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a b s t r a c t 

General object detection task mainly takes axis-aligned bounding-boxes as the detection outputs. To ad- 

dress more challenging scenarios, such as curved text detection and multi-oriented object detection in 

aerial images, we propose a novel two-stage approach for shape robust object detection. In the first stage, 

a locally sliding line-based point regression (LocSLPR) approach is presented to estimate the outline of the 

object, which is denoted as the intersections of the sliding lines and the bounding-box of the object. To 

make full use of information, we only regress partial coordinates and calculate the remaining coordinates 

by the sliding rule. We find that regression can achieve higher precision with fewer parameters than the 

segmentation method. In the second stage, a rotated cascade region-based convolutional neural network 

(RCR-CNN) is used to gradually regress the target object, which can further improve the performance 

of our system. Experiments demonstrate that our method achieves state-of-the-art performance in sev- 

eral quadrangular object detection tasks. For example, our method yielded a score of 0.796 in the ICPR 

2018 Contest on Robust Reading for Multi-Type Web Images, where we won first place for text detection 

tasks. The method also achieved 69.2% mAP on Task 1 of the ICPR 2018 Contest on Object Detection in 

Aerial Images, which was our best single model, where we also won first place. In addition, the method 

outperforms the previously published best record on the curved text dataset (CTW1500). 

© 2019 Published by Elsevier Ltd. 
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. Introduction 

Object detection and instance segmentation have attracted in-

reasing attention in the computer vision community. The tradi-

ional object detection task mostly focuses on horizontal rectan-

ular labeled objects, and instance segmentation focuses on arbi-

rary shape object segmentation. However, there are many tasks

n which objects are labeled with a quadrangle or curved polygon,

uch as object detection in aerial images and text detection. 

Recently, many researchers have adapted general object detec-

ion methods for object detection in aerial images and text de-

ection. One type of method [1–4] directly regresses vertices of a

uadrangular object, but this regression leads to ambiguity when

e define the order of vertices. Another type of method is the

nstance segmentation method [5,6] . The instance segmentation

ased method can address the above mentioned ambiguity prob-

em using mask labels but needs more parameters to increase the

asks resolution, and mask prediction is not necessary for quad-

angles and curved polygons. 
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For the shape of a quadrangle or a curved polygon, specific

ules can be utilized compared with instance segmentation with an

rbitrary shape. In this study, we propose a novel approach called

ocally sliding line-based point regression (LocSLPR) in which we

se sliding lines to scan text line images of local proposal boxes

nd then regress the intersection points between the sliding line

nd ground-truth bounding box. There is no ambiguity in our

ethod compared with directly regressing vertices. To make our

pproach more robust to the rotation problem, we further present

he rotated cascade region-based convolutional neural network

RCR-CNN) in a two-stage manner. In the first stage, RoIAlign [7] is

dopted, and the R-CNN network outputs LocSLPR’s intersection

oints. Then, the rotated rectangle from the first stage is used to

earn another rotated R-CNN, and rotated RoIAlign is adopted in

he second stage. The proposed method can handle well objects

hose label is quadrangle or curved polygon, which means our

ethod is shape robust. The main contributions of our work are

ummarized as follows. 

1. We present a novel LocSLPR method that can handle quad-

rangular/curved objects and well address the ambiguity

problem of vertex order compared with direct regression.

LocSLPR requires fewer parameters and achieves better re-

sults than segmentation-based methods. 

https://doi.org/10.1016/j.patcog.2019.106964
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patcog
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patcog.2019.106964&domain=pdf
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2. We present an RCR-CNN, which can gradually regress the

object in a two-stage manner and significantly improves the

performance of our system. 

3. Our proposed method won first place in the ICPR 2018 Con-

test for Robust Reading for Multi-Type Web Images [8] with

a score of 0.796 and was our best single model in the ICPR

2018 Contest on Object Detection in Aerial Images (ODAI)

[9] with a 69.2% mean average precision (mAP), where we

won first place. In addition, we also achieved the best results

on the curved text detection dataset CTW1500 [10] , demon-

strating the effectiveness and flexibility of our method. 

2. Related work 

2.1. Object detection and instance segmentation 

There are two main types of methods in object detection,

namely, two-stage methods and one-stage methods. For the two-

stage methods, Faster R-CNN [11] shares convolutional layers in

the region proposal network (RPN) and R-CNN network; RPN pro-

poses rough boxes in the first stage and then regresses again with

R-CNN. R-FCN [12] presents a position-sensitive region of interest

(RoI) pooling to learn the location information of objects. To ad-

dress inaccurate localization problem, Wang et al. [13] presents

a method named hierarchical objectness network for accurate lo-

calization. Hyperfusion-Net [14] tries to fuse reflective features

which can integrate the global and local multi-scale feature maps.

Tree-structured low-rank representation (TS-LRR) [15] presents a

salient object detector which can improve the representation abil-

ity of the network for background, and distance the salient ob-

jects from the background. Ghadiri et al. [16] presents a novel

method for detecting carried objects from a single video frame

by incorporating multi-scales feature map. Cascade R-CNN [17] in-

creases the number of R-CNN to gradually generate better boxes.

However, these two-stage methods require a heavy computational

load. Accordingly, a one-stage method is designed by removing the

Fast R-CNN branch. YOLO [18] introduces a very fast framework

that can process images in real time. SSD [19] generates multi-

scale feature maps and detects the objects on the feature maps

of different scales. In recent years, instance segmentation meth-

ods have also been widely applied to object detection. For ex-

ample, Mask R-CNN [7] combines object detection with instance

segmentation and presents RoIAlign to eliminate quantization er-

ror. The path aggregation network (PANet) [20] , which won the

COCO 2017 Challenge Instance Segmentation task, improves Mask

R-CNN by bottom-up path augmentation, adaptive feature pooling

and fully connected fusion. Since accurately annotated data is diffi-

cult to collect, weakly supervised learning is very important. Deep

patch learning (DPL) [21] presents a novel method to learn patch

features with only image-level annotations and proposal cluster

learning (PCL) [22] also trains detector with only image-level an-

notations by generating proposal clusters for instance classifier

refinement. 

2.2. Text detection 

First, general object detection methods can be applied to

text detection tasks. In [23] , a rotation region proposal network

(RRPN) is proposed for multi-oriented scene text detection. R 

2 CNN

[24] presents a multisize pool and regresses rotated rectangles

in the R-CNN stage. The fused text segmentation network (FTSN)

[5] improves Mask R-CNN for text detection. The CTW [10] re-

gresses multiple points based on R-FCN for curved text detec-

tion and uses a recurrent neural network (RNN) [25] to learn the

correlation between points. Liu and Jin [3] adopts SSD [19] to
egress vertices and designs a rule to calculate the order of ver-

ices. He et al. [26] presents a text attention mechanism (TAM) that

oughly predicts text regions by an attention map. TextBoxes++

27] adopts irregular 1 × 5 convolutional filters instead of 3 × 3

onvolutional filters for long text lines and leverage recognition

esults to refine the detection results. SegLink [28] decomposes

ext into many parts, then predicts the probability of links, and fi-

ally merges them into one text line. Hu et al. [29] investigates

etection of text lines on a character basis, which is different

rom word-level methods. WeText [30] presents a weakly super-

ised scene text detection method that is trained with unanno-

ated or weakly annotated data. Based on pooling layer, Nguyen-

an et al. [31] presents a novel pooling based scene text proposal

ethod for multi-orientation and multi-language scene text detec-

ion. Pastor [32] presents a novel text baseline detection method

hich is efficient and robust to nosily manuscripts. Text detection

n mobile video is also a challenging task, Roy et al. [33] uses

ractal property and optical flow for text detection in mobile

ideo. 

Second, text detection can also use segmentation-based meth-

ds. Liu and Jin [3] uses semantic segmentation to predict the

alient map of text regions and the centroid of each character and

hen combines the two to restore text boxes. Wu and Natarajan

34] adds a border class to segmentation labels to separate nearby

ext-lines. PixelLink [35] generates an 8-direction margin to sepa-

ate text lines. He et al. [36] generates segmentation maps of the

ext lines one by one with cascaded instance aware segmentation.

yu et al. [37] combines position-sensitive segmentation with cor-

er detection to calculate every quadrangle probability. Both Zhou

t al. [2] and He et al. [1] combine segmentation and regression

o generate a shrink score map and predict box border locations.

e et al. [38] and Liu et al. [39] explore an end-to-end method for

ext detection and recognition based on EAST [2] . 

.3. Object detection in aerial images 

In the area of object detection in aerial images (ODAI), many

esearchers focus on transferring the powerful deep features from

NN to improve the performance of detectors for aerial images.

iang et al. [40] and Chen et al. [41] use deep CNN features to de-

ect small vehicles in satellite images. Similarly, Salberg [42] aims

o detect seals in aerial remote sensing images with the help of

ff-the-shelf CNN feature representation. These methods simply re-

lace traditional hand-crafted features with CNN features to ac-

uire a richer representation to improve performance. Long et al.

43] divides ODAI into region proposal, classification, and accurate

bject localization. Hsieh et al. [44] attempts to use the correla-

ion between objects based on the assumption that a predicted

osition where there are more objects can obtain a higher confi-

ence to be predicted as the same object. Recently, one research

irection focused on designing a unified deep detector for aerial

mages ( [4] and [45] ). Li et al. [46] presents a rotation-insensitive

PN and local-contextual feature fusion network for arbitrarily ori-

nted instances, but its final result is also a horizontal bound-

ng box (HBB). Cheng et al. [47] and Cheng et al. [48] focus on

earning rotation-invariant CNNs for object detection. Although all

hese methods address the multi-oriented object detection, only

ia et al. [4] aims to detect oriented bounding boxes (OBBs) and

resents faster-RCNN-OBB to directly regress vertices in R-CNN.

ith the popularity of machine learning, data-driven methods are

idely used for the object detection task of aerial image datasets.

o enlarge the data scale and diversity, Xia et al. [4] presents

 large-scale dataset for object detection in aerial images

DOTA) including image samples with quadrangle labels from 15

ategories. 
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Fig. 1. Illustration of our proposed architecture. 

Fig. 2. Order ambiguity of vertices (note that the box’s sides are painted different 

colors for better visualization). 
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Fig. 3. The intersection generation process of LocSLPR using horizontal sliding (left) 

and vertical sliding (right); horizontal/vertical sliding refers to the direction of the 

line scan but not the angle of the line. If a box’s width is larger than its height, 

horizontal sliding lines are used; otherwise, vertical sliding lines are used. 
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. Approach 

.1. Network architecture 

The overview of the architecture is shown in Fig. 1 . Inspired by

ANet [20] , we add both a top-down path and a bottom-up path to

enerate a feature pyramid with five feature maps, whose strides

re 4,8,16,32,64, respectively. We use RPN to generate proposal

oxes and assign anchors on feature maps with different scales.

pecifically, the areas of 32 × 32, 64 × 64, 128 × 128, 256 × 256, and

12 × 512 pixels are set to 4-stride, 8-stride, 16-stride, 32-stride

nd 64-stride feature maps, respectively. The aspect ratios are 0.5,

, and 2. These settings can refer to He et al. [7] . In the R-CNN

tages, we use only 4-stride, 8-stride, 16-stride, and 32-stride fea-

ure maps. We extract four feature maps by RoIAlign algorithm on

he feature maps with different scales, and then we add two fully

onnected layers and fuse the features of the four maps from the

rst fully connected layer by max pooling. We aim to regress ar-

itrary quadrangles, which is different from traditional object de-

ection tasks. To avoid the ambiguity of vertex order, we use Loc-

LPR to generate the outline of the objects. To generate a more

ccurate box, we employ RCR-CNN with two stages. In the first R-

NN, the inputs are horizonal rectangles and ouputs are rotated

ectangles, while in the second R-CNN, the inputs are rotated rect-

ngles calculated with the outputs from the first stage. As the am-

iguity problem of vertex order is well solved by LocSLPR in the

rst R-CNN, we directly regress four quadrangular vertices in the

econd R-CNN for quadrangular objects and still use LocSLPR for

urved texts. In the following subsections, two main contributions,

amely, LocSLPR and RCR-CNN, will be explained. 

.2. LocSLPR 

A quadrangle is made up of four vertices. Although we can di-

ectly regress these vertices, we need to formulate a rule to deter-

ine the order of the four vertices. As shown in Fig. 2 , if we define

he vertex that is closest to 45 degrees as the first vertex, ambi-

uity will appear near 45 degrees. This order ambiguity makes it
ifficult for the network to learn, which is the motivation for the

roposed LocSLPR. 

Different from our previous work [49] , LocSLPR slides lines

long each proposal box rather than the target object box and then

egresses the intersections of the sliding lines and the object bor-

er. We show the intersection generation process in Fig. 3 . Then,

he coordinates of the intersection points are calculated. For hor-

zontal sliding with uniformly spaced lines, we can easily obtain

he x -coordinate of the intersection points from the position of the

roposal box and only need to regress the y -coordinate of these

oints. For vertical sliding with uniformly spaced lines, we can eas-

ly obtain the y -coordinate of the intersection points from the posi-

ion of the proposal box and only need to regress the x -coordinate

f these points. Thus, we not only reduce the system parameters

ut also restrain the regressing points, which will generate a more

egular polygon [49] . We find that the intersection points along the

ong side of the proposal box can better represent the outline of an

bject. Accordingly, we use only these points to restore the object. 

We define the loss function of the LocSLPR regression task as: 

 LocSLPR = 

1 

4 n 

[ 

I 

(
w p 

h p 
< 

1 

r 

)
2 n ∑ 

j=1 

smooth L 1 ( ̄x v j , ̄x 
∗
v j ) 

+ I 

(
w p 

h p 
> r 

)
2 n ∑ 

i =1 

smooth L 1 ( ̄y h i , ȳ 
∗
h i 
) 

] 

(1) 

here n is the number of sliding lines, w p is the width of the pro-

osal box, and h p is the height of the proposal box. I ( · ) is the indi-

ator function. As shown in Fig. 3 , we can well represent an object

y a sliding line on the long side. Therefore, we add weight r to

q. (1) ; r is a threshold for the aspect ratio of the proposal box,

hich is set to 0.8. Thus, the network only regresses the intersec-
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Fig. 4. Calculating the rotated rectangle from LocSLPR’s points. 
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tion points on the longer side. x̄ v j is the x -coordinate of the inter-

section point v j of the vertical sliding lines and the object outline,

while ȳ h i is the y -coordinate of the intersection point h i between

the horizontal sliding lines and the object outline. x̄ ∗v j and ȳ ∗
h i 

are

the corresponding versions predicted by the network. smooth L 1 
de-

notes the Smooth L 1 loss in [50] : 

smooth L 1 (z, z ∗) = 

{
0 . 5(z − z ∗) 2 if | z − z ∗| < 1 

| z − z ∗| − 0 . 5 otherwise 
(2)

Please note that all the above coordinates are normalized on the

proposal box with the center coordinates ( x p , y p ) as: 

x̄ v j = (x v j − x p ) /w p , x̄ ∗v j = (x ∗v j − x p ) /w p 

ȳ h i = (y h i − y p ) /h p , ȳ ∗h i = (y ∗h i − y p ) /h p (3)

As shown in Fig. 4 , we calculate the rotated rectangle from Loc-

SLPR’s points. First, we connect the two points closest to the hor-

izontal rectangle’s short side and then extend and calculate their

intersection and the short side. Next, we calculate the minimum

rotated rectangle that includes these points. When the number of

sliding lines is small, it is possible to output a longer rectangle, but

the angle of the rotated rectangle is always accurate. Due to the

second regression in our cascade R-CNN, we find that this small

number does not have a negative impact, so we set the number of

sliding lines in the first stage to 7 to reduce the amount of calcu-

lations. If there is no next stage, the number of sliding lines is set

to 28. 

3.3. Rotated cascade R-CNN 

In recent years, many methods [23,38,39,46] have explored ro-

tated proposal boxes and RoIRotate. Inspired by cascade R-CNN

[17] , we present RCR-CNN. We adopt R-CNN twice, the inputs are

horizontal rectangles in the first stage and rotated rectangles in

the second stage. Accordingly, we calculate IoU for ground-truth

matching on horizontal rectangles in the first stage and on rotated

rectangles in the second stage. This process is shown in Figs. 5 and

6 . 

Rotated RoIAlign (RRoIAlign) is inspired by RoIAlign [7] ;

RRoIAlign can process a rotated rectangle box that is more suit-

able for our task. As illustrated in Fig. 7 , RoIAlign adopts bilinear

interpolation to compute the input featuresâ values at four sam-

pled locations in each RoI bin and then calculates the results by

using each bin’s average. Our RRoIAlign follows the rule of RoIAlign

with an additional angle variable. RoIPool and RRPN [23] use quan-

tizations leading to the offset. These misalignments might have

a negative effect on the regression, especially for small objects.

Therefore, we adopt bilinear interpolation to calculate the values

of these points. 

To implement the RRoIAlign for region proposal, we change the

label computation method. As shown in Fig. 8 , we build the new

coordinate system by setting the long side of the proposal box to

the x -axis and the short side to the y -axis. Suppose that ( x ′ , y ′ ) is
he original coordinate system that is the original label and that

 x, y ) is the transformed coordinate system. To transform between

wo coordinate systems, we first translate the original coordinates

y (−x p , −y p ) , then rotate the coordinates by θ degrees, and finally

ranslate the coordinates back by ( x p , y p ). The above operations can

e represented by an affine matrix: 

 

 

 = 

[ 

1 0 x p 
0 1 y p 
0 0 1 

] 

∗
[ 

cos θ sin θ 0 

− sin θ cos θ 0 

0 0 1 

] 

∗
[ 

1 0 −x p 
0 1 −y p 
0 0 1 

] 

= 

[ 

cos θ sin θ (1 − cos θ ) x p − y p ∗ sin θ
− sin θ cos θ (1 − cos θ ) y p + x p ∗ sin θ

0 0 1 

] 

(4)

 

x 
y 
1 

) 

= M 

M M 

( 

x ′ 
y ′ 
1 

) 

(5)

ased on Eqs. (4) and (5) , ground truth ( x, y ) on the rotated co-

rdinate system can be calculated by ground truth ( x ′ , y ′ ) on the

riginal coordinate system, we use the ground truth ( x, y ) on the

otated coordinate system to calculate the regression target in the

econd stage. By using RRoIAlign, we need to further adjust the co-

rdinates only in the second stage. Then, the ambiguity problem is

lso accordingly well addressed. Since generating quadrangles from

ontours is an iterative process, we directly regress four vertices in

he second stage to accelerate the quadrangular task; the order of

he four vertices is determined by using the following rule: we first

ort these vertices clockwise and then calculate the mean values

f these vertices’ coordinates as the center point. Accordingly, four

ectors are formed by linking from the center point to the four ver-

ices. Finally, the angles of these vectors can be computed, and the

ertex that is closest to 45 ◦ is selected as the starting point. How-

ver, for the curved text task, we still use LocSLPR in the second

tage. We define the regression loss function of the four vertices

s: 

 4P = 

4 ∑ 

i =1 

[
smooth L 1 ( ̄x i , ̄x 

∗
i ) + smooth L 1 ( ̄y i , ȳ 

∗
i ) 

]
(6)

here x̄ i and ȳ i are the x -coordinate and y -coordinate of the i th

ertex, x̄ ∗
i 

and ȳ ∗
i 

are the corresponding values predicted by the

etwork, and smooth L 1 
is the smooth L 1 loss defined in Eq. (2) .

imilar to Eq. (3) , x̄ i , ̄x 
∗
i 
, ̄y i , and ̄y ∗

i 
are normalized coordinates: 

x̄ i = (x i − x p ) /w p , x̄ ∗i = (x ∗i − x p ) /w p 

¯
 i = (y i − y p ) /h p , ȳ ∗i = (y ∗i − y p ) /h p (7)

For the classification task, the loss function is defined as: 

 classes = 

∑ 

L cls (y c , y 
∗
c ) (8)

here L cls is a cross-entropy loss function, y ∗c is the ground truth

f classification, and y c is the prediction score. 

. Experiments 

.1. Object detection in aerial images 

.1.1. DOTA 

DOTA is a large-scale dataset for object detection in arial im-

ges [4] , which contains 2806 aerial images from different sensors

nd platforms. The size of these images ranges from 800 × 800 to

0 0 0 × 40 0 0 pixels, and there are large scales and angle spans be-

ween objects. Fifteen common object categories, namely, plane,

hip, storage tank (ST), baseball diamond (BD), tennis court (TC),

asketball court (BC), ground track field (GTF), harbor, bridge, large

ehicle (LV), small vehicle (SV), helicopter (HC), roundabout (RA),
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Fig. 5. The process of RCR-CNN. From left to right: The LocSLPR points (red) along the long side in the first stage, the rotated rectangle (green) generated by the LocSLPR 

points, and the regression in the second stage (note that only part of the red points are shown for better visualization). (For interpretation of the references to colour in this 

figure legend, the reader is referred to the web version of this article.) 

Fig. 6. The intersection over union (IoU) computation of RCR-CNN. From left to right: the quadrangle label, the calculated IoU on the HBB in the first R-CNN stage, and the 

calculated IoU on the rotated bounding box in the second R-CNN stage (the shaded part is the intersection area). 

Fig. 7. RoIAlign and RRoIAlign. 

Fig. 8. The coordinate system transformation in the RRoIAlign label calculation. 
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occer ball field (SBF), swimming pool (SP), are labeled with quad-

angles. The dataset is randomly divided into three parts; namely,

/2 of the images in DOTA are the training set, 1/6 are the vali-

ation set, and 1/3 are the testing set. Some unclear objects are

abeled as hard examples, which are defined as “do not care” in

oth the training stage and the testing stage. 

We set hyperparameters following the mask R-CNN [7] . The

ackbone of our network is ResNet50 [51] , which is pretrained on

he ImageNet dataset. To avoid overfitting, we apply data augmen-

ation for better performance. In particular, we rotate images with

ngles of 0, π /2, π , and 3 π /2, and we use class balance resampling

o solve the class imbalance problem. In the DOTA experiment, we

se only the DOTA training set to train our model. A stochastic gra-

ient descent (SGD) optimizer is adopted to train the model. The

omentum is 0.9, and the weight decay is 1 × 10 −4 . The batch size

s 1, and the number of iterations is 180,0 0 0. The learning rate is

nitialized as 2 . 5 × 10 −3 and divided by 10 at the iteration range of

120 0 0 0, 160 0 0 0). All images are cropped to 1024 × 1024. We train

nd test the model with single scale input (1024 × 1024). We calcu-

ate the IoU of quadrangles for non-maximum suppression (NMS)

s the default, and the IoU threshold is 0.3. 

.1.2. LocSLPR vs. PANet 

We reimplement PANet [20] and use the segmentation result

o generate the minimum rotated rectangle. The resolution of the

ANet mask branch is 28 × 28. Correspondingly, we employ 28 slid-

ng lines for LocSLPR in this comparative experiment. The instance
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Fig. 9. An example comparison of the detection results for DOTA between LocSLPR (left) and direct regression (right). 

Table 1 

Ablation experiments on DOTA (in %). 

Method PANet [20] Direct LocSLPR LocSLPR + 

Regression RCR-CNN 

Plane 89.48 88.92 89.61 89.93 

BD 65.69 76.88 76.61 77.66 

Bridge 47.74 42.13 40.93 44.01 

GTF 63.56 57.18 63.55 62.77 

SV 50.99 67.21 67.34 67.00 

LV 57.95 64.98 67.60 69.80 

Ship 69.86 78.36 78.62 79.57 

TC 90.82 90.86 90.86 90.85 

BC 70.75 79.22 79.63 80.19 

ST 77.00 78.45 78.64 78.64 

SBF 57.39 51.94 51.45 58.82 

RA 54.67 56.25 63.42 56.50 

Harbor 58.57 57.79 58.46 68.57 

SP 55.99 61.87 62.05 63.64 

HC 51.67 52.08 50.42 53.03 

mAP 64.15 66.95 67.95 69.47 

FPS 3.7 6.4 5.4 2.3 
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segmentation method, aiming to handle objects in any shape, can

also be used for quadrangular object detection. However, the seg-

mentation branch needs to increase the resolution of the mask

map to generate more accurate quadrangles, which requires more

parameters. Thus, for the quadrangular objects and curved polygon

labeled text lines, it is not necessary to generate masks. In con-

trast, LocSLPR is a regression method that can regress in unlimited

precision with limited parameters, and the smooth L 1 loss [50] is

less sensitive to outliers. In Table 1 , we compare our LocSLPR with

PANet. Clearly, LocSLPR with a mAP of 67.95% significantly outper-

forms PANet with a mAP of 64.15%. 

4.1.3. LocSLPR vs. direct regression 

Direct regression the four vertices of a quadrangle leads to ver-

tex order ambiguity in some cases. In our rule, the ambiguity will

appear at 45 ◦. In Table 1 , we compare our LocSLPR with direct

regression. We can observe that LocSLPR achieves better perfor-

mance. The performance gain should be more significant if there

are more samples with the 45 ◦ rotation. We show an example of

detection results for DOTA in Fig. 9 . Obviously, the direct regres-

sion approach seems to confuse which vertex is the top left point

for those 45 ◦ rotated objects and generates the wrong coordinates.

However, such problems can be well addressed in our proposed

LocSLPR approach. 
.1.4. LocSLPR vs. LocSLPR+RCR-CNN 

We used RCR-CNN because the target is a quadrangle. As shown

n Table 1 , the proposed two-stage approach, i.e., LocSLPR+RCR-

NN, achieves better mAP results than the one-stage LocSLPR ap-

roach. In the first stage, we propose horizontal rectangles. How-

ver, calculating the IoU of horizontal rectangles cannot always lo-

ate objects well. Specifically, when the objects have 45 ◦ rotation

nd are very dense, one proposal box may intersect with many ob-

ects with high IoU, leading to inaccurate detection results. There-

ore, we use RCR-CNN and calculate the IoU of the rotated rectan-

le in the second stage. In addition, we regress again in the second

tage, which can generate more precise quadrangles. An example

f detection results for DOTA between LocSLPR and LocSLPR+RCR-

NN is illustrated in Fig. 10 . 

.1.5. Efficiency 

We compare the efficiency of our method with others. As

hown in Table 1 , the proposed LocSLPR is a little slower than

irect regression, but compared with PANet which is an instance

egmentation method, our method is more efficient. RCR-CNN is

uch slow because there are two R-CNNs in RCR-CNN, and R-CNN

onsumes much computation. 

.1.6. ICPR contest on object detection in aerial images 

Based on our LocSLPR, we combine both the training set and

he validation set of DOTA for training. To obtain the best results,

e adopt ResNeXt-101 (32 × 8d) [52] as the backbone. Multi-scale

esting is also used for Task 1 of the ICPR ODAI. This single model

ields a 69.2% mAP. We also fuse this model with a segmentation-

ased model whose mAP is 67.5%. Finally, our best-submitted sys-

em for ODAI achieved a 70.5% mAP and was the champion sys-

em of the ODAI competition. Table 2 summarizes the entries from

he Oriented Leaderboard on ODAI. It is worth mentioning that our

STC-NELSLIP system significantly outperforms other competitors,

ith an absolute gain of 8.3% mAP in comparison to the second-

lace system. 

.2. Text detection 

.2.1. Experiments on ICDAR2015 incidental scene text 

The ICDAR2015 Incidental Scene Text dataset [53] is a com-

only used benchmark for detecting arbitrary-angle quadrangular

ext lines. It contains 10 0 0 images for training and 500 images for

esting. The size of all images is 1280 × 720 pixels. Some words

hat are too small or unclear are annotated as “do not care” sam-

les. 
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Fig. 10. An example comparison of detection results on DOTA between LocSLPR+RCR-CNN (left) and LocSLPR (right). 

Table 2 

Task1 - oriented leaderboard on ODAI. 

Team name USTC-NELSLIP (ours) jmkoo HUST_MCLAB NWPU_SAIP changzhonghan madebyrag mfhan 

Plane 0.902 0.876 0.887 0.796 0.802 0.786 0.752 

BD 0.852 0.677 0.754 0.680 0.449 0.745 0.527 

Bridge 0.430 0.457 0.347 0.224 0.430 0.159 0.133 

GTF 0.686 0.512 0.629 0.610 0.468 0.612 0.355 

SV 0.740 0.705 0.585 0.602 0.665 0.343 0.549 

LV 0.768 0.684 0.633 0.657 0.699 0.419 0.545 

Ship 0.731 0.707 0.635 0.565 0.695 0.337 0.445 

TC 0.900 0.904 0.901 0.887 0.896 0.874 0.771 

BC 0.843 0.675 0.698 0.748 0.659 0.661 0.439 

ST 0.761 0.669 0.688 0.666 0.695 0.530 0.491 

SBF 0.639 0.400 0.508 0.610 0.438 0.544 0.177 

RA 0.495 0.434 0.391 0.383 0.338 0.356 0.293 

Harbor 0.556 0.556 0.471 0.425 0.456 0.379 0.306 

SP 0.632 0.541 0.441 0.393 0.001 0.387 0.324 

HC 0.639 0.534 0.405 0.420 0.274 0.461 0.194 

mAP 0.705 0.622 0.598 0.578 0.531 0.506 0.420 

Table 3 

The performance comparison with other state-of-the-art methods on ICDAR2015 Inci- 

dental Scene Text dataset. 

Methods Precision (%) Recall (%) F-measure (%) FPS 

HUST [53] 44.0 37.8 40.7 –

Zhang et al. [54] 70.8 43.1 53.6 –

RRPN [23] 82.2 73.2 77.4 –

WordSup [29] 79.3 77.0 78.2 –

EAST [2] 83.3 78.3 80.7 –

Deep direct regression [1] 82.0 80.0 81.0 –

R 2 CNN [24] 85.6 79.7 82.5 0.4 

PixelLink [35] 85.5 82.0 83.7 3.0 

FSTN [5] 88.6 80.0 84.1 –

Lyu et al. [37] 89.5 79.7 84.3 1 

SLPR [49] 85.5 83.6 84.5 –

Textboxes + + [55] 91.2 79.2 84.8 –

LocSLPR + RCR-CNN 88.5 86.2 87.3 1.8 
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To evaluate our method on this dataset, we use ResNet50 as the

ackbone, which is pretrained on the ImageNet dataset. We com-

ine the training dataset of the ICDAR2015 Incidental Scene Text

ith the training dataset of the ICDAR2013 competition [56] to

rain the model. Data augmentation is adopted for better perfor-

ance. Specifically, we rotate images by [0 ◦, 30 ◦, . . . , 360 ◦] and

andomly resize images to [60 0, 70 0, 80 0, 90 0, 10 0 0, 110 0]. We ig-
ore the text lines that are labeled as “do not care” or whose short

ide is less than 10 pixels. We train the model by an SGD optimizer

ith the same parameter settings as in the DOTA experiments. In

he inference phase, we resize the short side of the testing images

o 10 0 0, while keeping their aspect ratios unchanged. We compare

ur method with other state-of-the-art methods in Table 3 . The

ocSLPR+RCR-CNN method achieves an 87.3% F-measure with the
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Fig. 11. An example comparison of detection results between the one-stage LocSLPR approach (top) and the two-stage LocSLPR+RCR-CNN approach (bottom) on the IC- 

DAR2015 Incidental Scene Text dataset. 

Fig. 12. An example comparison of detection results among different approaches on CTW1500 dataset. The green rectangle is the proposal box, while the yellow polygon is 

the final detection result. (From left to right: CTD+TLOC, SLPR, LocSLPR+RCR-CNN). (For interpretation of the references to colour in this figure legend, the reader is referred 

to the web version of this article.) 

 

 

 

 

 

 

 

 

 

Table 4 

Experiments on the threshold of NMS (in %). 

Thres 0.1 0.3 0.5 

ICDAR2015 (F-measure) 87.02 87.33 87.13 

DOTA val (mAP) 67.45 67.41 68.05 

4

 

l  

e  

I  

p

single-scale input, significantly outperforming other state-of-the-

art methods. We also show some examples of the detection results

in Fig. 11 . For the two-stage LocSLPR+RCR-CNN approach, LocSLPR

is used to generate rotated rectangles in the first stage, while direct

regression is adopted to generate quadrangles in the second stage.

With the RCR-CNN, the detection results are obviously better than

those obtained using only LocSLPR. 

4.2.2. The thres of NMS 

We set different threshold of IoU for NMS on ICDAR2015 and

DOTA. As shown in 4 , we find there are different optimal values in

different datasets. NMS is not the main problem of our paper, so

we set the threshold of IoU to 0.3 for consistency. 
.2.3. Experiments on CTW1500 

The curved text dataset (CTW1500) [10] is constructed by Yu-

iang et al. Different from traditional quadrangular text datasets,

very text line in CTW1500 is labeled by a polygon with 14 points.

n addition, the evaluation protocol calculates the IoU between

olygons, which is specifically designed for curved texts. 
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Fig. 13. Examples of detection results using our LocSLPR+RCR-CNN method for the ICPR-MTWI challenge. 
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Table 5 

A performance comparison between our method and other state-of- 

the-art methods on the CTW1500 dataset ( ∗ indicates the result is from 

Liu et al. [10] ). 

Method Precision (%) Recall (%) F-measure (%) 

Seglink ∗ [28] 42.3 40.0 40.8 

SWT ∗ [57] 20.7 9.0 9.0 

CTPN 

∗ [58] 60.4 53.8 56.9 

EAST ∗ [2] 78.7 49.1 60.4 

DMPNet ∗ [3] 69.9 56.0 62.2 

CTD + TLOC [10] 77.4 69.8 73.4 

CTD [10] 74.3 65.2 69.5 

SLPR [49] 80.1 70.1 74.8 

LocSLPR + RCR-CNN 83.3 83.0 83.1 

o  

v  

h  

o  
To evaluate our approach on curved texts, LocSLPR is used for

oth stages. We adopt 7 sliding lines for LocSLPR in the first stage

ut 28 sliding lines for LocSLPR in the second stage because we

nly need to generate rotated rectangles in the first stage, while

he accurate contours of targets should be generated in the second

tage. Thus, we can accelerate without performance degradation.

he model is trained by an SGD optimizer and pretrained on the

mageNet dataset. The momentum and weight decay parameters

re the same as those in the experiments on the ICDAR2015 In-

idental Scene Text. The learning rate is initialized as 2 . 5 × 10 −3 ,

hich is divided by 10 in the iteration range (30 0 0 0, 40 0 0 0). The

otal number of iterations is 45,0 0 0. In the training stage, we only

se the CTW1500 training set and resize the short side of the im-

ges to 600 without other data augmentation, which is the same

s CTD+TLOC [10] and SLPR [49] . In the testing stage, we also re-

ize the short side of the images to 600 and use the single-scale

nput. In order to speedup, we calculate the IoU of the rotated

ectangles for NMS instead of the polygon, and the IoU threshold

s 0.3. We compare our method with other state-of-the-art meth-

ds in Table 5 . The proposed LocSLPR+RCR-CNN approach achieves

n 83.1% F-measure on CTW1500, which significantly outperforms

a  
ther methods and obtains an F-measure gain of 8.3% over our pre-

ious SLPR method [49] . This result shows that our method can

andle the curved texts well. In Fig. 12 , a qualitative comparison

f the detection results on the CTW1500 dataset among different

pproaches is given. Compared with CTD+TLOC [10] and SLPR [49] ,



10 Y. Zhu, C. Ma and J. Du / Pattern Recognition 96 (2019) 106964 

Table 6 

The leaderboard (Top-6) of the ICPR contest for robust reading 

for multi-type web images. 

Team name Score Precision Recall 

nelslip(iflytek&ustc) (ours) 0.796 0.813 0.779 

SRC-B-MachineLearningLab 0.766 0.813 0.723 

UC 0.755 0.788 0.725 

NTAI 0.752 0.799 0.711 

NJUImagineLabPSENet 0.752 0.785 0.721 

mclabdet 0.734 0.788 0.687 
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our LocSLPR+RCR-CNN approach generates more accurate polygon

boxes, benefiting from RRoIAlign and LocSLPR. 

4.2.4. Experiments on ICPR-MTWI challenge 

In 2018, the ICPR Contest for Robust Reading for Multi-Type

Web Images (ICPR-MTWI) [59] was held. The organizers provided

10,0 0 0 images for training and 10,0 0 0 images for testing. Different

from previous datasets, these images were mainly collected from

the Internet. Some blurred text lines are labeled as “do not care”

samples. The evaluation protocol follows ICDAR2013 Born-Digital

Image [56] but partially modifies the threshold. 

To evaluate our method for the ICPR-MTWI challenge, we adopt

ResNeXt-101 (32 × 8d) [52] as the backbone, which is pretrained

on the ImageNet dataset. We randomly select 90 0 0 images from

the training set of ICPR-MTWI for training and use the remain-

ing 10 0 0 images for validation. We use data augmentation for bet-

ter performance. Specifically, we rotate images by [0 ◦, 90 ◦, 180 ◦,

360 ◦] and randomly resize the short side of images to [70 0, 80 0,

90 0, 60 0, 50 0, 40 0]. We ignore the text lines that are labeled as

“do not care”. Unlike general object detection, some text lines can

be very long, but the receptive field of CNN is limited; text lines

that are too long or too short cannot be easily recognized at un-

suitable resolution. Therefore, the text lines whose short side is

less than 10 pixels or whose long side is longer than 612 pixels

are also ignored. The model is trained by an SGD optimizer with

the same parameter settings as in the DOTA experiments. To ob-

tain the best performance, we keep the aspect ratio unchanged

and resize the short side of the images to [40 0, 60 0, 80 0, 10 0 0]

and then evaluate our method using multi-scale inputs. We do not

use model ensembling in this challenge. We show the leaderboard

(Top-6 from more than 100 submitted systems) of the ICPR-MTWI

challenge in Table 6 . Our LocSLPR+RCR-CNN method with the team

name “nelslip(iflytek&ustc)” achieved an F-score of 0.796, which

was the best result among all submitted systems, yielding an ab-

solute gain of 3% over the second-place system, with the team

name “SRC-B-MachineLearningLab”. This dataset contains text lines

with arbitrary angles. As shown in Fig. 13 , some watermark texts

are very unclear, and some texts may intersect with other texts.

All these problems increase the difficulty of this task. Clearly, our

LocSLPR+RCR-CNN method addresses these issues quite well. 

5. Conclusion 

ODAI and text detection remain challenging due to complex

background and large variations in the shape and size of objects. In

this study, we present LocSLPR and RCR-CNN for shape-robust ob-

ject detection. We prove that there is no ambiguity problem of ver-

tex order in LocSLPR when we calculate the labels of regression. In

addition, we analyze the reason why directly regressing four ver-

tices is highly sensitive to labeling sequence, and we conduct ex-

periments to support our viewpoint. Our method can achieve bet-

ter performance with fewer parameters than segmentation-based

method (PANet). We also verify that gradually regressing targets

with RCR-CNN can generate more accurate results. 
We perform experiments on many tasks for evaluation. Our

ethod achieves state-of-the-art performance on DOTA and ob-

ains better performance than PANet and direct regression meth-

ds. We also won the ICPR Contest on Object Detection in Aerial

mages with great advantages. For text detection tasks, our method

chieves state-of-the-art performance on the ICDAR2015 Incidental

cene Text dataset and CTW1500, yielding an F-score of 87.3% on

CDAR2015 and an F-score of 83.1% on CT W1500. In CT W1500, our

ethod surpasses the second-best record by 8.3% in F-score. In ad-

ition, our method also won the ICPR Contest for Robust Reading

or Multi-Type Web Images and surpassed the second competitor

y 3.0% in F-score. All these results demonstrate the effectiveness

f our method and show that our method is very versatile. The

imitation of our method is that it can’t achieve real-time detec-

ion compared with one-stage detector. In the future, we will ex-

lore efficient and accurate one-stage detector. 
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