
Unsupervised Single-Channel Speech Separation via
Deep Neural Network for Different Gender

Mixtures
Yannan Wang∗, Jun Du∗, Li-Rong Dai∗ and Chin-Hui Lee†

∗ National Engineering Laboratory for Speech and Language Information Processing,
University of Science and Technology of China, Hefei, Anhui, P. R. China

E-mail: wyn314@mail.ustc.edu.cn, jundu@ustc.edu.cn, lrdai@ustc.edu.cn Tel/Fax: 0551-63602575
† School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA. USA

E-mail:chl@ece.gatech.edu

Abstract—In this study, we propose a regression approach via
deep neural network (DNN) for unsupervised speech separation
in a single-channel setting. We rely on a key assumption that
two speakers could be well segregated if they are not too similar
to each other. A dissimilarity measure between two speakers
is then proposed to characterize the separation ability between
competing speakers. We demonstrate that the distance between
speakers of different genders is large enough to warrant a
possible separation. We finally propose a DNN architecture with
dual outputs, one representing the female speaker group and the
other characterizing the male speaker group. Trained and tested
on the Speech Separation Challenge corpus our experimental
results show that the proposed DNN approach achieves large
performance gains over the state-of-the-art unsupervised tech-
niques without using specific knowledge about the mixed target
and interfering speakers and even outperforms the supervised
GMM-based method.

I. INTRODUCTION

Co-channel speech separation [1], referring to separating
a speech component of interest from a noisy mixture, has
a variety of important applications, e.g., automatic speech
recognition (ASR) [2] in the recent Speech Separation Chal-
lenge (SSC) [3]. We can then formulate the problem with
two mixing speakers as follows: xm = xt + xi, with xm

being the mixed speech signal while xt and xi referring to
speech of the target and interfering speakers, respectively.
Model-based approaches are widely used in speech separation
in a supervised mode [4] which generally builds speaker-
dependent models assuming the identities of the target and
interfering speakers are known. Many approaches to modeling
the speakers have been investigated. For instance, Roweis [5]
employs the factorial hidden Markov model (FHMM) to learn
the information of a speaker and then separate the speech
mixture through computing a mask function and refiltering.
Another probabilistic model named as factorial-max vector
quantization (MAXVQ) is introduced in [6]. The Gaussian
mixture model (GMM) is also used in [7], [8] via minimum
mean-square estimation (MMSE) to re-synthesize the speech
signals. An iterative GMM-based approach is proposed in
[9] based on a maximum a posteriori (MAP) estimator to
overcome possible mismatches between the training and test

conditions. Another popular approach is non-negative matrix
factorization (NMF) [10], [11] which decomposes the signal
into sets of bases and weight matrices.

The aforementioned supervised methods could achieve a
satisfactory performance. However, they are not always appli-
cable to practical scenarios due to a lack of prior knowledge
of speakers. Therefore at the other extreme, in an unsuper-
vised separation mode, computational auditory scene analysis
(CASA) [12], inspired by the ability of human auditory
perception to recover signals of interest from background
distractions, is widely adopted without assuming any knowl-
edge about mixing speakers. For example, in [13] pitch and
amplitude modulation are employed to obtain the voiced
components of co-channel speech through grouping estimated
pitches. In [14] onset/offset-based segmentation and model-
based grouping are introduced to manage unvoiced portions.
Unsupervised clustering for sequential grouping is adopted
to convert simultaneous streams to two clusters in [15] by
maximizing the ratio of between-cluster and within-cluster
distances.

In some recent work [16], [17], [18] deep neural network
(DNN) is adopted to model the highly non-linear mapping
relationship from mixed speech to the target and interfering
signals in a supervised or semi-supervised mode. In the super-
vised speaker-dependent mode, we know both the target and
interfering speakers. While in the semi-supervised speaker-
independent mode [19], the interferer is assumed unknown.
In this study, we extend the DNN approach to unsupervised
speech separation of two speakers who are both unknown and
relate this feasibility to some speaker distance measures, i.e.,
the larger the distance between competing speakers the better
the mixed speakers could be separated. As one special case,
we focus our discussion on segregating speakers with different
genders. We propose a deep neural network architecture with
dual outputs, one representing the female speaker group and
the other characterizing the male speaker group. In other
words, our proposed DNN acts like a gender separator to
segregate co-channel speech effectively without a need of
collecting a set of training utterances for each individual



speaker to be separated. Intuitively, there is a large discrepancy
between speakers with different genders, e.g., unique vocal
tract, fundamental frequency contour, timing, rhythm, dynamic
range, etc. This results in a large distance between male and
female speakers in most cases to facilitate a good gender
segregation. We evaluate our proposed framework on the
SSC corpus [3] and achieve a significantly better separation
performance than the state-of-the-art unsupervised techniques
and even outperform the GMM-based supervised approach in
[9].

II. CHARACTERIZATION OF SPEAKER DISTANCES

In principle some prior information or clues should be
leveraged upon for effectively unsupervised speech separation.
Here we explore the feasibility of using speaker dissimilarity
measures to establish speaker groupings for training DNNs.

In our work we adopt the recently emerged i-vector based
speaker representation [20] with the Euclidean distance to
measure a speaker dissimilarity as follows:

D2(x||y) =

√√√√ I∑
i=1

(xi − yi)2 (1)

where x = (x1, x2, ..., xI) and y = (y1, y2, ..., yI) are I-
dimension (I = 100) i-vectors for the two speakers trained
on the same corresponding SSC data.

To visualize the similarity between two individual objects
in a low-dimensional space, each object to be studied can be
represented by a point and the points are elaborately arranged
in order to approximate the distances between pairs of objects.
We adopted multidimensional scaling (MDS) [21] to graphi-
cally describe the relationship conveyed by aforementioned
distance measurements. The MDS graphs of i-vector based
distance matrices for the 34 speakers of the SSC corpus [3]
are shown in Fig. 1, respectively. In this figure, the blue and red
points represent the male and female speakers. We can observe
that each speaker is surrounded by a group of neighboring
speakers. Therefore a particular speaker could be characterized
by such a group of neighboring speakers in an unsupervised
manner. As one demonstration in this study, we focus on the
case with different genders, namely one female speaker and
one male speaker in mixing. Fig. 1 confirm that the female
and the male groups could be well separated in two clusters
in most cases, i.e., the distances between speakers of the same
gender are smaller than those between speakers of different
genders. This motivates our proposed DNN approach in the
next section.

III. DNN-BASED SPEECH SEPARATION

DNN is essentially a feed-forward multi-layer perceptron
with many hidden layers.Recently it has been widely used for
classification tasks in image processing and speech recogni-
tion. In our recent work for speech enhancement [22], DNN
was instead adopted as a regression model to learn the relation-
ship between noisy and clean speech. More recently, a similar
architecture was applied to speech separation in supervised or
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Fig. 1. Multidimensional scaling graph of the i-vector distances among 34
speakers.
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Fig. 2. A DNN architecture for male and female separation.

semi-supervised modes [16], [17]. Motivated by the powerful
modeling capability the proposed DNN architecture is illus-
trated in Fig. 2 with dual outputs for both female and male
speaker groups in the current frame given the input features of
mixed speech with an acoustic context (multiple neighboring
frames). The input of our DNN is mixed by different gender
speech of arbitrary speakers while the outputs refer to the
separated speech segments of the female and male speaker
groups. This architecture avoids the limitations that abundant
data of the target speaker is required to develop speaker-
dependent models. Besides, in our work the adopted log-
power spectral features are capable of providing perceptually
relevant parameters. Moreover, our proposed DNN architecture
improves the continuity of estimated clean speech along both
the time and frequency axes. As a contrast, the conventional
GMM-based approach [9] does not well model the temporal
dynamics of speech.

Training of DNN is via fine-tuning the network which
is initialized randomly achieving a comparable performance
with unsupervised pre-training by stacking multiple restricted
Boltzmann machinesAnd sigmoid hidden units and linear
output units are adopted in our network. Supervised fine-
tuning is implemented under the MMSE criterion which jointly
minimizes the mean squared error between the DNN outputs
and the reference clean features of both the female and male
speakers:

E =
1

T

T∑
t=1

(∥ x̂m
t − xm

t ∥22 + ∥ x̂f
t − xf

t ∥22) (2)

where ∥ . ∥2 refers to L2 norm and T is the total number of
training frames in a mini-batch. x̂m

t and x̂f
t are the estimated

features of the male and female targets at frame t. Moreover,



xm
t and xf

t are the reference clean features of the male and
female targets, respectively.

In the training stage, all the information about the speakers
selected for the female and male groups are known as a
supervised mode. However, in the separation stage, both the
female and male speakers are unseen which corresponds to
the unsupervised speech separation.

IV. EXPERIMENTS AND RESULTS

For evaluation we randomly selected 100 different gender
mixtures consisting of 50 male-female and 50 female-male
combinations from the whole SSC test set, referred to as
two-talker mixtures with signal-to-noise-ratios (SNRs, here we
consider interfering speech as noise) ranging from -9dB to 6dB
with an increment of 3dB. We built 5 DNNs in total which
were trained on different speaker groups as shown in Table I.
All the utterances of 10 male and 10 female speakers in the
training set were used to train each DNN. It was then evaluated
on the speech mixtures of the other unseen 8 male and 6 female
speakers. And the input utterances were created by randomly

TABLE I
SPEAKERS USED IN THE TRAINING STAGE.

model speaker IDs

DNN1 male 1 2 3 5 6 8 9 10 12 13
female 4 7 11 15 16 18 20 21 22 23

DNN2 male 1 2 3 8 12 14 17 19 26 28
female 4 7 11 15 21 24 25 29 31 33

DNN3 male 1 2 9 10 13 14 27 28 30 32
female 4 16 18 20 22 24 25 29 31 33

DNN4 male 1 5 6 10 17 19 26 27 30 32
female 7 11 15 16 18 21 23 24 33 34

DNN5 male 3 5 6 9 12 13 17 19 26 27
female 4 11 16 20 21 22 23 24 25 29

adding segments of one speaker to another speaker with a
different gender at SNRs ranging from -10dB to 10dB with
an increment of 2dB. This gave a good coverage of SNRs
in the test set. Moreover, the training mixture utterances were
generated in an asymmetric manner, namely fixing one speaker
as the target and normalizing the energy of another speaker
as the interferer to achieve a specific SNR. To balance the
two genders, one half of the training data was generated with
male speakers as targets and the other half with female target
speakers.

We down-sampled the original waveforms from 25kHz to
16kHz. The frame length and shift are 512 samples (32
msec) and 256 samples (16 msec), respectively. A short-time
Fourier transform was adopted to compute the discrete Fourier
transform (DFT) of each overlapping windowed frame. Then
257-dimensional log-power spectral features were used to train
DNNs. For the waveform reconstruction, the original phase
of mixed speech was adopted with the separated log-power
spectra [23]. In all experiments the DNN consisted of 1799
input nodes (stack of 7 neighboring frames), 3 hidden layers
which used a sigmoid activation function with 2048 nodes per
layer, and 514 output nodes (estimated features of male and
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Fig. 3. Output SNR comparison of different gender separation approaches.
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Fig. 4. PESQ comparison of different gender separation approaches.

female targets). The global normalization was also applied to
the input features to have zero mean and unit variance.

A. Result Comparisons of Separation Experiments

Next, iterative GMM [9] in a supervised scenario (denoted
as “GMM”) and CASA using segmentation and grouping [15]
in an unsupervised setting (denoted as “CASA”) were adopted
for performance comparisons. In Figures 3 and 4 we plot bar
charts of the two competing techniques in terms of output
SNR and PESQ [24], respectively. Apparently, the supervised
GMM-based approach yielded a significant improvement over
unsupervised CASA for both output SNR and PESQ. Similar
improvements were also observed comparing the proposed
DNN with the unsupervised CASA approach, e.g., PESQ ris-
ing from 1.04 to 2.37 at an input SNR of -6 dB. Moreover, our
proposed unsupervised DNN framework also outperformed the
GMM-based supervised approach in PESQ across all input
SNR levels, e.g., PESQ increasing from 1.63 to 2.38 at an
input SNR of -6 dB. Furthermore, we also found that our
proposed DNN obtained a SNR gain over GMM under -9dB
and -6dB SNR conditions, while the performance was worse
than GMM when SNR is greater than 0dB.

By considering that our DNN-based approach was operating
in the unsupervised mode while the GMM-based system was
running in the supervised mode, those results were very
encouraging for designing practical algorithms of enhancing
the speech quality in co-channel speech separation. The above
improvements also demonstrated that using multiple speakers
could well simulate the characteristics of unseen female and
male mixing speakers. Other speaker grouping could be further
explored based on some newly defined or existing speaker
dissimilarity measures.

Finally, we illustrate some detailed separation performance
with an utterance example in Fig. 5. Fig. 5(a) is the spectro-



(a) Mixed (-6dB, M+F)

(b) Target (M) (c) Unsupervised CASA (M)

(d) Supervised GMM (M) (e) Unsupervised DNN (M)

Fig. 5. Illustration of spectrograms for separating the target male utterance
from the mixed utterance with a female interferer at -6 SNR.

gram of the mixture with a male target and female interferer
at -6dB and Fig. 5(b) refers to the male target. Fig. 5(c)
is the spectrogram of separated male target speech with the
unsupervised method based on CASA while Fig. 5(d) is the
result of the GMM-based method. Fig. 5(e) is the spectrogram
of the separated male target with our proposed DNN approach.
All the results are normalized to promote the energy level. It
is observed that the CASA approach lost many target speech
details and still preserved some interference speech at low
and high frequency as shown in the green circles while this
problem was alleviated with GMM-based approach as speaker
dependent models were constructed. But the GMM-based
approach was still disturbed by speech details lost as shown in
the green circle of Fig. 5(d). In contrast, our proposed DNN
approach could achieve the most similar spectrograms to the
reference of target speaker. More results and demos can be
found at http://home.ustc.edu.cn/w̃yn314/SSC DNN.html.

V. CONCLUSION AND FUTURE WORK

In this study we demonstrate that in unsupervised co-
channel speech separation the proposed DNN framework could
well segregate speech from mixtures of two unseen speakers
with different genders. Significant performance improvements
have been achieved when compared with unsupervised tech-
niques based on CASA. Furthermore our proposed approach
also outperforms GMM-based separation operating in a su-
pervised mode in terms of speech quality although the output
SNR gains are lower under relatively high SNR conditions.
Although the different gender mixtures are relatively easier to
be handled, our DNN architecture design is a quite reasonable
demonstration with the evidence of speaker dissimilarity mea-
sures. As for future work, we will investigate how to extend
our approach to the same gender cases.
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