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Abstract
In contrast to the conventional minimum mean squared error

(MMSE) training criterion for nonlinear spectral mapping based

on deep neural networks (DNNs), we propose a probabilistic

learning framework to estimate the DNN parameters for single-

channel speech separation. A statistical analysis of the predic-

tion error vector at the DNN output reveals that it follows a uni-

modal density for each log power spectral component. By char-

acterizing the prediction error vector as a multivariate Gaussian

density with zero mean vector and an unknown covariance ma-

trix, we present a maximum likelihood (ML) approach to DNN

parameter learning. Our experiments on the Speech Separa-

tion Challenge (SSC) corpus show that the proposed learning

approach can achieve a better generalization capability and a

faster convergence than MMSE-based DNN learning. Further-

more, we demonstrate that the ML-trained DNN consistently

outperforms MMSE-trained DNN in all the objective measures

of speech quality and intelligibility in single-channel speech

separation.

Index Terms: the prediction error, Gaussian density, maximum

likelihood estimation, deep neural network, speech separation

1. Introduction

Speech separation [1] is the task of separating a speech com-

ponent of interest from speech segments mixed with multiple

speakers while single-channel speech separation refers to the

more challenging situation when only one microphone is avail-

able for recording. It is widely used in many major real-work

applications, e.g., automatic speech recognition (ASR) [2] in

the Speech Separation Challenge (SSC) [3].

Many signal processing methods to recover clean speech by

estimating the ideal Wiener filter have been proposed in the con-

text of minimum mean squared error (MMSE) [4]. Moreover,

computational auditory scene analysis (CASA) [5], inspired by

the ability of human auditory perception to revert signals of in-

terest from background distractions, is widely adopted without

assuming any knowledge about mixed speakers in an unsuper-

vised separation mode. For instance, a tandem algorithm to per-

form pitch estimation and segregate voiced portions of target

speech jointly and iteratively is proposed in [6]. Onset/offset-

based segmentation and model-based grouping are introduced

to manage unvoiced portions in [7]. Unsupervised clustering

for sequential grouping is adopted in [8] by maximizing the ra-

tio of between-cluster and within-cluster distances while penal-

izing within-cluster concurrent pitches. Recently, a data-driven

approach to separate the underlying clean speech segments by

matching each mixed speech segment against a composite train-

ing segment is presented in [9]. Another popular approach is

non-negative matrix factorization (NMF) [10, 11, 12] and prob-

abilistic latent semantic indexing (PLSI) [13, 14] which fac-

torize time-frequency spectral representations by decomposing

speech signal into sets of bases and weight matrices.

On the other hand, model-based approaches are widely used

in a supervised mode which generally builds speaker-dependent

models with known identities of mixed speakers. For exam-

ple, Roweis [15] employs the factorial hidden Markov model

(FHMM) to learn the information of a speaker and then sep-

arate the speech mixture through computing a mask function

and refiltering. Factorial-max vector quantization (MAXVQ) is

introduced as a probabilistic model in [16]. The layered fac-

torial HMM, incorporating temporal and grammar dynamics

[17], performs quite well in speech separation and the Gaus-

sian mixture model (GMM) is used in [18, 19] to re-synthesize

the speech signals. An iterative GMM-based approach based on

a maximum a posteriori (MAP) estimator to overcome possible

mismatches between the training and test conditions improves

separation results significantly in [20].

Deep learning methods have been explored in speech en-

hancement and ideal binary mask estimation in some recent

work [21, 22]. And then a discriminative training objective

is proposed in [23] which takes into account the similarity be-

tween the prediction and other sources when minimizing the

squared error between the output of neural network and the

target reference. Another generic discriminative training crite-

rion corresponding to optimal source reconstruction from time-

frequency masks is also validated in a reduced feature space

[24]. Besides, weighted denoising auto-encoder is studied in

[25] which emphasizes different frequency bands empirically.

Furthermore, in [26] the perceptual weighting deep neural net-

work (DNN) uses perceptual weighting matrix to adjust the

weight of the prediction error. In this study, different from the

conventional approaches to improve the objective function de-

sign of DNN based on the MMSE framework (MMSE-DNN),

we explore the maximum likelihood (ML) solution within the

probabilistic learning framework to optimize DNN parameters

with the assumption that the prediction error vector of the re-

gression DNN follows a multivariate Gaussian density. Accord-

ingly, a training procedure of ML-trained DNN (ML-DNN) is

designed to update both DNN parameters and the covariance

matrix of Gaussian density alternatively. The MMSE-DNN ap-

proach could be considered as a special case of the proposed

ML-DNN approach with an identity covariance matrix. The

evaluation on the SSC corpus show that the proposed ML-DNN

approach achieves a significantly better separation performance

than the conventional MMSE-DNN approach. Moreover, the

ML-DNN approach can also yield a better generalization capa-

bility and a faster convergence.
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Figure 1: The ML-DNN architecture for speech separation.

2. The Proposed ML-DNN Approach

DNN is essentially a feed-forward multi-layer perceptron with

many hidden layers [27, 28]. Recently it has been widely used

for classification tasks in image and speech areas [29, 30]. In

our recent work for speech enhancement [31], DNN was instead

adopted as a regression model to learn the relationship between

noisy and clean speech under the conventional MMSE train-

ing criterion. Furthermore, in [32, 33, 34] DNN is adopted to

model the highly non-linear mapping relationship from mixed

speech to the target and interfering signals in a supervised or

semi-supervised mode.

In this study, to further improve the generalization capa-

bility of the conventional MMSE optimization for the regres-

sion DNN, we redefine the objective function in the proba-

bilistic framework and adopt the maximum likelihood estima-

tion for the parameter learning, as shown in Figure 1. The in-

put of DNN is the (2τ + 1)D-dimensional log-power spectral

(LPS) feature vector of mixed speech with an acoustic context

of 2τ +1 neighbouring frames while the dual output refers to a

2D-dimensional concatenation of two LPS feature vectors cor-

responding to the target speaker and the interfering speaker. The

sigmoidal hidden units and linear output units are adopted. Sup-

pose the DNN dual output vector is ŷ(x,W ) with the input

vector x and the DNN parameter set W while the correspond-

ing reference vector is y. The prediction error vector e could

be defined as:

e = y − ŷ(x,W ) (1)

which is assumed to follow a multivariate Gaussian density with

a 2D-dimensional zero mean vector and a 2D×2D covariance

matrix Σ:

p(e) = N (e;0,Σ) =
1

(2π)D|Σ|
1

2

exp

(
−
1

2
e
�
Σ
−1

e

)

(2)

If the reference vector y is also a random vector, then Eq. (2) is

equivalent to:

p(y|x,W ,Σ) = N (y; ŷ(x,W ),Σ) (3)

which implies that the conditional distribution of y given x with

the parameter set (W ,Σ) is unimodal. Given a training set with

N data pairs (X ,Y ) = {(xn,yn)|n = 1, 2, ...N} and making

the assumption that these data pairs are drawn independently

from the distribution in Eq. (3), we can define the likelihood

function as:

p(Y |X ,W ,Σ) =
N∏

n=1

N (yn; ŷn(xn,W ),Σ) (4)

where the parameter set (W ,Σ) is to be optimized. Accord-

ingly, the log-likelihood function can be written as:

ln p(Y |X ,W ,Σ) =

N∑
n=1

lnN (yn; ŷn(xn,W ),Σ) = C−

N

2
ln |Σ|−

1

2

N∑
n=1

(yn−ŷn(xn,W ))�Σ−1(yn−ŷn(xn,W ))

(5)

where C is a constant. We adopt maximum likelihood criterion

to alternatively optimize W and Σ. To maximize Eq. (5) with

respect to W , it is equivalent to minimizing the following sum-

of-squares error function in terms of Mahalanobis distance:

E(W ) =
N∑

n=1

(yn − ŷn(xn,W ))�Σ−1(yn − ŷn(xn,W )).

(6)

Then the back-propagation procedure with a stochastic gradient

descent method is used to optimize W in the mini-batch mode

of M sample frames.

Alternatively, we can also maximize Eq. (5) with respect to

Σ. Then the update formula can be derived as:

Σ =
1

N

N∑
n=1

(yn − ŷn(xn,W ))(yn − ŷn(xn,W ))� (7)

To avoid the instability of the optimization process by calculat-

ing the inverse of the covariance matrix Σ, we use the diagonal

covariance matrix in this study. The whole training procedure

is summarized as follows.

Algorithm 1 Procedure of ML-DNN training

Step 1: Initialization

Initialize the DNN parameter set W randomly. The co-

variance matrix Σ is set to an identity matrix.

Step 2: Fix Σ and update W

By minimizing Eq. (6) with N training sample pairs, the

back-propagation procedure with a stochastic gradient de-

scent method is used to update W in the mini-batch mode

of M sample frames.

Step 3: Fix W and update Σ

Update Σ via Eq. (7).

Step 4: Go to Step 2 for L epochs

We should indicate that the conventional MMSE-DNN is

a special case of ML-DNN where the covariance matrix Σ in

Eq. (5) is always an identity matrix, namely making a strong

assumption that all the LPS components are with equal vari-

ances. This is the reason why MMSE optimization often leads

to a poor generalization capability.
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Figure 2: The distributions for selected dimensions of the prediction error vector from well-trained DNN on the cross validation set:

(a)-(f) refer to MMSE-DNN while (g)-(l) correspond to ML-DNN.

3. Statistical Analysis on Prediction Errors

For the derivation of ML solution in Section 2 , we assume that

the prediction error vector e follows a multivariate Gaussian

density with zero mean. To verify the reasonability of this as-

sumption, we first explore the distribution of the prediction error

of regression DNN for speech separation. We present the dis-

tributions of selected dimensions (1, 2, 16, 32, 64, 128) of the

prediction error vector which is the LPS feature on the cross val-

idation set for both well-trained MMSE-DNN and ML-DNN as

shown in Figure 2 which tells the percentage of different range

of values. It is observed that all selected dimensions of the

prediction error vector approximately follows a unimodal dis-

tribution with the mean closing to zero for both MMSE-DNN

and ML-DNN. However the variance of each dimension is quite

different, which implies that the assumption of equivalent vari-

ances in MMSE-DNN is not reasonable. Actually this observa-

tion is also the main motivation of this study, namely adopting

a multivariate Gaussian density with a zero mean vector and an

unrestricted covariance matrix to represent the prediction error

vector and employing the maximum likelihood criterion to opti-

mize both the DNN parameters and the covariance matrix. Fur-

thermore, for all selected dimensions, the mean of each dimen-

sion in ML-DNN is closer to zero than MMSE-DNN while the

variance of each dimension in ML-DNN is also much smaller

than that in MMSE-DNN, demonstrating that ML-DNN could

better model the prediction errors.

Besides, we also compare the generalization capability be-

tween MMSE-DNN and ML-DNN via the learning curves of

the reconstruction loss on the cross validation set, as illustrated

in Figure 3. The reconstruction loss refers to the mean squared

error adopted as the learning objective in MMSE-DNN. In-

terestingly, we observe that the MMSE-DNN to minimize the

reconstruction loss on the training data consistently generates

larger errors on the cross validation set than ML-DNN which

is maximizing the likelihood rather than directly minimizing

the reconstruction loss in the training stage. So it is clear that

ML-DNN can achieve a better generalization capability than

MMSE-DNN. Moreover, the learning curve of ML-DNN shows

a faster convergence than MMSE-DNN. Actually, based on Fig-

ure 2, the smaller variances of ML-DNN can also easily deduce

the smaller reconstruction loss of ML-DNN in Figure 3, as the

reconstruction loss is the summation of variances across all di-

mensions.
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Figure 3: The learning curve comparison of reconstruction loss

between MMSE-DNN and ML-DNN on cross validation set.

4. Experiments and Results

Our experiments were conducted on the SSC corpus [35] which

was generated by mixing target utterances with another simul-

taneous masker utterance by a competing speaker with a very

similar structure [3]. For training of regression DNN, all the

utterances of the target speakers were used to generate the mix-

tures by adding the interfering speech segments to the target

speech with signal-to-noise-ratios (SNRs) ranging from -10dB

to 10dB using an increment of 2dB. This gave a good cover-

age of SNRs in the test set whose SNR level goes from -9dB to

6dB with an increment of 3dB. The evaluation was conducted

in two modes, namely supervised mode and semi-supervised

mode. In the supervised mode, both the training data of one

target speaker and one interfering speaker can be provided for

building the regression DNN with dual outputs corresponding to

these speakers. In the semi-supervised mode, only the training

data of the target speaker is given and the interfering speaker is

unseen. Therefore, the training data of multiple other speakers

should be used to simulate the unseen interfering speaker.

We down-sampled the original waveforms from 25kHz to

16kHz. The frame length and shift are 512 samples (32 msec)

and 256 samples (16 msec), respectively. A short-time Fourier

transform was adopted to compute the spectra of each overlap-

ping windowed frame. Then 257-dimensional (D=257) log-
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Table 1: Average performance comparison of different objec-

tive measures between MMSE-DNN and ML-DNN in supervised

mode.

Input SNR (dB) -9 -6 -3 0 3 6

Output

SNR

MMSE 6.20 7.30 8.47 9.74 11.05 12.34

ML 6.92 8.20 9.62 11.14 12.72 14.29

STOI
MMSE 1.06 1.09 1.12 1.14 1.16 1.17

ML 1.09 1.12 1.14 1.16 1.18 1.19

PESQ
MMSE 3.10 3.33 3.54 3.74 3.90 4.05

ML 3.29 3.53 3.73 3.91 4.08 4.24

SDR
MMSE 4.03 5.64 7.24 8.88 10.49 12.05

ML 5.11 6.82 8.59 10.44 12.27 14.06

SIR
MMSE 14.94 16.23 17.59 19.13 20.83 22.74

ML 15.37 16.55 17.93 19.56 21.35 23.30

SAR
MMSE 5.49 7.07 8.65 10.25 11.79 13.24

ML 6.56 8.31 10.11 11.95 13.76 15.48

power spectral features were used to train DNNs. For the wave-

form reconstruction, the original phase of mixed speech was

adopted with the separated log-power spectra [36]. In all exper-

iments the DNN consisted of 1799 input nodes (τ=3), 3 hidden

layers with 2048 sigmoidal nodes per layer, and 514 dual output

nodes. For the update of DNN parameters in both MMSE-DNN

and ML-DNN, the learning rate for the supervised fine-tuning

was set to 0.1 for the first 10 epoch and declined at a rate of

90% after every epoch in the next 40 epochs (L=50) with the

mini-batch size of M=256. The global normalization was also

applied to the input features to guarantee the zero mean and unit

variance.

4.1. Evaluation in supervised mode

For evaluation in the supervised mode, 8 combinations of tar-

gets and interferers were selected to generate the training and

evaluation set. And they were equally assigned for four possible

gender combinations, namely female and female (F + F), male

and male (M + M), female and male (F + M), male and female

(M + F). About 50 hours of mixed speech were synthesized for

training the corresponding DNNs for each combination. Output

SNR for measuring noise reduction, STOI for measuring speech

intelligibility [37] and PESQ for measuring speech quality [38]

are compared in Table 1. Clearly, the proposed ML-DNN ap-

proach yielded consistent and significant improvements over the

conventional MMSE-DNN approach for all input SNR levels,

e.g., an output SNR gain of 1.15dB at the input SNR of -3dB,

STOI rising from 1.09 to 1.12 at the input SNR of -6 dB, and

about 0.2 PESQ gain for all input SNR levels.

We also examined the effectiveness of ML-DNN with three

measures designed for speech separation: Source to Interfer-

ence Ratio (SIR), Source to Artifacts Ratio (SAR), and Source

to Distortion Ratio (SDR) shown in Table 1, according to the

BSS-EVAL metrics [39]. We can observe that the gain of ML-

DNN over MMSE-DNN is between 1dB and 2dB for both SDR

and SAR across all input SNR levels, e.g, SDR rising from

8.88dB to 10.44dB at the input SNR of 0dB, which indicated

that the less artifacts were introduced by the proposed ML-

DNN to separate the mixed speech. Moreover, the interference

was also suppressed more significantly by ML-DNN as SIR in-

creased about 0.5dB in average.

Table 2: Average performance comparison of different ob-

jective measures between MMSE-DNN and ML-DNN in semi-

supervised mode.

Input SNR (dB) -9 -6 -3 0 3 6

Output

SNR

MMSE 3.43 4.26 5.20 6.23 7.31 8.32

ML 3.73 4.64 5.71 6.87 8.05 9.16

STOI
MMSE 0.78 0.82 0.85 0.88 0.91 0.93

ML 0.80 0.83 0.86 0.89 0.92 0.94

PESQ
MMSE 2.09 2.27 2.43 2.60 2.78 2.95

ML 2.15 2.33 2.52 2.70 2.89 3.06

SDR
MMSE 0.70 2.11 3.60 5.16 6.74 8.19

ML 1.27 2.72 4.28 5.90 7.46 8.91

SIR
MMSE 7.09 8.30 9.71 11.33 13.20 15.26

ML 7.72 9.00 10.49 12.21 14.05 15.98

SAR
MMSE 2.97 4.21 5.52 6.86 8.22 9.42

ML 3.42 4.71 6.09 7.51 8.90 10.14

4.2. Evaluation in semi-supervised mode

In the semi-supervised mode, one target and 6 interferers were

adopted in the training stage to generate the mixed speech with

two speakers. In the evaluation stage for separating the target,

the interfering speaker is unknown, namely not included in 6

interferers at the training stage. In this study about 50 hours

of training data were used to train each of two DNNs with one

male target and one female target, respectively. And all the mix-

tures with those two targets in the test set were evaluated in the

following experiments. The separation results are displayed in

Table 2 with remarkable improvements from MMSE-DNN to

ML-DNN for all measures. For example, STOI increases from

0.91 to 0.92 and PESQ rises from 2.78 to 2.89 at the input SNR

of 3dB. Besides, the gain from 0.5dB to 0.8dB was observed for

SDR, SIR and SAR under different input SNR levels, e.g. SDR

increasing from 5.16dB to 5.90dB at the input SNR of 0dB.

Finally, the improvements in semi-supervised mode is smaller

than those in supervised mode because the covariance matrix of

the prediction error is related to speaker characteristics. The as-

sumption of the unimodal Gaussian distribution can not be fully

satisfied when multiple interfering speakers are introduced.

5. Conclusion and Future Work

In this study we proposed a novel maximum likelihood ap-

proach to DNN-based speech separation with a reasonable as-

sumption that the prediction error vector of DNN follows the

Gaussian distribution. In the ML solution, both the DNN pa-

rameters and the covariance matrix of the prediction error vector

are jointly and alternatively optimized. The proposed learning

approach can automatically reinvest all frequency bands with

different significance and reduce the errors in the propagation

process. Compared with the conventional MMSE optimization,

our approach could achieve a smaller reconstruction loss and a

better generalization capability.
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