often leads to performance degradation
in low SNR conditions [8] as the relationship between the
high-dimensional input and output speech features are quite
complicated to be learned as a black box. To address this issue,
we propose a novel neural network based SNR-progressive
learning as shown on the right of Fig. 1. The basic idea is to start
small, learn easier aspects of the task or easier sub-tasks, and then
gradually increase the difficulty level. Specific to neural network
training, the direct mapping process from noisy speech to clean
speech is decomposed into multiple stages with a specific SNR
gain achieved in each stage. The SNR gains in each stage can
boost the subsequent learning of the next stage. For example,
if the input SNR of noisy speech is 0 dB, the learning target
of the direct mapping system is clean speech (infinity dB). As
for SNR-progressive learning, the intermediate learning targets
with higher SNR (e.g., 10 dB or 20 dB) will be inserted as
new layers. Meanwhile, the progressive concept has also been
investigated by other researchers on reinforcement learning tasks
[41], where the progressive networks retain a pool of pre-trained
models throughout training and learn lateral connections from
these to extract useful features for the new task. Unlike the
lateral connection used in [41], SNR-progressive learning for
speech enhancement is applied in a straightforward manner. The
features from the preceding networks have clear definitions, and
are conveyed to the next task via vertical connection.

For the implementation of SNR-progressive learning, a gen-
eral neural network architecture is illustrated in Fig. 2. The acti-
vation function is linear in the target layers and non-linear in the
other hidden layers (e.g., DNN or LSTM layers). All the target
layers are designed to learn intermediate speech with higher
SNRs (from Target 1 to Target K — 1) or clean speech (Target
K). This stacking-style neural network can learn multiple targets
progressively and efficiently. In our previous work [39], we
have applied SNR-progressive learning on DNN architecture
with fully connected hidden layers successfully. Experimental
results demonstrated that SNR-progressive learning could ef-
fectively improve speech intelligibility especially in low SNR
environments. Nonetheless, the DNN-PL in [39] only considers
the frame expansion in the input layer while all the target layers
just use one central frame. The fully connected architecture can
not well utilize the important temporal information from the
intermediate targets.
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Fig. 2. Neural network based SNR-progressive learning for speech enhance-
ment.

First, the learning target of intermediate layer & in the wave-
form domain can be expressed as:

o (t) = s(t) + ni(t) = s(t) + grno(t) e))

where s(t) is the ¢-th sample of clean speech in time domain.
nk(t) and x (t) are the ¢-th sample of noise signal and reference
target speech in the time domain for & target layer, respectively
(k > 0). g is an utterance-level coefficient to control the SNR
for k-th target layer while no (¢) is the noise signal for input layer.
We can define that x* is the n™ D-dimensional LPS feature
vector of learning target in intermediate layer k extracting from
2 (t) in time domain.

Then, as for optimizing the parameters in Fig. 2, an MTL-
based weighted MMSE criterion with K target layers is designed
to update the randomly initialized parameters.

K
=> B )
k=1

N
1
B = S IFRGE AR O

n=1

where oy, is the weighting factor of objective function for k"
target layer. FF- (%51 APL) is the neural network function for
k™ target using the prev1ously learned intermediate target X1,
and AF" represents the parameter set of the weight matrices and
bias vectors before k™ target layer, which are optimized in the
manner of BP (for DNN) or BPTT (for LSTM) with stochastic
gradient descent, with N representing the mini-batch size. The

output of target layer k is expressed in a nested way as:
]: ( sk—1 APL)

4)
= FIN(FP L FPERY AR, AR

), AL
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Fig. 3. Anillustration of the LSTM block.

To improve the model capability of the speech feature se-
quence, LSTM [19], [42] seems to have a natural advantage to
capture the long-term contextual information by using recursive
structures between the previous frames and the current frame.
The central idea of LSTM is to introduce a cell state variable
alongside the RNN hidden activation which contains a series
of gates to dynamically control the information flow. Fig. 3
illustrates a single LSTM memory block.

When SNR-progressive learning is introduced to LSTM case,
the whole network architecture for speech enhancement is also
illustrated in Fig. 2. For the input and multiple targets, LSTM
layers with the dotted arrow on the units are used to link between
each other. SNR-progressive learning and LSTM network seem
like a perfect match because the sub-network from the Input
layer to Target layer 1 and the sub-networks from the interme-
diate target to the next target have the same recursive structure
which can fully utilize the temporal information from the input
and intermediate learning targets by LSTM layers automatically.

III. IMPROVEMENTS TO LSTM-BASED SNR-PL

Through the above analysis, we believe LSTM is more suit-
able than DNN for SNR-progressive learning. In the follow-
ing we focus our discussion only on improvements of SNR-
progressive learning over the LSTM-PL architecture. Although
the preliminary experiments show that LSTM-PL is superior to
the conventional LSTM in terms of both objective measures and
compact design, we observe that the performance of LSTM-PL
architecture is easily saturated and even degraded by increasing
the number of intermediate targets, which can be explained as
that the useful information is lost due to the dimension reduction
(the dimension of target layers is much smaller than that of hid-
den layers) when involving more target layers. Accordingly we
present the densely connected SNR-progressive learning where
the input and the estimations of intermediate targets are spliced
together to learn the next target for making full use of the rich set
of information from the multiple learning targets. Furthermore,
we also propose post-processing of multiple targets to leverage
upon the set of enhanced signals in the enhancement stage.

A. Densely Connected SNR-PL

Recently, the densely connected structure has also been in-
vestigated in convolutional network architecture, namely dense
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Fig. 4. LSTM-based densely connected SNR-progressive learning.

convolutional network (DenseNet) [43], which has shown ex-
cellent results on image classification tasks. It introduces direct
connections between any two layers with the same feature-map
size. For each layer, the feature-maps of all preceding layers
are used as inputs, and its own feature-maps are used as inputs
into all subsequent layers. Takahashi et al. [44] has extended
the DenseNet to tackle the audio source separation problem by
introducing multi-scale DenseNet with block skip connection
and transposed convolution, and applying it to each frequency
band. Such a dense connectivity enables all layers to receive the
gradient directly and to reuse features computed in the preceding
layers.

Different from the CNN-based DenseNet descried above, the
proposed densely connected SNR-progressive learning structure
in this study is implemented on the LSTM network and the fea-
tures computed in the preceding layers have a definite physical
meaning as illustrated in Fig. 4. For instance, in the learning
process of Target K, the input and the estimates of Target 1,
Target 2, ..., Target K — 1 are concatenated together and then
passed up to the next sub-network which can simultaneously
see many forms of expressions for input and enhanced speech.
In this way, the information loss problem discussed above can
presumably be alleviated.

Since multiple outputs are estimated in densely connected
SNR-PL, a weighted MMSE criterion in terms of MTL with K
target layers is also designed to optimize all network parameters
randomly initialized as follows:

K
EPLD _ Z ay, EFLP (5)
k=1

N
1 L0 o e
I F o E U TR LV B RO

n=1
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where X% and x* are the n™ D-dimensional vectors of estimated
and reference target LPS feature vectors for k" target layer,
respectively (k > 0), with N representing the mini-batch size.
%Y denotes the n™ D-dimensional vector of input noisy LPS
features. Fr-P(x0, %L ... xF=1 APLD) is the neural network
function for k™ target with the dense structure using the previ-
ously learned intermediate targets from X to x*~!, and AP
represents the parameter set of the weight matrices and bias
vectors before k™ target layer, which are optimized in the manner
of BPTT with gradient descent.

The experiments demonstrate that the proposed dense struc-
tures indeed improve the performance of LSTM-PL by using
more intermediate targets. But the computational complexity
and the model size will be also dramatically increased with a
large K. To design a compact version for densely connected
SNR-PL, we only concatenate the two latest intermediate targets
to learn the next target. The corresponding weighted MMSE
criterion is defined as:

K
EPLDC — Z akE]}:LDC (7)
k=1

N
1
BPC = S FPRCGRE 2 &5 AR bR @)
n=1
where the main difference from Eq. (5) and Eq. (6) is that the
network function FPEPC (%52 gk=1 APLDC) jg only dependent

on two targets X2 and X571, For k =1, FPLPC refers to
PLDC (40 A PLDC
F1o0 (%, A7),

B. Why SNR-Progressive Learning?

Recently, the ResNet [45] which aims to address the degra-
dation problem with the network depth increasing is widely
applied. And the authors also demonstrate that it is easier to
optimize the residual mapping than to optimize the original
mapping. And more detailed description about it can be found
in [45]-[47]. Based on the above analysis, the whole optimized
process can be seen as implicit learning. The intermediate targets
justonly represent residuals and have no physical meanings. The
advantage of SNR-progressive learning is that multiple interme-
diate targets with different SNRs are provided. We examine that
whether the SNR-PL network can achieve the original goal in
Fig. 1, namely generating the SNR gain from each hidden layer.
InFig. 5, the average SNR gain with the variance generated from
each hidden layer across the utterances of the cross validation
(CV) setand the test set at —5 dB input SNR. 100 utterances with
the seen noise types of the training stage are randomly selected
from the CV set while another 100 utterances with unseen noise
types (factory and white noises) are also randomly selected from
the test set. The densely connected LSTM-PL network with
K = 5target/hidden layers listed in Table I is used. Accordingly
5 sets of SNR gains are generated from 5 hidden/LSTM layers
as shown in Fig. 5. For both CV and test sets, the generated
SNR gains in the enhancement stage are closer to the oracle
ones (5 dB) setting in the training stage when the hidden/target
layers are closer to the input layer. For example, the average
SNR gain from the hidden layer 1 (H1) on the CV set is much
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layer across all the utterances of the cross validation (CV) set and the test set
(with factory and white noises) at —5 dB input SNR. The densely connected
LSTM-PL network with K = 5 target/hidden layers listed in Table I is used.

TABLE I
TARGET SNR GAIN CONFIGURATIONS OF SNR-PL SYSTEMS
WITH DIFFERENT LEARNING TARGETS

K ‘ SNR Gain for the intermediate target

2 10dB (Target 1)

3 10dB (Target 1-2)

5 5dB (Target 1-4)

7 2.5dB (Target 1-4), 5dB (Target 5-6)

larger than those from other hidden layers and the corresponding
variance of the SNR gains is much smaller which indicates the
stability across different utterances. Furthermore, the SNR gains
on the test set are consistently smaller than those on the CV set,
which is reasonable as there is the generalization issue for the
unseen noise types of the test set. Overall, the LSTM-PL network
can indeed gradually improve the SNR of input noisy speech as
we intended in our design. And the intermediate targets can
be utilized for improving the speech enhancement and speech
recognition performance.

C. Post-Processing

In this section, we aim at further improving the performance
via post-processing of multiple targets with rich information in
the enhancement stage. On the test set we have more interest-
ing observations, especially for the low SNR cases. Although
the final target K has the highest SNR, the aggressive noise
reduction goal often leads to more speech distortions. Other
targets close to target K with relatively lower SNRs can achieve
better speech preservation. This complementarity motivates us
to design a simple post-processing strategy to fully utilize the
rich information of multiple learning targets as follows:

&K +x51/2, K=2

9
(xE 4+ B4 xK-2)/3 K >2 ©)

Xn =
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Fig. 6. Spectrograms with the recognition results of an utterance from the real
test set of CHiME-4 challenge with different target outputs.

where %¥(k = K — 2, K — 1, K) are the n D-dimensional
LPS feature vectors of the top three target layers and X,, is
the post-processing result. The reason why we select the top
three results is they have sufficiently high SNRs according to
the average SNR gains (less than 1 dB) of H4 and HS5 on the
test set in Fig. 5. Finally a good tradeoff of noise reduction and
speech preservation can be made.

D. Application to Robust ASR

Based on the description of Section III-C, the intermediate
targets can not eliminate the background noise completely,
but it can achieve better speech preservation comparing to the
final target K. So for the different intermediate targets, they
can achieve different tradeoffs between the noise suppression
and speech preservation. For the popular recognition system
under multi-condition training, it is robust to noise in relative
high-SNR cases. So it is more important to feed the recognition
system with less distorted speech from the enhancement model.

Fig. 6 plots the spectrograms with recognition results of an
utterance from the real test set of CHiME-4 challenge with
different target outputs. Fig. 6(a) presents the recognition of
original noisy speech. The recognition error rate of noisy is
100% because of the real background noise. The noise reduction
effectiveness of SNR-PL relies on the different target layer
outputs, as shown in Fig. 6(b)—(d). Although the output of Target
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layer 1 (PL-Dense-3T-T1) can not eliminate much noise, it can
better preserve target speech comparing to Fig. 6(c) and (d).
Both high-level background noise of noisy speech and speech
distortions introduced by enhancement algorithm can lead to
recognition error, shown in Fig. 6(a), and Fig. 6(c)—(d), respec-
tively. It seem that the key point of enhancement algorithm for
ASR is to find a best trade-off between noise suppression and
speech preservation, shown in Fig. 6(b) yielding a totally correct
recognition result.

IV. EXPERIMENT ON SPEECH ENHANCEMENT

We demonstrate the effectiveness of SNR-progressive learn-
ing with dense structure and post-processing based on speech
enhancement metrics, short-time objective intelligibility (STOI,
in %) [48], perceptual evaluation of speech quality (PESQ) [49]
and source-to-distortion ratio (SDR, in dB) [50].

A. Implementation Details

115 noise types used in [39] were chosen as our noise
database. Clean speech was derived from the WSJO corpus [51].
7138 utterances (about 12 hours of reading style speech) from
83 speakers, denoted as SI-84 training set, are corrupted with the
above-mentioned 115 noise types at three SNR levels (—5 dB,
0 dB and 5 dB) to build a 36-hour training set, consisting of
pairs of clean and noisy utterances. The 330 utterances from 12
other speakers, namely the Nov92 WSIJ evaluation set, were
used to construct the test set for each combination of noise
types and SNR levels (=5 dB, 0 dB, 5 dB, 10 dB). Five unseen
noises from the NOISEX-92 corpus [52], namely babble, factory
(factoryl, factory2), destroyer engine, m109 and white noises
were adopted for testing.

As for the front-end, speech waveform is sampled at 16 kHz,
and the corresponding frame length is set to 512 samples (or
32 msec) with a frame shift of 256 samples. A short-time Fourier
analysis is adopted to compute the DFT of each overlapping
windowed frame. Then the 257-dimensional LPS features nor-
malized by global mean and variance are employed to train
neural networks. The results in the study are based on using
MSE loss between enhanced and clean signal log-power-spectra
and potentially the results may be different using other loss
functions such as magnitude spectrogram domain losses. 2048
hidden nodes are used for each DNN layer while 1024 cells are
used for each LSTM layer. For the ResNet, one LSTM layer with
1024 cells is used to connection a residual connections layer and
the number of the hidden layers is 5.

For SNR-PL systems, one LSTM or DNN layer is used to
connect each pair of the input/target or target/target layers. The
parameter o in Egs. (2), (5) and (7) is set as follows: ax =
1.0;a,, =0.1,(k=1,..., K — 1). For configuring the target
layers and SNR gains, we investigate several systems as shown
in Table I in this study. The Microsoft Computational Network
Toolkit (CNTK) [53] is employed for neural network training.

B. DNN-PL vs. LSTM-PL

Table II gives the average STOI comparison of DNN/LSTM
(all with 3 hidden layers) systems on the test set across five

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on November 29,2020 at 22:44:13 UTC from IEEE Xplore. Restrictions apply.



1614

TABLE I
THE AVERAGE STOI COMPARISON OF DNN/LSTM (ALL WITH 3 HIDDEN
LAYERS) SYSTEMS ON THE TEST SET ACROSS FIVE UNSEEN NOISES. Ny IS
THE MODEL SIZE NORMALIZED BY DNN BASELINE SYSTEM

System | Nm | -5dB | 0dB | 5dB | 10dB
Noisy - 64.7 | 76.5 | 86.7 93.2
DNN Baseline 1 65.5 | 79.2 | 87.6 91.9
DNN-PL 0.5 68.0 | 80.4 | 87.8 91.7
LSTM Baseline 1.8 67.3 81.1 89.0 93.1
LSTM-PL 1.3 69.2 | 82.0 | 894 93.3

unseen noises at different SNR levels. Noisy and DNN/LSTM
Baseline represent the systems of unprocessed noisy speech
and the conventional DNN/LSTM for speech enhancement,
respectively. DNN-PL and LSTM-PL are the systems of DNN
and LSTM based SNR-PL, respectively. From Table II, several
observations could be made. First, DNN-PL improved STOI ef-
fectively at —5 dB and 0 dB when compared with DNN Baseline.
However, both the DNN Baseline and DNN-PL underperformed
the unprocessed system at relatively high SNR, e.g., 10 dB.
When LSTM is employed, the degradation at 10 dB has been
reversed. LSTM Baseline consistently yielded the average STOI
gain of more than 1 over DNN Baseline for all SNRs. On top of
the LSTM Baseline, LSTM-PL still obtained remarkable gains
especially at low SNRs. These results validated our assumption
in Section II: LSTM is more suitable than DNN for SNR-PL. The
main reason is that the temporal information in DNN-PL training
is only considered via frame expansion in the input layer but the
important temporal structure of the intermediate learning targets
cannot be well utilized. In the following experiments, SNR-PL
is implemented with LSTM by default.

Based on Table II, SNR-PL not only improves the STOI
performance, but also achieves the compact model design for
both DNN and LSTM networks. For example, the model size
of DNN-PL is about 50% of the conventional DNN model. To
give the reader a better understanding, we list the comparison
of weight distributions between DNN Baseline and DNN-PL as
shown in Fig. 7. The weights linking the hidden layers (H1 to
H3) and succeeding target layers are used. We can observe that
the weight distribution of the first hidden layer (H1) closest to the
input layer was relatively smooth while the weight distributions
of both H2 and H3 had a sharp peak near the zero value for
the conventional DNN. Compared with the conventional DNN,
the weight distributions in DNN-PL were more balance across
different hidden layers, which can be explained as each hidden
layer of SNR-PL network is designed with an explicit learning
objective, namely generating a specific SNR gain, and the scales
of all the hidden layers are comparable.

C. Dense Structure and Post-Processing

To further improve the speech intelligibility performance of
LSTM-PL, Fig. 8 shows the average STOI comparison of SNR-
PL, densely connected SNR-progressive learning (PL+Dense)
and PL+Dense with post-processing (PL+Dense+PP) along with
different learning targets at —5 dB, 0 dB, 5 dB and 10 dB. It
should be noted that, when the number of learning targets is 1, it
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Fig. 7. The comparison of weight distributions between DNN Baseline (left

column) and DNN-PL (right column) as shown in Table II. The weights linking
the hidden layers (H1 to H3) and succeeding target layers are used.
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Fig.8. The average STOI comparison of SNR-PL systems on the test set along
with different learning targets across five unseen noises at —5 dB, 0 dB, 5 dB
and 10 dB.

refers to the conventional LSTM system with two hidden layers.
The configurations of other learning targets are listed in Table I.
First, by focusing on the blue line, we found that PL achieved
significant STOI improvements from LSTM Baseline to PL
with two learning targets. However, using more learning targets
did not make additional gains and even led to the performance
degradation, which might be due to the dimensional reduction
and information loss when involving more target layers.

Then by employing the dense structure (the red line in Fig. 8),
PL+Dense had a different performance trend. To give a reason-
able explanation, the analysis could be made based on Fig. 5 and
the corresponding discussion in Section III-C. For the SNR-PL
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network, the intermediate targets were with notable pros and
cons. The target close to the input layer had a lower SNR
corresponding to good speech preservation and insufficient noise
reduction while the target close to output layer had a higher
SNR yielding good noise reduction and large speech distortions.
Accordingly, the dense structure could make full use of the rich
and complementarity information of different learning targets
to enhance the robustness of the model. The best configuration
for the target number in PL+Dense was 5 which was larger
than that in PL implying that dense structure can accommodate
more learning targets for SNR-PL. This setting is also used
in the subsequent experiments by default. When using seven
learning targets, the STOI performance was sharply degraded
which might be explained as the over-fitting problem especially
by the top high-dimensional target layer by concatenating many
preceding targets. Finally, PL+Dense+PP denoted by the green
line followed a similar performance trend as the PL+Dense.
More learning targets produced more information available for
post-processing. When the number of learning targets was larger
than two, PP can further bring significant STOI gains to improve
the speech intelligibility.

Table I1I lists the average STOI/SDR/PESQ results of differ-
ent systems on the test set across five unseen noises at —5 dB,
0 dB, 5 dB and 10 dB. First, with the increase of the number of
hidden layers, the performance of all three measures for LSTM
Baseline seemed to be saturated at the setting of four hidden
layers when the input SNR was above 0 dB. Second, PL system
with a slightly smaller model size than LSTM Baseline with four
hidden layers could obtain better STOI and SDR results when the
input SNR was below 5 dB. But the observation on PESQ mea-
sure between them was mixed for different SNRs and there was
no performance gain for both STOI and SDR at 10 dB input SNR.
Furthermore, the PL+Dense using the dense structure yielded
significant gains over PL, e.g., the improvements of 3.3 STOI
and 0.55 dB SDR at —5 dB. More interestingly, for the 10 dB
SNR case, STOI could be improved from 93.0 to 95.1 while SDR
could be improved from 10.64 dB to 13.24 dB. So PL+Dense was
quite robust for both low and high SNRs unlike PL. and LSTM
Baseline which still underperformed the unprocessed system
at 10 dB in terms of STOI measure. Finally, PL+Dense+PP
using post-processing generated consistently additional gains
over PL+Dense for STOI and SDR measures and achieved the
best overall performance for all three measures. And PP was
more effective for low SNRs, e.g., 1.6 STOI gain and 0.1 PESQ
gain over PL+Dense at —5 dB.

D. Experiment on Generalization Capability

In the above experiments, we demonstrate the effectiveness
of SNR-PL with dense structure and post-processing for unseen
noises. However, the speaking style of test speech data is similar
to that of the training set, namely the read style. To simulate
more realistic case and further verify the generalization ability
of the proposed method in speech part, we design a highly
mismatched test set with both unseen speaking styles and unseen
five noise types. The clean testing speech is conversational and
from the AMI corpus [54] which consists more than one hundred
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TABLE IIT
THE AVERAGE STOI/SDR/PESQ COMPARISON OF DIFFERENT SYSTEMS ON
THE TEST SET ACROSS FIVE UNSEEN NOISES. N;. REPRESENTS THE NUMBER
OF HIDDEN/LSTM LAYERS. Ny IS THE MODEL SIZE NORMALIZED BY LSTM
BASELINE SYSTEM WITH TWO HIDDEN LAYERS

STOI
Sysem | N. Ny | -5dB  0dB  5dB  10dB
Noisy | - - | 647 765 867 932

2 1 | 668 802 884 929

LSTM Baseline | 3 1.6 | 673 8L1  89.0  93.1

4 22| 678 8L1 889 930

PL 5 20| 690 829 902 930

PL+Dense 5 27| 723 845 915 951

PL+Dense+PP | 5 27 | 739 851 919 957
SDR

Sysem | N. Ny | -5dB  0dB  5dB  10dB

Noisy | - - | -626 -132 366 865

21 | 201 576 859 10.66

LSTM Baseline | 3 1.6 | 232 605 881  10.80

4 22 ] 231 600 871 1067

PL 5 20| 269 656 924  10.64

PL+Dense 527 | 324 742 1066 1324

PL+Dense+PP | 5 27 | 3.52 795 1157 1481
PESQ

Sysem | Nu Ny | -5dB  0dB  5dB  10dB

Noisy | - - | 142 170 201 235

21 | 168 223 267  3.00

LSTM Baseline | 3 1.6 | 1.67 226 271  3.04

4 22| 177 227 262 301

PL 5 20| 170 232 275  3.06

PL+Dense 5 27| 176 233 277 310

PL+Dense+PP | 5 27 | 1.86 233 271 3.3

meetings of 4-5 participants. The conversations are recorded
in parallel on multiple devices, including a tabletop array of 8
microphones and head-mounted microphones for each meeting
participant. The head-mounted microphone recorded speeches
are noiseless and 200 high quality speech clips are captured to
form our clean testing speech. Each speech clip is about 3-5
seconds long and then mixed with five unseen noises at —5 dB,
0dB, 5 dB and 10 dB to construct the highly mismatched test set.

Table IV shows the average STOI/SDR/PESQ results of
different systems on the highly mismatched test set across
five unseen noise types at —5 dB, 0 dB, 5 dB and 10 dB.
One difference from Table III was that LSTM Baseline system
could not improve the STOI measure on the highly mismatched
test set especially for low SNRs. This observation indicates
that the generalization ability of LSTM Baseline in highly mis-
matched case is not good. The other difference from Table III was
that the popular network of ResNet was adopted for comparison.
We could find that ResNet could only improve the STOI measure
in high SNRs cases slightly, e.g., 1.1 STOI gain at 0 dB and 1.7
STOI gain at 5 dB comparing to Noisy.
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TABLE IV
THE AVERAGE STOI/SDR/PESQ COMPARISON OF DIFFERENT SYSTEMS ON
THE HIGHLY MISMATCHED TEST SET ACROSS FIVE UNSEEN NOISES. /N[,
REPRESENTS THE NUMBER OF HIDDEN/LSTM LAYERS. Ny IS THE MODEL
SIZE NORMALIZED BY 4-LAYER LSTM BASELINE SYSTEM

STOI
System | N Nm | -5dB 0dB 5dB  10dB
Noisy - - 52.1 63.3 744 83.7
LSTM Baseline 1 49.3 63.0 74.7 83.1
ResNet 5 0.9 50.2 64.4  76.1 84.1
PL 5 0.9 51.0 66.0  78.1 85.3
PL+Dense 5 1.2 53.4 67.5 782 85.9
PL+Dense+PP 5 1.2 56.2 69.3 795 86.7
SDR
System | N Nm | -5dB 0dB  5dB  10dB
Noisy - - -5.67  -0.72  4.26 9.26
LSTM Baseline 4 1 -0.04 422 7.25 9.50
ResNet 5 0.9 0.30 452  7.58 9.81
PL 5 0.9 0.43 499  8.10 10.07
PL+Dense 5 1.2 1.41 598 929 11.92
PL+Dense+PP 5 1.2 1.47 6.19 9.67 1244
PESQ
System | N Nm | -5dB 0dB 5dB  10dB
Noisy - - 1.48 1.64 1.86 2.14
LSTM Baseline 4 1 1.38 1.78 221 2.56
ResNet 5 0.9 1.35 1.78  2.21 2.57
PL 5 0.9 1.38 1.78 222 2.58
PL+Dense 5 1.2 1.35 1.80 222 2.59
PL+Dense+PP 5 1.2 1.50 1.89 2.28 2.62

When SNR-PL was implemented, the STOI measure was
significantly improved over LSTM Baseline for all SNRs, e.g.,
3.0 STOI gain at 0 dB and 3.4 STOI gain at 5 dB. Besides
STOI, PL also achieved improvements on the SDR measure.
Clearly PL has stronger ability of generation in comparison
with LSTM Baseline. However, PL still underperformed the
unprocessed noisy speech in terms of STOI at —5 dB. By
using dense structure, the further improvements of STOI were
yielded by PL+Dense especially for —5 dB case (2.4 STOI gain).
The best results for all measures were consistently achieved by
PL+Dense+PP. One interesting observation was post-processing
in Table I'V could bring more significant gains of STOI than Ta-
ble III for quite low SNRs (e.g., 2.8 STOI gain vs. 1.6 STOI gain
at —5 dB), which might be explained as that larger speech dis-
tortions existed in highly mismatch test set and post-processing
could play a more important role in reducing the distortions. For
SDR and PESQ measures, the observations were mostly similar
to those in Table III, namely, PL+Dense+PP yielded remarkable
performances gains over LSTM Baseline. Overall, SNR-PL with
densely connected structure and post-processing showed much
stronger generalization ability of unseen speaking styles and
unseen noises over the conventional LSTM structures, which
was quite important in realistic scenarios.
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(a) Noisy (STOI=72.7, SDR=-0.25, PESQ=1.51)

(b) Clean

(c) LSTM Baseline (STOI=68.5, SDR=0.31, PESQ=1.14)

(d) PL (STOI=74.0, SDR=1.72, PESQ=1.28)

(e) PL+Dense (STOI=79.6, SDR=3.57, PESQ=1.69)

(f) PL+Dense+PP (STOI=80.0, SDR=3.69, PESQ=1.68)

Fig. 9. Spectrograms of an utterance corrupted by factory noise at 0 dB SNR:
(a) Noisy speech, (b) Clean speech, (c) Baseline with four LSTM layers, (d) PL,
(e) PL+Dense, (f) PL+Dense+PP.

Fig. 9 shows spectrograms of an utterance from the highly
mismatched test set corrupted by factory noise at 0 dB
SNR and enhanced by LSTM Baseline, PL, PL+Dense and
PL+Dense+PP. The LSTM Baseline could achieve a good noise
reduction but with severe speech distortion and speech loss,
yielding the STOI and PESQ degradation over the unprocessed
noisy speech. Meanwhile, the individual PL did not seem to solve
these problems well. By using the dense structure, the speech
distortion and speech loss problems in LSTM Baseline and PL
were largely solved by PL+Dense, as shown in the yellow dotted
box areas of Fig. 9(e). The post-processing slightly improved
the enhanced spectrogram as shown in Fig. 9(f), with marginal
performance gains in STOI and SDR measures.

Finally, we list an overall comparison of different methods
on the highly mismatched test set across five unseen noises and
two SNRs (—5 dB and 0 dB) in Table V. PL+CDense+PP is
a compact version of PL+Dense+PP using the formulations in
Eq. (7) and Eq. (8), namely concatenating only two latest inter-
mediate targets to learn the next target. From Table V, although
PL+Dense+PP with 5 hidden layers and 1024 LSTM cells for
each layer improved all measures all over LSTM Baseline, a
larger model size and a higher run-time latency were required.
If we directly reduce the number of LSTM cells from 1024
to 512, the model size is half of that in LSTM Baseline but
run-time latency is the same as LSTM Baseline. Subsequently,
remarkable performance degradations for three measures were
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TABLE V
THE OVERALL COMPARISON OF DIFFERENT METHODS ON THE HIGHLY
MISMATCHED TEST SET ACROSS FIVE UNSEEN NOISES AND TWO SNRS
(=5 dB AND 0 dB). N1, AND N¢ REPRESENT THE NUMBER OF HIDDEN
LAYERS AND LSTM CELLS, RESPECTIVELY. N\ AND N1 ARE THE MODEL
SIZE AND RUN-TIME LATENCY NORMALIZED BY LSTM BASELINE

System ‘ N, N¢ Nm Nt ‘ STOI SDR PESQ
Noisy - - - | 577 320 156
LSTM Baseline | 4 1024 1 1 | 562 209 158
51024 12 11| 628 383 169

PL+Dense+PP ‘ 5 512 05 10 ‘ 6I.1 300 159
51024 10 08 | 612 345 166

PL+CDense+PP ‘ 5 512 04 07 ‘ 61.6 323 164

observed especially for SDR and STOI. By using the compact
version of PL+Dense+PP, PL+CDense+PP with 512 LSTM
cells for each layer achieved better performance for all three
measures, a smaller model size, and a lower run-time latency
in comparison to PL+Dense+PP with 512 LSTM cells. So the
PL+CDense+PP is a recommended version which makes a good
trade between performance and complexity in real applications.

E. Experiment on Speech Recognition After SNR-PL

Four noise types provided by CHiME-4 Challenge [55] were
chosen as our noise database. Clean speech was derived from the
WSJO corpus [51]. 7138 utterances (about 12 hours of reading
style speech) from 83 speakers, denoted as SI-84 training set,
are corrupted with the above-mentioned 4 noise types at three
SNR levels (—5 dB, 0 dB and 5 dB) to build a 36-hour training
set, with pairs of clean and noisy speech.

As for the front-end, the best configuration of PL+Dense
mentioned in the above section was utilized, and the ideal ratio
mask (IRM), which was better for speech recognition, was also
used as learning target in final layer. And the training process
was the same as in the Section IV-A. The ASR system offi-
cially provided in [55] was adopted to evaluate the recognition
performance of different enhancement methods. The acoustic
model isa DNN-HMM (hybrid hidden Markov model with DNN
to estimate state posterior probability) discriminatively trained
with the sMBR criterion [56]. The input of the DNN-HMM
is a 440-dimensional feature vector extracted from Channel 5,
consisting of a 40-dimensional fMLLR [57] with an 11-frame
expansion. The model is trained according to the scripts down-
loaded from the official GitHub website' using Kaldi toolkit
[58]. Note that all enhancement methods are only applied to
the utterances in the recognition stage without retraining the
acoustic model.

Table VI shows average WER (%) comparison of different
enhancements on the development and test sets across four
environments of CHiME-4 test set. There are three blocks in
Table VI for the different enhancement methods.

For the first two block of Table VI, “Noisy” denotes the recog-
nition of original noisy speech randomly selected from Channels

![Online].
chime4

Available: https://github.com/kaldi-asr/kaldi/tree/master/egs/
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TABLE VI
AVERAGE WER (%) COMPARISON ON THE DEVELOPMENT AND TEST SETS
ACROSS FOUR CHIME-4 ENVIRONMENTS AFTER ENHANCEMENT

Dev Eval

Enhancement simu real simu real
Noisy \ 15.64  15.68 \ 2413  27.67
LSTM-IRM 2492  21.82 | 3398 35.30
LSTM-LPS 39.23 36.50 | 5249 56.11
ResNet-LPS 37.12 3246 | 48.87 53.26
PL+Dense-T1-LPS 15.08 13.74 | 23.52  26.08
PL+Dense-T2-LPS 1538 13.24 | 2386 25.27
PL+Dense-T3-LPS 1824  15.51 2775 29.42
PL+Dense-T4-LPS | 2296 19.29 | 33.13 35.12
PL+Dense-T5-LPS 36.80 34.67 | 48.16 52.38
PL+Dense-T5-IRM | 24.02 2149 | 33.53 36.51

1-6 (except Channel 2), namely, 1-channel case. “LSTM-IRM”
denotes the recognition of enhanced speech obtained by the
LSTM-based regression model using the IRM as learning tar-
get. “LSTM-LPS” denotes the recognition of enhanced speech
obtained by the LSTM-based regression model using the LPS
feature as learning target. “ResNet-LPS” denotes the recognition
of enhanced speech obtained by the ResNet-based regression
model using the LPS feature as learning target. We observed that
all regression models which directly learned the targets degraded
the ASR performances, e.g., average WERs of 56.11% and
53.26% for “LSTM-LPS” and “ResNet-LPS” on real evaluation
set, respectively.

For the third block, “PL+Dense-T1-LPS”, “PL+Dense-T2-
LPS”, “PL+Dense-T3-LPS”, and “PL+Dense-T4-LPS” denote
the recognition of enhanced speech obtained by the PL+Dense
regression model using the outputs of target layer 1-4, respec-
tively. First, the intermediate layer of the ResNet-based regres-
sion model can not directly be used for enhancement, while the
intermediate target of the proposed PL-based regression model
can be utilized because of its specific physical meaning. For ex-
ample, “PL+Dense-T1-LPS” and “PL+Dense-T2-LPS” , the in-
termediate target with +5 dB and +10 dB SNR gain, can improve
the ASR performance without acoustic model retraining at all
situation comparing to “Noisy”. Second, “PL+Dense-T3-LPS”,
and “PL+Dense-T4-LPS” degraded the ASR performance, but
they are better than “LSTM-LPS” and “ResNet-LPS” which
directly learned the LPS target. Finally, “PL+Dense-T5-LPS”
and “PL+Dense-T5-IRM” denote the recognition of enhanced
speech obtained by the PL+Dense regression model using the
outputs of target layer 5 with LPS and IRM, respectively. We
can find that the IRM as learning target outperforms LPS feature
for recognition metric.

V. CONCLUSION

In this study, we propose a novel SNR-progressive learning
framework for neural network based speech enhancement to
improve the speech intelligibility. Specific to SNR-PL based
speech enhancement, the direct mapping from noisy to clean
speech is decomposed into multiple stages with SNR increasing
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progressively by guiding hidden layers in the neural network to
learn targets explicitly. We implement SNR-PL with both DNN
and LSTM architectures and find LSTM is more suitable. We
nextimprove SNR-PL with the dense structure in which the input
and the estimations of intermediate targets are spliced together
to learn the next target. In view of the multiple outputs in the
progressive network, post-processing is then used in the testing
stage to make a full use of the rich set of information. Experimen-
tal results on unseen noise conditions demonstrate that SNR-PL
with densely connected structure and post-processing can learn
more targets and yield much better speech intelligibility for all
SNR levels. We also find that SNR-PL has a much stronger
generalization ability than the conventional LSTM approach in
highly mismatched conditions. Finally, intermediate outputs of
the SNR-PL model can attain decreased word error rates for
ASR because it can make a good tradeoff between the noise
suppression and target speech preservation.
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