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Abstract—In this paper, we introduce the attempts of our
fusion methods during the first DIHARD challenge. To our
knowledge, this is the first launch in speaker diarization domain
which aims to evaluate the performance of the state-of-the-art
system in realistic adverse acoustic environments. Besides speech
preprocessing modules including speech denoising and speech
activity detection, our attention has been focused on back-end
clustering algorithms, especially in system fusion. Consensus
clustering is adopt to combine both original speech and denoised
speech, for purifying unreliable clusters. Moreover, a score-
level fusion is conducted between GMM-UBM-based i-vector
and CNN-based i-vector. Finally, our system achieves diarization
error rates (DERs) of 36.05% on the evaluation sets, which is
the second place in the DIHARD challenge.

I. INTRODUCTION

Speaker diarization task is to segment speaker homogeneous
parts given an arbitrary audio recordings. A practical speaker
diarization system should work in conditions where no prior
information can be used, such as the number of speakers,
the dialog styles and environmental scenes. Previously, many
studies mainly focused on broadcast news and telephone data,
which could not be very representative to realistic application
conditions [1]. For this reason, the first DIHARD challenge [2]
was proposed where the datasets are well-designed and drawn
from a diverse set of challenging domains, in order to ex-
plore the benchmark of current state-of-the-art systems. The
complexity of data corpora leads people to build systems
which should have great capabilities of dealing with noisy
speech, reverberations, overlapped speech. Thus, a robust
preprocessing system is vital to the final performance. In [3],
we have shown that deep learning based denoising method has
stronger potentials in coping with realistic noisy environments
than traditional enhancement approaches.

Most of current diarization systems use the bottom-up
method, which is also known as agglomerative hierarchical
clustering (AHC). The recording is first clustered in to smaller
segments where each segment ideally comes from only one
speaker. Then the most similar segments are merged iter-
atively until a certain stopping criterion is satisfied. Some
metrics like Bayesian Information Criterion (BIC) [4], T-test
distance [5], can be used as the distance measure. Recently,
i-vector [6], [7] and probabilistic linear discriminant analysis
(PLDA) [8], [9] have shown great effectiveness in the field
of speaker recognition and speaker diarization. To further

enhance the performance, different fusion methods are also
explored, including feature-level fusion [10], system output-
level fusion [11], and multi-model fusion like audio-visual
fusion [12].

The DIHARD challenge proposes two tracks, namely
Track1 and Track2. Track1 uses gold speech segmentation
while Track2 does diarization from scratch. In this study, we
only consider the performance on Track2, because it’s the most
convictive proof for a real application. First, our proposed
diarization system is introduced. Based on that, we describe
our novel practices on fusion strategies. In Section III-A, con-
sensus clustering is used to capture complementarity between
two systems based on denoised speech and original speech.
In Section III-B, a convolutional neural network (CNN) based
i-vector is proposed and shows great benefits to traditional i-
vector PLDA framework. After all, we evaluate the system
on the DIHARD datasets. As conclusion, we discuss some
unsolved problems and the future work.

II. THE PROPOSED DIARIZATION SYSTEM

As in the preprocessing stage of our diarization system, we
first adopt a deep-learning based speech denoising model used
in [3], in order to mitigate interferences from environmental
noises under different recording conditions. Here we expand
the diversified simulated training data to more than 400 hours,
to make it more robust and stable. Then a deep neural network
(DNN) based speech activity detection model is trained on
realistic collected data. It can also be observed that speech
denoising module can boost the performance of speech activity
detection (SAD), especially in reducing the false alarm error.

Given the valid speech segments, we utilize a two-pass
short-long term diarization system. When the segments are rel-
atively short, we use the simple Bayesian information criterion
(BIC) as the hypothesis testing metric, to detect speaker turns
within an individual segment and then merge different seg-
ments which belong to one speaker. After the cluster segments
are relatively long (5 seconds in our experiments), i-vector
can be used as a more powerful speaker representations [6].
We train the baseline i-vector extractor on the VoxCeleb
corpus. The universal background model (UBM) contains
1024 Gaussians and the total variability matrix reduces the
dimension to a range between 100 and 400. In this study, with
the increase of i-vector dimension, we found the performance
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Fig. 1. The framework of system fusion based on consensus clustering.

also improves. So the final i-vector is with 400 dimension
and also length-normalized. For agglomerative hierarchical
clustering, a PLDA scoring model [8], [9] is trained to measure
the similarity between two i-vectors. Finally, a realignment
over frames is performed via Viterbi decoding on the specific
GMM trained on each speaker.

III. FUSION STRATEGY

System fusion is a common strategy to improve performance
in speaker diarization [11], [10], aiming to catch the comple-
mentarity between different systems. In this section, we will
present our attempts on seeking for an effective fusion method
in adverse acoustic environments.

A. System Fusion Based on Consensus Clustering

In this section, we adopt the consensus clustering method,
which aims to remove unreliable clusters via taking con-
sideration of different clustering results from several sub-
systems [13]. As illustrated in Fig. 1, benefiting from the
denoising model, we can run two parallel diarization systems
at the beginning, which separately use acoustic features ex-
tracted from original speech and denoised speech. As men-
tioned above, due to the advantage of denoised speech for
SAD performance, we use a unified SAD information derived
from denoised speech for both sub-systems. Before consensus
clustering, we force the two sub-systems to have the same
number of clusters.

Firstly, we construct a consensus matrix C with the size
N×N , which denotes whether two speech segments belong
to the same cluster or not, where N indicates the total number

of speech segments. The matrix C is defined as follows [13]:

C(i, j) =

∑
s Cs(i, j)

S
(1)

where S is the total number of diarization systems, and
Cs(i, j) denotes :

Cs(i, j) =


1 if i and j belong to the same cluster

0 otherwise
(2)

where s indicates the index of different sub-systems. Thus, the
probability matrix of whether the segments i and j should be
assigned to the same cluster is represented by C(i, j). Those
segments whose corresponding C(i, j) equals to 1, are selected
as the reliable parts in the following agglomerative hierarchical
clustering. Moreover, we can get more precise speaker models.
At the end, the input segments will be assigned to an available
cluster through Viterbi decoding.

It is reported in [14] that, consensus clustering can fully uti-
lize the complementary information between original speech
and denoised speech, and achieve a significant improvement
comparing to each individual system in terms of diarization
error rate (DER). However, the generalization ability in ad-
verse acoustic environments of DIHARD challenge is still not
examined. In addition, to keep consistent with [14], we also
use the T-test distance [5] as the clustering metric, comparing
with i-vector PLDA strategy.
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Fig. 2. The architecture of CNN-based i-vector extractor.
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B. Scoring Fusion Based on Different Embeddings

Traditional i-vector extractor based on GMM-UBM works
well in most scenes. But the modeling capability of UBM is
relatively limited when we have large amounts of data [15].
Due to the powerful modeling ability of deep networks, an
end-to-end residual convolutional neural network (CNN) based
i-vector extractor [16] was used as a supplementary. The CNN
architecture is shown in Fig. 2, where BN denotes the batch
normalization layer, Conv Block X denotes the convolutional
layer with X feature maps, Res Block X denotes the residual
layer with X feature maps. For the input layer, 512 frames
of 64 dimensional filterbank features which belong to the
same speaker are packed together. For the output layer, a
512 dimensional vector is generated as the identity vector
of the specific speaker. During the first stage of training, we
pre-train the network by predicting the speaker identity using
softmax loss. Then triplet loss [17] is used as the second stage
training criterion. Similarities between different CNN i-vectors
are measured by cosine score. In the testing stage, a complete
segment will be split into a sequence of 512-frame windows.
Each window can get a separate CNN-based i-vecotr, then the
final embedding vector takes average of them.

Conventionally, scoring fusion is conducted on PLDA scores
which are produced from several individual diarization sys-
tems. However, we found the complementarity between sys-
tems of different scoring methods is stronger than it between
systems using the same scoring strategy. Hence, we explore
fusing the traditional PLDA score of baseline system and the
cosine score of CNN-based i-vector system via a weighted
sum with coefficients. The new score function is shown as
follows:

Score = PLDA(Uveci,Uvecj) + w ∗ cos(Cveci,Cvecj) (3)

where PLDA calculates the score between UBM i-vectors of
segment i and j (Uveci and Uvecj), while cos calculates
the cosine score between CNN i-vectors of segment i and j
(Cveci and Cvecj). Due to the dimension distinction between
these two kinds of score methods, the coefficient w is the key
weighting parameter to tune the balance between those two
scores. In DIHARD development dataset, we go through the
diarization process of our baseline system before PLDA AHC.
The distribution of PLDA score is illustrated in Fig. 4. It can
be observed that most scores are in the range of [-60, 60], and
roughly follow a Gaussian distribution. Therefore, we set w
to 60.

IV. EXPERIMENTS AND RESULTS

In this section, we present our experiments on the first DI-
HARD challenge datasets, including both development set and
evaluation set. We use the DER to evaluate the performance
of a diarization system, which is defined by the evaluation
campaigns organized by NIST. Note that, there is no unscored
collars during the evaluation. Moreover, multiple speakers in
overlap speech segments are all counted. In this study, we only
focus on Track2 which means a complete system from scratch
without any prior information.
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Fig. 3. The scoring fusion based on different embeddings.
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Fig. 4. The distribution of PLDA scores across the development dataset.

A. Training Data

For the denoising model, we maintain the model architec-
ture presented in [3]. Beyond using English speech corpus
WSJ0 [18], we also add a 50-hour Chinese speech corpus from
863 Program to increase the diversity of clean speech data.
115 noise types are adopted with clean data to generate pairs
of clean and noisy utterances. Total size of the synthesized
training data is about 400 hours. For SAD training, 600-hour
home-made realistic speech data in iFlytek was used. Human
annotations on each speech segment are set as the learning
target.

Speaking of i-vector extractor, VoxCleb corpus which con-
tains over 100,000 utterances for 1,251 celebrities [19], is used
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for UBM and PLDA training. Besides, due to the huge demand
of large scale training data for training deep networks, we use
another home-made corpus in iFlytek to train the CNN-based
i-vector extractor. It contains realistic recordings from more
than 30,000 persons.

B. Evaluation Data

The evaluation data for diarization performance is taken
from the first DIHARD challenge. The very challenging cor-
pora is selected from a diverse set of challenging domains,
including child language acquisition recordings, clinical inter-
views, far-field dialogs, web videos and so on. The develop-
ment set and evaluation set contains 19 hours and 21 hours
respectively. More details of the data can refer to [2], [20],
[21].

TABLE I
EXPERIMENTS OF CONSENSUS CLUSTERING WITH DIFFERENT METRICS.

DER(%) Devlopment Set Evaluation Set
System Miss FA SpkrErr Overall Miss FA SpkrErr Overall
PLDA 16.50 6.00 7.60 30.10 18.09 5.40 13.35 36.84

+Consensus 16.50 6.00 8.89 31.39 18.09 5.40 14.81 38.30
T-test 16.50 6.00 8.60 31.10 18.09 5.40 14.67 38.16

+Consensus 16.50 6.00 8.20 30.70 18.09 5.40 13.95 37.44

C. Results

The baseline system is constructed with UBM i-vector
extractor and PLDA scoring model which are both trained
with denoised speech. It’s denoted as PLDA in Table I. For
consensus clustering, original speech and denoised speech are
simultaneously utilized together to purify the clusters before
agglomerative hierarchical clustering, each uses its own i-
vector extractor. In this section, both PLDA score and T-test
distance are investigated as clustering metric. As shown in
Table I, the miss and false alarm rates are the same since all
systems adopt the SAD results extracted from denoised speech.
Note that, our systems can not tackle with overlap speech
segments, where all those segments can only be distributed
to one character. That’s the reason why miss error rate is
relatively high. Specifically, the single PLDA system using the
denoised data yields the best performance. Using PLDA as the
clustering metric, consensus clustering obtains no performance
gain, but an obvious decline. On the contrary, T-test distance
system can benefit by consensus clustering with 0.4 and 0.72
reductions of speaker error in development set and evaluation
set. Comparing with more significant improvements in [14],
the reason can be categorized as follows: First, most of the
diarization data here is noisy, where the denoising performance
is of great importance; Second, our denoising model architec-
ture is much more advanced and robust. Hence, a single system
using the well-behaved denoising model can achieve best
performance with i-vector/PLDA clustering method, original
speech with consensus clustering brings no additional gain.

In Table II, the single CNN i-vector system using cosine
score, denoted as Cosine in Section III-B, does not achieve
the best performance. This is partly because the data used

TABLE II
EXPERIMENTS OF SCORING FUSION WITH DIFFERENT EMBEDDINGS.

DER(%) Devlopment Set Evaluation Set
System Miss FA SpkrErr Overall Miss FA SpkrErr Overall
PLDA 16.50 6.00 7.60 30.10 18.09 5.40 13.35 36.84
Cosine 16.50 6.00 9.10 31.60 18.09 5.40 16.06 39.55
Fusion 16.50 6.00 6.90 29.40 18.09 5.40 12.56 36.05

in training CNN network is all Chinese speech while the
most test recordings are English. But the complementarity
between PLDA score and cosine score is captured via scoring
fusion presented in Section III-B. Comparing to the single
PLDA scoring, the fusion method obtains relative SpkrErr
reductions of 9.2% in development set and 2.1% in evaluation
set, respectively. Finally using the fusion system, we achieve
the second place on the evaluation set of DIHARD challenge.

V. DISSUSION AND FUTURE WORK

Speaker diarization in adverse acoustic environments still
remains challenging, the state-of-the-art performance is barely
satisfactory. The diarization errors can be mainly attributed
into several types. First, the overlapped segments are difficult
to detect and correctly classified to corresponding speakers.
Usually, those overlapped segments will cluster together as
a new speaker. After the statistical analysis, around 8.5%
speech segments on the development set are overlapped parts,
while it is 9.56% on the evaluation set. Second, background
noises can greatly hurt the overall diarization performance,
due to its effects on both SAD results and clustering process.
For examples, some constantly emerging noises have strong
similarity, such as car whistles, wind blows, microphone
gratings and so on. Although our denoising model removes
most of non-speech interferences, it’s still a trade-off problem
between noise reduction and speech reservation.

As conclusion, we have presented our attempts on system
fusion in a realistic speaker diarization task. On condition that
the denoised speech system performs well enough, consensus
clustering of denoised speech system and original speech
system is helpless. Furthermore, a score fusion between PLDA
score and cosine score is more implementable and effective.
In the future, we aim to improve the diarization performance
by investigating the overlap detection and speech separation.
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